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Relaxed TS Fuzzy Model Transformation to Improve
the Approximation Accuracy/Complexity Tradeoff

and Relax the Computation Complexity
Péter Baranyi

Abstract—The primary goal of the article is to introduce the
relaxed TS fuzzy model transformation, a method that enhances
the original TS fuzzy model transformation in two ways. First,
it focuses on achieving a more efficient reduction of the number
of antecedent fuzzy sets—hence, the fuzzy rules of the TS fuzzy
models—while minimizing the approximation error. Second, it
aims to reduce the computational load required for the transforma-
tion process. With the first enhancement, the proposed transforma-
tion strikes a better balance between the number of fuzzy rules and
the approximation accuracy of TS fuzzy models. With the second
enhancement, a unique pre- and postprocessing of the TS fuzzy
model transformation is introduced leading to the radical computa-
tional improvements. The core part of the original TS fuzzy model
transformation is the higher order singular value decomposition
(HOSVD) used to balance the approximation quality with the
number of fuzzy rules by truncating singular values. The HOSVD
itself is a computationally intensive algorithm, the possibilities for
advancements in its implementation seem to be limited as much
research has focused on its optimization in the past and had reached
its pinnacle in terms of computational complexity more than a
decade ago. Therefore, the approach presented in this article does
not concentrates directly on enhancing HOSVD further, but instead
proposes a unique pre- and postprocessing technique for the tensor
on which HOSVD is applied, tailored to the special characteristics
of the TS fuzzy model and the system model under consideration.
Following a description of the proposed enhancements, the article
presents numerical examples and two examples of real-world en-
gineering models to demonstrate the effectiveness of the relaxed
TS fuzzy model transformation compared to the original TS fuzzy
model transformation.

Index Terms—Approximation-complexity tradeoff, TS fuzzy
model transformation, TS fuzzy model.

I. INTRODUCTION

THE TS fuzzy model transformation, also known as TP
model transformation, was first proposed in 1997 and has

since undergone continuous development [1], [2], [3], [4], [5],
[6], [7], [8], [9].
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The mathematical perspective of the TP model transformation
involves extending the concept of the higher order singular
value decomposition (HOSVD) [10] to continuous bounded
functions. It serves as a method for numerically reconstructing
the HOSVD of functions [1], [2], [3]. Besides generating higher
order singular value based orthonormed structures, the TP model
transformation is capable of deriving convex tensor product
forms [1], [2], [3], [4], [5], [6], [7], [8], [9], [11] equivalent
to the transfer functions of commonly used TS fuzzy models,
such that the antecedent fuzzy sets are defined as Ruspini parti-
tions. Therefore, the TP model transformation is also referred to
as the TS fuzzy model transformation in the literature on fuzzy
modeling.

From the fuzzy design perspective, the TS fuzzy model
transformation allows for the generation of various alterna-
tive TS fuzzy models based on either analytic functions or
black-box models, with different types of convex hulls of the
consequents [1], [2], [3], [4], [5], [6], [7], [8], [9], [11], which
can enhance further design outcomes. This feature is particu-
larly useful when further design steps need to be taken based
on the consequents, as in the case of, e.g., linear matrix in-
equality (LMI) and parallel distributed compensation (PDC)
based control design [1], [2], [3], [4], [5], [6], [7], [8], [12],
[13]. Many research papers have documented improvements
in control performance achieved by generating diverse alter-
natives to a given TS fuzzy model, derived using the TS fuzzy
model transformation and followed by the application of LMI.
Recent examples, mostly published in IEEE TRANSACTIONS

ON FUZZY SYSTEMS, include [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].
At the same time, the applicability of the TS fuzzy model
transformation is often limited by its heavy computational
requirements.

For this reason, the development of the TS fuzzy model
transformation has centered around three main purposes over
the course of the past 25 years:

1) TS fuzzy model alternatives: The goal is to vary the convex
hull defined by the consequents through the manipulation
of antecedent fuzzy sets and the input space to enhance
further design outcomes [1], [2], [3], [4], [5], [6], [7], [8],
[9], [11], [31], [32].

2) TS fuzzy model complexity minimization and associated
tradeoffs: The goal is to derive a minimal number of fuzzy
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rules by compromising between the number of fuzzy rules
and approximation accuracy to facilitate further design
steps [1], [2], [3], [4], [5], [6], [7], [8], [9], [33], [34],
[35], [35], [36], [37], [38], [39], [40], [41].

3) Computational relaxation: The goal is to render the un-
derlying algorithms themselves more computationally ef-
ficient. A key step of the transformation is based on the
computationally expensive HOSVD, which is executed on
a tensor in which the number of elements exponentially
increases with the number of inputs during the numerical
reconstruction of the antecedent fuzzy sets [1], [2], [3],
[7].

A. Novel Contributions of the Article

The article proposes an improved variant of the TS fuzzy
model transformation, referred to as the relaxed TS fuzzy model
transformation. Its key properties are as follows:

1) It provides improved accuracy and complexity tradeoff for
fuzzy rule base reduction.

2) It requires less computational load that considerably ex-
tends the class of models, where the TS fuzzy model
transformation can efficiently be applied.

B. Challenges and the Core Idea of the Solution

In the original TS fuzzy model transformation, HOSVD is
executed on a tensor representing the discretized variant of the
given model over a hyperrectangular grid. The resulting higher
order singular values express the relative importance—defined
based on approximation error—of the different fuzzy rules.
Therefore, rank reduction of the discretized tensor obtained
by truncating the smallest singular values directly leads to a
tradeoff between the number of fuzzy rules and the approxi-
mation accuracy of the resulting TS fuzzy model. The sum of
the truncated singular values represents an upper bound on the
resulting approximation error. Thus, the fundamental procedure
in the original TS fuzzy model transformation involves the appli-
cation of HOSVD, a method that is inherently computationally
intensive.

The evolution of HOSVD has been marked by extensive
efforts to enhance its implementation, as detailed in [10]. This
pursuit has led to incremental improvements in the associated
computational methods. For instance, the sequentially truncated
HOSVD (ST-HOSVD) algorithm, introduced in 2012 [42]. Ap-
proximately a decade ago, the development of HOSVD achieved
its peak in terms of computational complexity and accuracy in
handling singular values. Possibilities for further breakthroughs
in this domain seem to be limited.

Therefore, the approach presented in this article does not
concentrate on enhancing HOSVD further, but instead proposes
a unique preprocessing and postprocessing technique for the
tensor on which HOSVD is applied, tailored to the special
characteristics of the TS fuzzy model and the system model
under consideration, which leads to radical improvements. The
article reveals and proves that the convexity of the output of
the TS fuzzy model transformation, achieved by further trans-
forming the result of the HOSVD using convex transformation

techniques, makes it possible to remove blocks of identical
elements within a given tensor. Depending on the number of
such elements, a considerable reduction on computational re-
quirements can be achieved.

Based on the above, the proposed approach does not serve
as a substitute computational model for HOSVD, but instead
represents a supplementary step to HOSVD in the case of the
TS fuzzy model transformation, such that the data are tailored
to the unique attributes of the TS fuzzy model and the system
model at hand.

C. Outlines of the Proposed Solution

The key idea behind the relaxed TS fuzzy model transforma-
tion is to modify the inputs to and the outputs from the HOSVD
based step of the original TS fuzzy model transformation.

In the proposed transformation, certain appropriately selected
elements are temporarily separated from the discretized tensor.
This results in a smaller values of the singular values and,
further, the HOSVD is executed on a tensor that has fewer
elements. In the final step, after the convex form is determined,
the resulting decomposition is restructured and the previously
separated elements are reinserted.

D. Structure of the Article

Section II serves to define the notations used throughout the
article and establish the fundamental concepts necessary for
the development of the relaxed TS fuzzy model transformation.
Section III recalls the algorithm of the original TS fuzzy model
transformation. Section IV proposes an improved HOSVD based
rank reduction for tensors having identical blocks. Section V
develops the relaxed TS fuzzy model transformation based on the
improved reduction proposed in Section IV. Section VI presents
two demonstrative examples to provide further details on the
execution of the original and the relaxed TS fuzzy model trans-
formation, and to be able to obtain a comprehensive comparison
of the two. Sections VII and VIII provide a further comparison
of the two approaches based on the real-world engineering
benchmark problems of translational oscillators with rotating
actuator (TORA) and an aeroelastic wing section model. Finally,
Section IX concludes the article.

II. NOTATION AND BASIC CONCEPTS

A. Notation

1) i, j,m, n, g . . . are indices with the lower bound 1 and
upper bounds I, J,M,N,G . . ..

2) a ∈ R, a ∈ RI , A ∈ RI1×I2 , A ∈ RIN
denote, scalars,

vectors, matrices, and tensors, respectively, where nota-
tion RIN

is equivalent to RI1×I2×...×IN .
3) 1 denotes a vector whose elements are all 1;
4) rank(A) denotes the rank of matrix A;
5) rankn(A) denotes the n-mode rank of tensor A, see [10].
6) [·]index addresses elements, e.g., [A]i1,i2,...iN =

ai1,i2,...iN of A;
7) {A}(i) denotes the i-mode unfolding of A, see [10].

{A}(i) is a matrix whose columns are the vectors from
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dimension i of A. Thus, the size of {A}(i) is Ii ×∏N
n=1,n �=i In.

8) A = [B1 B2 . . . BK ]n represents the fact that tensor

A∈ RIN
is partitioned in the nth dimension into K dif-

ferent tensors Bk ∈ RI1×...×In−1×Jk×In+1×...×IN , where
In =

∑K
k=1 Jk.

9) A ∈ co{∀n : Bn} represents the fact that A is within the
convex hull defined by the vertices Bn.

10) U denotes an orthonormed matrix.
11) W denotes the matrix such that

1 = W1 and ∀i, j : 0 ≤ [W]i,j . (1)

12) U→ctr W represents a convex transformation that
transforms the orthonormed matrix U to W. Exam-
ples of such transformations in the literature related
to the TS fuzzy model transformation include sum
normalization—non negativeness (SNNN), normalized,
close to normalized, relaxed normalized, inverse nor-
malized, and the inverse relaxed normalized transfor-
mations [1], [2], [11]. These transformations guarantee
further characteristics of W that are advantageous in TS
fuzzy model based design as discussed in Section I.

In this article, f(p) represents a bounded continuous function
f(p) ∈ RJM

, where p ∈ Ω ⊂ RN . Here, Ω is defined by the
intervals ω1 × ω2 × · · · × ωN , where pn ∈ ωn, and ωn denotes
the interval [ωmin

n , ωmax
n ].

Vector function w(p) = [w1(p) w2(p) . . . wI(p)] has
nonnegative elements whose sum is equal to 1 for all p

∀p : w(p)1 = 1 ∀i, p : 0 ≤ [w(p)]i. (2)

B. Basic Concepts

Definition 2.1: Transfer function of TS fuzzy model
Let us consider a set of fuzzy rules in the form

IF A1,i1 AND A2,i2 . . .AND AN,iN THEN Bi1,i2,...iN . (3)

Here, the membership values of the Ruspini-partitioned an-
tecedent fuzzy sets An,in are defined by wn,in(pn). The con-
sequents Bi1,i2,...iN can represent scalar, vector, matrix, or even
tensor elements, denoted as Si1,i2,...iN∈ RJM

and structured in
a tensor S ∈ RIN×JM

.
The transfer function of the TS fuzzy model, based on a

product-sum-gravity approach and with singleton observations
located at pn, can be expressed as [1], [2], [3], [9]:

f(p) =

I1∑
i1

I2∑
i2

. . .

IN∑
iN

N∏
n=1

wn,in(pn)[S]i1,i2,...iN . (4)

This transfer function with tensor-product operation takes the
form of

f(p) = S
N
�

n=1
wn(pn) (5)

where wn(pn) = [wn,1(pn) wn,2(pn) . . . wn,IN (pn)].
The tensor product operation utilized in (5) is a concept that

was introduced in tensor algebra in the year 2000 [10]. Since

then, (5) has been widely employed in the literature on TP model
and TS fuzzy model transformation.

Definition 2.2: Discretized Tensor F of function f(p) over
grid G

The discretized tensor F ∈ RGN×JM
represents the dis-

cretized version of the function f(p)∈ RJM
over a rectangular

grid defined by the grid tensor G∈ RGN ×N
. It can be expressed

as [F ]g1,g2,...gN = f([G]g1,g2,...gN ).
Here, the grid tensor G defines the coordinates of a hyperrect-

angular grid as [G]g1,g2,...gN = [g1,g1 g2,g2 . . . gN,gN ] ∈
RN . It is constructed from the elements of grid vectors
gn = [gn,1 gn,2 . . . gn,Gn ] ∈ RGn , ∀n, i : gn,i < gn,i+1,
defined on each interval ωn of the N -dimensional hyperspace
Ω. The grid covers Ω, meaning that the grid vectors satisfy the
conditions, gn,1 = ωmin

n , and gn,Gn
= ωmax

n .
Definition 2.3: Piecewise multilinear approximation of func-

tion f(p) over grid G
The piecewise multilinear approximation f(p), denoted by

a bar on top, is defined using the discretized tensor F of f(p)
over grid G as

f(p) ≈ f(p) = F
N

�
n=1

in(pn) (6)

In this equation, the vector in(pn) is given by

in(pn) = λn[I]g + (1− λn)[I]g+1; λn =
gn,g+1 − pn
gn,g+1 − gn,g

(7)

where [g]g ≤ pn ≤ [g]g+1, and [I]g represents the gth row of
the identity matrix I.

III. ORIGINAL TS FUZZY MODEL TRANSFORMATION

The original TS fuzzy model transformation is built on the
following three methods [1], [2], [3].

Method 3.1: CHOSVD based piecewise multilinear approxi-
mation of function f(p)

Let us determine F of f(p) over G. We perform the compact
HOSVD (CHOSVD) [10], also known as truncated HOSVD, on
F , where “Compact/truncated” means that all the zero singular
values and their corresponding columns in the singular matrices
are discarded:

F chosvd
====== D

N

�
n=1

Un. (8)

Here, D ∈ RRN×JM
and Un ∈ RGN×RN , with Rn represent-

ing the rank of F along the nth dimension Rn = rankn(F).
Substituting (8) into (6), the approximation is defined as

f(p) =

(
D

N
�

n=1
Un

)
N
�
n
in(pn) = D

N
�

n=1
un(pn) (9)

where un(pn) = in(pn)Un. Because of (8) f(p) = f(p) over
the grid G.

Method 3.2: Accuracy-complexity tradeoff
The CHOSVD of F is determined via the execution of SVD

for each dimension as follows:

{F}(n) svd
==== UnDnV

T
n . (10)
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Diagonal matrix Dn contains the singular values in decreasing
order as follows:

diag(Dn) = [σn,1 ≥ σn,2 ≥ · · · ≥ σn,Rn
]. (11)

Rn—the number of singular values—determines the absolute
minimum number of antecedent fuzzy sets in dimension n.
Finally, the decomposition leads to

F = D
N

�
n=1

Un where D = F
N

�
n=1

(Un)
+ . (12)

If further nonzero singular values and the corresponding
columns of the singular matrices Un are discarded then the
following approximation error results:

F ≈
ε
F̂ = D

N

�
n=1

Un (13)

where ε expresses the L2 norm error, which is bounded by the
sum of the discarded singular values, see [10]. Note that this is
not the best approximation of tensor F under the decreased rank
constraint if n > 2, see [10].

Method 3.3: Determination of the Ruspini-partitioned an-
tecedent fuzzy sets

Each column ofUn determines a candidate for one antecedent
fuzzy set. Each element in a given column defines the values of
the possible antecedent fuzzy sets over the grid gn. In order to
determine the values of the Ruspini-partitioned antecedent fuzzy
set over the grid, we can apply one of many different kinds of
convex transformations to Un to derive Wn

Un →
ctr

Wn. (14)

These transformations guarantee various advantageous features
of the resulting convex hull defined by the consequents. This
leads to

F̂ = S
N

�
n=1

Wn where S = F
N

�
n=1

(Wn)
+ . (15)

Here, Wn possesses the properties defined in (1). Therefore,
each column of Wn determines one antecedent fuzzy set over
the grid and for all inputs as

wn(pn) = i(pn)Wn. (16)

It is important to note that the convex transformations may add
one column to Un, resulting in Wn. Therefore, in this case,
S ∈ RIN×JM

and Wn ∈ RGN×IN , where

∀n : rankn(F̂) ≤ In ≤ rankn(F̂) + 1. (17)

Finally, we arrive at the piecewise multilinear TS fuzzy model
as

f(p) =

(
S

N
�

n=1
Wn

)
N
�

n=1
in(pn) = S

N
�

n=1
wn(pn). (18)

This is a convex form meaning that

∀p : f(p) ∈ co{∀i1, i2, . . . iN : [S]i1,i2,...iN }. (19)

The L2 norm error γ in f(p)≈γ f(p) has two components

γ = ε+ β (20)

where ε is the approximation error over the grid caused by
the rank reduction, as mentioned above, and β is caused by
the piecewise linear approximation of the antecedent fuzzy sets
between the grid. When the grid density approaches infinity then
β → 0. The high resolution of antecedent fuzzy sets (the grid
density over which the antecedents are defined) can be further
enhanced as detailed in [7]. Therefore, β → 0 is well supported
and the article focuses only on ε from this point on.

IV. IMPROVED HOSVD-BASED TENSOR RANK REDUCTION

Before discussing the method used to achieve an improved
accuracy and complexity tradeoff, let us first introduce the
following definitions.

Definition 4.1: Block identical tensor Fb

A tensor Fb ∈ RGN×JM
is referred to as a block identical

tensor, denoted by the superscript “b,” if it is constructed from
identical blocks C, such that

∀g1, g2, . . . gN : [Fb]g1,g2,...gN = C∈ RJM

. (21)

Lemma 4.1: Consider block identical tensor Fb ∈ RGN×JM

constructed from block tensor C as (21). Any convex combina-
tion of tensor blocks C stored in block identical tensor Fb leads
to a block identical tensor F′b ∈ RG′N×JM

whose tensor blocks
are C

∀Gn, G
′
n,Wn ∈ RG′

n×Gn : F′b = Fb
N

�
n=1

Wn (22)

thus ∀g1, g2, . . . gN , g′1, g
′
2, . . . g

′
N :

[Fb]g1,g2,...gN = [F′b]g′
1,g

′
2,...g

′
N
= C. (23)

Definition 4.2: Partially block identical tensor Fp

A tensor Fp ∈ RGN×JM
is referred to as partially block

identical, denoted by the superscript “p,” if it is not block
identical, but some of the elements of the blocks [Fp]g1,g2,...gN
are identical for all g1, g2, . . . gN , given by

∃j1, j2, . . . jM : [[Fp]g1,g2,...gN ]j1,j2,...jM = cj1,j2,...jM . (24)

Definition 4.3: Vector block variant tensor Fv

The rearranged variant Fv∈ RGN ×L
, denoted by the super-

script “v,” of tensorF ∈ RGN×JM
is constructed by rearranging

the blocks [F ]g1,g2,...gN of F into vectors of length L. This is
given by

[[Fv]g1,g2,...gN ]l = [[F ]g1,g2,...gN ]j1,j2,...jM (25)

whereL =
∏M

m=1 Jm and the ordering of the elements is defined
by l that represents a linear index equivalent to the array index
j1, j2, . . . jM as

l = ordering(j1, j2, . . . jM ). (26)

Method 4.1: Separation of identical elements
Let us consider a partial block identical tensor Fp. We can

define the ordering in (26) in such a way that the resulting vectors
of Fv can be partitioned into two vectors as

[Fv]g1,g2,...gN =
[
fβg1,g2,...gN c

]
(27)
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where vector c ∈ RK contains the K number of elements that
are identical for all g1, g2, . . . gN . Consequently, tensor Fv can
be partitioned in dimension N + 1 into two tensors as

Fv =
[Fβ Cb

]
N+1

(28)

where Fβ∈ RIN ×(L−K)
stores the nonidentical elements, and

the block identical tensor Cb∈ RGN ×K
stores the elements

[Cb]g1,g2,...gN = c.
Method 4.2: HOSVD-based rank reduction of partially block

identical tensors
Consider a partially block identical tensor Fp. Furthermore,

let its vector block variant Fv be derived and partitioned as
shown in (28). The CHOSVD of Fβ results in

Fβ = S′ N

�
n=1

Uβ
n. (29)

Here, S′∈ R(Rβ)N ×(L−K)
and U′

n ∈ RGN×Rβ
N , where Rβ

n =
rankn(Fβ) ≤ Rn = rankn(Fp). Based on Method 3.2, the
CHOSVD is computed by executing SVD in each dimension
as follows:

{Fβ}(n) svd
= =Uβ

nD
β
n

(
Vβ

n

)T
. (30)

Diagonal matrix Dβ
n contains the singular values in decreasing

order as follows:

diag(Dβ
n) =

[
σβ
n,1 ≥ σβ

n,2 ≥ . . . ≥ σβ

n,Rβ
n

]
. (31)

Because the elements of Cb are excluded from Fβ the following
properties hold for the singular values:

∃n, rβ : σβ
n,rβ

≤ σn,rβ . (32)

If nonzero singular values and the corresponding singular vec-
tors of Uβ

n are discarded then an approximation error εβ results,
however, it is bounded by the sum of the discarded singular
values. Let us execute a convex transformation as follows:

∀n : Uβ
n →

ctr
Wβ

n (33)

which leads to

Fβ ≈
εβ

F̂β = S′ N
�

n=1
Wβ

n where S′ = Fβ
N
�

n=1

(
Wβ

n

)+
.

(34)

Here, S′∈ R(Iβ)N ×L
and Wβ

n ∈ RGn×Iβ
n , where ∀n :

rankn(F̂β) ≤ Iβn ≤ rankn(F̂β) + 1.
The convex transformation does not affect the error and

because of (32), finally we have a smaller upper bound for εβ

when smaller singular values σβ < σ are discarded.
In order to reinsert the elements of the excluded Cb, let

us create a block identical tensor Cβ∈ R(Iβ)N ×K
from vector

blocks c as follows:

∀iβ1 , iβ2 , . . . iβN : [Cβ ]iβ1 ,i
β
2 ,...i

β
N
= c. (35)

Based on Lemma 4.1,

Cb = Cβ
N

�
n=1

Wβ
n. (36)

By substituting (29) and (36) into (28), we obtain

F̂v =

[
S′ N

�
n=1

Wβ
n Cβ

N
�

n=1
Wβ

n

]
= Sv

N

�
n=1

Wβ
n (37)

where

Sv =
[S′ Cβ

]
N+1

∈ R(Iβ)N ×L
. (38)

If we rearrange the core tensor Sv using (26) as follows:

[[Sβ ]i′1,i′2,...i′N ]j1,j2,...jM = [[Sv]i′1,i′2,...i′N ]l (39)

then we arrive at

Fp ≈
εβ

F̂p = Sβ
N
�

n=1
Wβ

n (40)

where Sβ ∈ R(Iβ)N×JM
.

An alternative way of determining Sβ is to directly derive
it from Fp, once we have matrices Wβ

n. Therefore, instead of
(34)–(40), we can calculate

Sβ = Fp
N

�
n=1

(
Wβ

n

)+
. (41)

As a matter of fact, in this case there is no guarantee that the
partially block identical elements will be the same or will even
remain partially block identical, especially when a numerical
computational error occurs.

The conclusion of this section is that if we separate the
partially identical elements then the CHOSVD will find smaller
singular values which leads to an improved complexity tradeoff.
Because of the convex form, the separated elements can be
reinserted after the tradeoff is performed.

V. INTRODUCING THE RELAXED TS FUZZY MODEL

TRANSFORMATION

Based on the improved tensor rank reduction introduced in
the previous section, this section proposes the relaxed TS fuzzy
model transformation that is an extension of the original TS
fuzzy model transformation based on two additional steps. Fig. 1
illustrates the block diagram of the relaxed TS fuzzy model trans-
formation, which will be detailed in subsequent sections. For
comparison, the original TS fuzzy model transformation is also
depicted in Fig. 1. The blocks that are vertically aligned along
the left-hand side of the figure reflect the original version, while
the two additional blocks on the right show the extensions that
make up the relaxed TS fuzzy model transformation. Further-
more, the equations delineating the crucial steps are provided in
Fig. 1.

Method 5.1: Relaxed TP model transformation
Assume function f(p) is given in a closed form, such that

all of the inner formulas of the function are known. Then,
the following relaxed TS fuzzy model transformation can be
executed.

Step 0 (Additional step to the original TS fuzzy model trans-
formation)

Define fβ(p) by rearranging the parameter-dependent ele-
ments of f(p) into a vector and excluding the constant elements
as

fv(p) =
[
fβ(p) c

]
. (42)
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Fig. 1. Block diagram of the algorithms of the original and the relaxed TS
fuzzy model transformation.

Step 1: Discretization
Define the discretization grid based on Gn. Then, derive the

discretized tensor Fβ of fβ(p).
Step 2: Approximation and complexity tradeoff
Execute the CHOSVD and perform further rank reduction—

if required—by discarding nonzero singular values. This step
results in

F̂β = Dβ
N

�
n=1

Uβ
n. (43)

Step 3: Convex transformation
Execute a convex transformation as

Uβ
n →

ctr
Wβ

n. (44)

Step 4: Restructuring the core tensor and reinsertion of the
partially identical elements (additional step to the original TS
fuzzy model transformation).

There are two possible approaches here, as discussed in the
context of (41). One way is to derive the core tensor, see (34) as

S′ = Fβ
N

�
n=1

(
Wβ

n

)+
. (45)

Then, one can reinsert the separated constants as follows:

Sv =
[S′ Cβ

]
N+1

∈ R(Iβ)N ×L
. (46)

see (38). Here, C is defined by (35). Then, restructuring the core
tensor Sv—counter to Step 0–leads to Sβ as follows:

F ≈
εβ

Sβ
N
�

n=1
Wβ

n. (47)

The alternative way is to directly calculate the elements of the
core tensor based on (41) as follows:

F ≈
εβ

Sβ
N
�

n=1
Wβ

n, where Sβ = F
N
�

n=1

(
Wβ

n

)+
. (48)

This does not guarantee that the elements will be partially
identical as mentioned in the context of (41).

Step 5: Determine the piecewise linear antecedent fuzzy sets
The antecedent fuzzy set are determined over the grid gn as

follows:

wβ
n(pn) = in(pn)W

β
n. (49)

Thus

f(p) = Sβ
N
�

n=1
wβ

n(pn). (50)

The density of the discretization grid in Step 1 is limited
by the available computational capacity. In order to reveal all
the ranks, a high-density grid is required. However, Step 2
executes HOSVD on the discretized tensor, which is compu-
tationally expensive. The overall computational complexity of
the HOSVD of tensor F ∈ RGN×JM

is detailed in [10] and
described as

O

(
N∑

n=1

(
Gn

N∏
k=1

Gk

M∏
m=1

Jm

))
. (51)

One can see that when N increases, Gn is strictly limited.
The relaxed TS fuzzy model transformation restructures the
elements into vectors and removes the constant elements. If K
different elements are removed, see (27), then the computational
complexity is reduced to

O

(
(L−K)

N∑
n=1

(
Gn

N∏
k=1

Gk

))
(52)

where L =
∏M

m=1 Jm, see (25).
Another aspect is that the resolution (the grid density over

which the antecedents are defined) of the piecewise linear
antecedent fuzzy sets is also determined by Gn, see Step 5.
Thus, once the number of elements are decreased in the ten-
sor, the grid density can be increased, which will lead to the
improved resolution of the antecedent fuzzy sets as well. If
further improvement of the resolution of the antecedents is
needed, then the refining technique introduced in Section V
of the recently published paper [7] can be applied. The end
result is that the error β can be eliminated in a numerical
sense.

Remark 5.1: The relaxed TS fuzzy model transformation
does not yield a computational reduction in the absence of con-
stant elements that can be separated. Its application is straight-
forward when the internal formulations of the provided functions
are visible, allowing for the easy separation of constant elements.
If the constant and nonconstant components are obscured, for
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instance when a black-box form of the functions is given, it
becomes necessary to use an additional algorithm to uncover
the partially block-identical elements.

VI. DEMONSTRATIVE EXAMPLES

The primary objective behind the examples presented in this
section is to show that the proposed relaxed TS fuzzy model
transformation offers better complexity and accuracy tradeoffs
than the original TS fuzzy model transformation. Furthermore,
this example serves as evidence that the proposed transformation
requires less computational resources.

A. Example 1

Consider the tensor function f(p1, p2) = [A(p1, p2)
B(p1, p2)]3 ∈ R2×3×2, where p ∈ Ω = [1, 100]× [1, 100]
and

A(p1, p2) =

[
p1 h −103 h

p2 p1p2 (p1 + p2)
2

]
(53)

B(p1, p2) =

[
1 p2 102 h

10h (p1 + p2)
2 p1p2

]
(54)

with h = 1. Let us begin by applying the original TS fuzzy
model transformation directly to the tensor function f(p). In
the examples we utilize the TS fuzzy model transformation
and convex transformations available in the TS fuzzy model
transformation MATLAB ToolBox available on the Wikipedia
site of the TP model transformation.

We define a G1 = G2 = 137 equidistant rectangular grid
that covers the domain Ω. The first step of the transformation
(CHOSVD) yields the TP structure (singular values less than
10−9 are discarded):

F ≈
ε
D

2

�
n=1

Un (55)

where F ∈ R137×137×2×3×2, D ∈ R6×4×2×3×2, U1 ∈ R137×6,
U1 ∈ R137×4, and ε = 1.2303× 10−9. The singular values are:

Dimension assigned to p1: 2.1134× 106; 1.614× 105;
3.38× 104; 2.3454× 10−9; 1.6608× 10−9; 1.0458× 10−9;
. . ..

Dimension assigned to p2: 2.1134× 106; 1.613× 105;
3.38× 104; 1.446× 10−9; . . ..

To ensure a convex TP structure, the SNNN transformation is
applied to (55). In the current scenario, the SNNN transformation
does not increase the number of columns in Wn. Therefore, we
have

F ≈
ε
S

2

�
n=1

Wn. (56)

where S ∈ R6×4×2×3×2, W1 ∈ R137×6 and W2 ∈ R137×4.
We proceed with the proposed relaxed TS fuzzy model trans-

formation. In Step 0, the given function is relaxed by rearranging
its elements into a vector, excluding the constant elements
fβ(p1, p2) = [p1 p2 p1p2 (p1 + p2)

2].

Moving on to Step 1 of the proposed method, CHOSVD is
executed on the discretized tensor Fβ ∈ R137×137×4, result-
ing in Fβ ≈εβ Dβ �2

n=1 U
β
n, where Dβ ∈ R3×3×2×3×2, Uβ

n ∈
R137×3, and εβ = 8.5867× 10−10. Note that εβ < ε and the
size of Dβ is smaller than the size of D in the first two dimen-
sions. The singular values obtained from this transformation are
as follows.

Dimensions assigned p1 and p2 (they are same in the cur-
rent scenario): 1.493 × 106; 1.102 × 105; 2.36 × 104; . . .. One
can observe that the resulting singular values are considerably
smaller than in the case of (55). When performing the SNNN
transformation on Uβ

n to obtain Wβ
n, it is observed that the

transformation does not increase the number of columns inWβ
n.

Consequently, we have

Fβ ≈
εβ

S′ 2
�

n=1
Wβ

n (57)

where Sβ ∈ R3×3×4 and Wβ
n ∈ R137×3. Finally, we restructure

the core tensor as

[Sβ ]i1,i2,:,:,1 =

[
[S′]i1,i2,1 h −103 h
[S′]i1,i2,2 [S′]i1,i2,3 [S′]i1,i2,4

]
(58)

[Sβ ]i1,i2,:,:,2 =

[
1 [S′]i1,i2,2 102 h

10h [S′]i1,i2,4 [S′]i1,i2,3

]
(59)

which leads to F ≈εβ Sβ �2
n=1 Wn. Once again, the size of

the core tensor Sβ is considerably (37.5%) smaller (3× 3×
2× 3× 2 = 108) than the size of S (6× 4× 2× 3× 2 = 288)
and, further, the resulting approximation error obtained via the
relaxed TS fuzzy model transformation over the grid is also
smaller, as ε = 1.2303× 10−9 > εβ = 8.5867× 10−10. This
means that the number of fuzzy rules is decreased from 6× 4 =
24 to 3× 3 = 9, i.e., by 62.5% with better approximation accu-
racy over the grid.

Let us investigate the computational complexity. The
CHOSVD is executed on a tensor with the size of 137 × 137 ×
2 × 3 × 2 that leads to 62 × 106 operational steps, see (51), in
the case of the original TS fuzzy model transformation, while in
the case of the relaxed TS fuzzy model transformation the size
of the tensor is only 137 × 137 × 4, which leads to 20 × 106

operational steps, see (52). This is a reduction of around 67%.
Let us proceed by evaluating the complexity and accuracy

tradeoff. The results are summarized in Tables I and II. Table I
shows the L2 norm error over the grid resulting from the orig-
inal and the relaxed TS fuzzy model transformation. The first
column denoted by R1 and the first row denoted by R2 show
the kept number of singular values assigned to dimensions p1
and p2, respectively. The column denoted by I1 and the row
denoted by I2 show the number of the antecedent fuzzy sets
over dimensions p1 and p2, respectively, resulting from the
convex transformation, see (56). Each cell is partitioned into
two cells. The left one shows L2 norm error ε while the right
one shows the number of the resulting fuzzy rules#R as denoted
in the third row. The tenth row denoted by Rβ

2 and the column
denoted by Rβ

1 show the number of singular values that are kept
when the relaxed TS fuzzy model transformation is executed.
The 11th row denoted by Iβ2 and its corresponding column
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TABLE I
COMPLEXITY AND ACCURACY TRADEOFF WITH THE ORIGINAL AND THE

RELAXED TS FUZZY MODEL TRANSFORMATION (EXAMPLE 1)

TABLE II
REDUCTION OF THE APPROXIMATION ERROR AND THE NUMBER OF FUZZY

RULES (EXAMPLE 1)

denoted by Iβ1 show the number of the antecedent fuzzy sets
resulting from the convex transformation, see (57). The tables
demonstrate well that the greater the number of singular values
that are kept, the better the approximation that results. Table II
compares the result of the original and the relaxed TS fuzzy
model transformation. The column denoted by ε% shows the
reduction of the approximation error as (1− εβ/ε)% and the
column denoted by R% shows the reduction of the fuzzy rules
as (1−#Rβ/#R)%. We can observe that a considerably better
tradeoff results from the relaxed TS fuzzy model transformation
in contrast to the original TS fuzzy model transformation.

For instance, the fourth column and the fifth row of Table I
show that if we keep two singular values R1 = R2 = 2 in
both dimensions, then the convex transformation increases the
number of antecedent fuzzy sets to I1 = I2 = 3. The resulting
TS fuzzy model has nine fuzzy rules and an L2 norm error of
8 × 10−9 over the grid. One can see that in this case, the relaxed
TS fuzzy model also results in nine fuzzy rules, but with an L2

norm approximation error of only 1.8 × 10−9. Table II shows
that this corresponds to a 77% reduction in approximation error.

In summary, the tables demonstrate that the relaxed TS fuzzy
model leads to a considerable approximation error reduction
in all variations and results in a significant fuzzy rule base
reduction in many cases. Therefore, the relaxed TS fuzzy model
transformation provides significantly better approximation and
complexity tradeoffs than the original TS fuzzy model transfor-
mation. Further, the computational complexity is also reduced
by 67%.

TABLE III
COMPLEXITY AND ACCURACY TRADEOFF WITH THE ORIGINAL

TRANSFORMATION WHEN h = 10000 (EXAMPLE 1)

TABLE IV
REDUCTION OF THE APPROXIMATION ERROR AND THE NUMBER OF FUZZY

RULES WHEN h = 10000 (EXAMPLE 1)

Obviously, when h increases, this means that the L2 norm of
the separated constant elements also increases, and the compar-
ison will be even more favorable to the relaxed TS fuzzy model
transformation. Table III shows a case in which h = 10 000. The
result of the relaxed TS fuzzy model transformation is the same
as above since the value of the constant element h is excluded
in the computation. Table IV shows the approximation error
reduction. Comparing Table IV to Table II, we can observe that
the approximation error reduction increases with h.

B. Example 2

Consider the function frequently employed in the TP model
transformation literature [1], [2], [3] fa(p1, p2) = (1 + p−2

1 +
p−1.5
2 )2, where p1, p2 ∈ [1, 5] ⊂ R. We construct a tensor func-

tion as f(p1, p2) =
[
A(p1, p2) B(p1, p2)

]
3
∈ R2×2×2,

A(p) =

[
1 0

fa(p) 10

]
, B(p) =

[
fa(p) −10
0 1

]
(60)

Let us execute the accuracy and complexity tradeoff with the
original and the relaxed TS fuzzy model transformation as
described in Example 1. The singular values resulting from the
original TS fuzzy model transformation are as follows:

Dimension assigned to p1: 1461.3; 100.18; 0.98.
Dimension assigned to p2: 1461.4; 98.47; 0.95.
The singular values resulting from the relaxed TS fuzzy model

transformation are as follows:
Dimension assigned to p1 and p2: 250.1711; 12.16; 0.087.
Again, one can observe that the singular values are consid-

erably smaller in the case of the relaxed TS fuzzy model trans-
formation. Note that the number of elements of the discretized
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TABLE V
COMPLEXITY AND ACCURACY TRADEOFF WITH THE ORIGINAL AND THE

RELAXED TS FUZZY MODEL TRANSFORMATION (EXAMPLE 2)

tensor upon which CHOSVD is executed in the case of the origi-
nal TS fuzzy model transformation is 137× 137× 2× 2× 2 =
150152, which leads to a complexity of 41× 106 operational
steps, see (51), while in the case of the relaxed TS fuzzy model
transformation, it has 18 769 elements, which leads to a com-
plexity of 5 × 106 operational steps, see (52). This is a reduction
of about 88%. The results are summarized in Table V. The table
demonstrates that the relaxed TS fuzzy model transformation
provides a considerably improved approximation and complex-
ity tradeoff. For instance, if we decrease the number of fuzzy
rules to 3 × 2 using the original TS fuzzy model transformation,
then the resulting L2 norm error is 0.9685, while the relaxed TS
fuzzy model transformation results in an L2 norm error of only
0.6833.

VII. EXAMPLE BASED ON AN ENGINEERING BENCHMARK

PROBLEM

In the literature related to TS fuzzy model transformations, the
real-word benchmark example of the TORA often appears [1],
[2], [3], [34]. It is an underactuated system, which has one
actuated rotor and one unactuated translational cart. For compa-
rability, we also use this example in this article.

Assume the following qLPV model of the TORA system:[
ẋ(t)
y(t)

]
= S(p(t))

[
x(t)
u(t)

]
(61)

wherex(t),u(t), andy(t) are the state, input, and output vectors,
respectively. Here p1(t) = x3(t) and p2(t) = x4(t). The system
matrix S(p(t)) takes the form of⎡⎢⎢⎣

0 1 0 0 0
−f1(p(t)) 0 0 f2(p(t)) −f3(p(t))

0 0 0 1 0
f3(p(t)) 0 0 f4(p(t)) f1(p(t))

⎤⎥⎥⎦ (62)

f1(p(t)) =
1

f(p1(t))
, f3(p(t)) =

ρcos(p1(t))
f(p1(t))

(63)

f2(p(t)) = ρp2(t)sin(p1(t))f1(p(t)) (64)

f4(p(t)) = −ρ2p2(t)sin(p1(t))cos(p1(t))f1(p(t)) (65)

f(p1(t)) = 1− ρ2cos2(p1(t)) and ρ = 0.2. (66)

TABLE VI
COMPARISON OF THE ORIGINAL AND THE RELAXED TS FUZZY MODEL

TRANSFORMATION (TORA BENCHMARK EXAMPLE)

First of all, let us define an equidistant 300× 300 grid covering
Ω = [−a a]× [−a a], where a = π/4. Further, let us define
Sβ(p(t)) = [f1(p(t)) f2(p(t)) f3(p(t))]. The HOSVD of
F , which is the discretized tensor of S(p(t)), leads to the
following singular values:

Dimension assigned to p1(t): 615.33; 12.16; 8.15; 0.18; 0.07;
1× 10−12; . . ..

Dimension assigned to p2(1): 615.38; 12.16; 2× 10−13; . . ..
The HOSVD executed on Fβ leads to the singular values:
Dimension assigned to p1(t): 315.15; 12.16; 5.38; 0.18; 1×

10−12; . . ..
Dimension assigned to p2(1): 315.19; 12.16; 1× 10−13; . . ..
Let us discard singular values until their sum does not

exceed 8. In the case of F , we arrive at F ≈ε D�2
n=1 Un,

where D ∈ R3×2×4×5, U1 ∈ R300×3, U2 ∈ R300×2 and ε =
0.1837. The execution of the convex transformation leads to
F ≈S �2

n=1 Wn where S ∈ R4×2×4×5, W1 ∈ R300×4, W2 ∈
R300×2. Thus, the number of fuzzy rules is 4× 2 = 8.

In the case of Fβ , we arrive at: Fβ ≈εβ Dβ �2
n=1 U

β
n, where

D ∈ R2×2×4, U1 ∈ R300×2, U2 ∈ R300×2 and εβ = 0.1837.
Applying the convex transformation and reinserting the sepa-
rated constant elements, we have Fβ ≈Sβ �2

n=1 W
β
n, where

Sβ ∈ R3×2×4×5, U1 ∈ R300×3, U2 ∈ R300×2. The resulting
number of rules is 3× 2 = 6.

We can observe that the original TS fuzzy model transfor-
mation results in eight fuzzy rules with error 0.1837, while the
relaxed TS fuzzy model transformation can achieve an error of
0.1837 with only six fuzzy rules. If we keep two singular values
in the first dimension using the original TS fuzzy model trans-
formation, then the resulting TS fuzzy model has six fuzzy rules,
however the error increases to 0.2212. The different variations
of this complexity-accuracy tradeoff are given in Table VI.

Let us investigate the required computational complexity. The
number of the elements ofF is 300× 300× 4× 5 = 1800 000,
which leads to 1× 109 operational steps, see (51), while the
number of elements of Fβ is 300× 300× 6 = 540 000, which
leads to 324 × 106 operational steps, see (52). This is a reduction
of 70%.

Thus, we can increase the resolution of the grid to 4484 (1.5×)
in the case of the relaxed TS fuzzy model transformation with
the same computational power as was used for the original TS
fuzzy model transformation, at least in the current example.

VIII. EXAMPLE OF A REAL-WORD ENGINEERING PROBLEM

In the literature related to TP model transformations, the
real-world example of a very complex aeroelastic wing section
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often appears [4], [5], [31], [43], which is taken from a real engi-
neering control problem. The data and parameters of the model
were identified based on real-life measurements conducted by
NASA. The above papers refer to further papers, which detail the
physical measurement system and the identification processes.

For comparability, we also use this example in this ar-
ticle. The challenge when it comes to TS fuzzy modeling
and control design with respect to this problem lies in the
strong nonlinearities and complexity of the model. The state-
space model of the 2-D aeroelastic wing section has state
vector x(t) ∈ R4 as x(t) = [x1(t) x2(t) x3(t) x4(t)]

T =

[h(t) α(t) ḣ(t) α̇(t)]T , where x1(t) is the plunging dis-
placement and x2(t) is the pitching displacement. The system
matrix S(p(t)) of the state-space model depends on the param-
eter vector p(t) = [U(t) x2(t)] ∈ R2, p ∈ Ω = [14 25]×
[−0.3 0.3]. Here, free stream velocity U(t) is an external
parameter. The entries of the system matrix are

S(p(t)) =

[
02×2 I2×2 02×1

S1(p(t)) S2(p(t))

]
(67)

S1(p(t)) =

[−k1 −k2 U
2(t)− p(kα(x2(t)))

−k3 −k4 U
2(t)− q(kα(x2(t)))

]
(68)

S2(p(t)) =

[−c1(U(t)) −c2(U(t)) g3 U
2(t)

−c3(U(t)) −c4(U(t)) g4 U
2(t)

]
(69)

p(x2(t)) = Cpkα(x2(t)), q(x2(t)) = Cqkα(x2(t)) (70)

kα(x2(t)) = 2.82(1− 22.1x2(t) + 1315.5x2
2(t)

+ 8580x3
2(t) + 17289.7x4

2(t)) (71)

c1(U(t)) = (Iαch + U(t)(Iαρbclα +mxαρcmα
))/d

c2(U(t)) = (zρU(t)(Iαb
2clα+mxαb

4cmα
)−mxαbcα)/d

c3(U(t)) = −m(xαbch + ρU(t)b2(xαclα + cmα
))/d

c4(U(t)) = m(cα − zρU(t)b3(xαclα + cmα
))/d. (72)

Here a = −0.673, b = 0.135, kh = 2844.4, ch = 27.43,
cα = 0.036, ρ = 1.225, clα = 6.28, clβ = 3.358, cmα

=
(0.5 + a) ∗ clα , m = 12.387, cmβ

= −0.635, xα = −0.3533
− a, Iα = 0.065, d = 0.5193, k1 = 356k2 = 0.105, k3 =
−2928.1. k4 = −0.4906, Cp = −1.0294, Cq = 23.851, g3 =
−0.054911, z = (1/2− a) and g4 = 0.2335.

Let us first execute the original TS fuzzy model transforma-
tion. Let the grid density be 1000 × 1000. The resulting singular
values are as follows::

Dimension assigned to p1(t): 9.17 × 106, 6.26 × 104, 100.
Dimension assigned to p2(t): 8.82 × 106, 2.49 × 106.
The computational complexity has 5 × 109 operational steps,

see (51).
As a next step, let us execute the relaxed TS fuzzy model

transformation. After separating the constant elements of (67),
we obtain a vector function that has eight elements only. The
relaxed TS fuzzy model results in the following singular values:

Dimension assigned to p1(t): 8.69 × 106, 5.64 × 104, 100.
Dimension assigned to p2(t): 8.69 × 106, 1 × 105.
The computational complexity has 2 × 109, see (52).

We can observe that the relaxed TS fuzzy model transforma-
tion results in smaller singular values, leading to a better tradeoff
and requires 60% less computational power.

IX. CONCLUSION

The primary goal of the TS fuzzy model transformation is
to convert a given model into various different alternative TS
fuzzy model representations with advantageous properties that
can enhance subsequent design outcomes. A key feature of this
transformation is its ability to identify the absolute minimum
number of fuzzy rules and balance the tradeoff between the
number of the fuzzy rules and approximation accuracy, in case
further reduction is necessary. At the same time, a notable
limitation is the intensive computational resources required,
particularly for high-resolution execution with a larger number
of inputs. In this context, a new variant of the TS fuzzy model
transformation was introduced in this article, which is referred
to as the relaxed TS fuzzy model transformation. This variant
aims to provide an improved balance between number of fuzzy
rules and approximation accuracy, while significantly reducing
computational complexity. These benefits are amplified with
an increase in the number and values of constant elements
within the function. To demonstrate the effectiveness of the
proposed approach and to facilitate a thorough comparison
with the original TS fuzzy model transformation, the article
includes four numerical examples. The first two examples are
well-known benchmark in the literature concerning the devel-
opment of TS fuzzy model transformations. The third and the
fourth examples involve real engineering models frequently
employed as benchmarks in related studies. As a conclusion,
a practical design guideline can be advocated for through the
use of the relaxed TS fuzzy model transformation over the
original version in all scenarios, irrespective of the necessity
for further reduction in the fuzzy rule base beyond the min-
imum requirement. This recommendation is underpinned by
a significant reduction in computational complexity offered
by the relaxed TS fuzzy model transformation. Future work
on the further development of the relaxed TS fuzzy model
transformation could focus on Interval type-2 TS fuzzy mod-
els and their convex hull manipulation possibilities, enhancing
subsequent control design and improving the resulting control
performance.
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