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Control Barrier Functions for Stochastic Systems and Safety-critical
Control Designs

Yûki NISHIMURA, Member, IEEE, and Kenta HOSHINO, Member, IEEE

Abstract— In recent years, the analysis of a control barrier
function has received considerable attention because it is helpful
for the safety-critical control required in many control application
problems. While the extension of the analysis to a stochastic
system studied by many researchers, it remains a challenging
issue. In this paper, we consider sufficient conditions for recip-
rocal and zeroing control barrier functions ensuring safety with
probability one and design a control law using the functions. Then,
we propose another version of a stochastic zeroing control barrier
function to evaluate a probability of a sample path staying in a safe
set and confirm the convergence of a specific expectation related
to the attractiveness of a safe set. We also show a way of deisgning
a safety-critical control law based on our stochastic zeroing control
barrier function. Finally, we confirm the validity of the proposed
control design and the analysis using the control barrier functions
via simple examples with their numerical simulation.

Index Terms— Nonlinear control systems, stochastic sys-
tems, control barrier functions.

I. INTRODUCTION

In recent control application problems, opportunities for demands
for sophisticated machine behavior and machine-to-human contact
have increased. Because the problems require machine behavior to
stay within a safe range for the machine itself and humans, the
center of the control design guidelines is changing from stability
to safety. The transition is theoretically realized by the change from
stabilization based on a control Lyapunov function to safety-critical
control based on a control barrier function (CBF) [1], [2]. In the last
few years, research results on a CBF have been actively reported
with various control application problems, and in reality, the simple
realization of seemingly complicated commands [2], [3], and human
assist control [4]–[6] are being promoted.

In the context of a CBF, the control objective is to make a specific
subset, which is said to be a safe set, on the state space invariance
forward in time (namely, forward invariance [2]). There are various
types of CBFs, the most commonly used currently are a reciprocal
control barrier function (RCBF) [2], [4], [5] and a zeroing control
barrier function (ZCBF) [2], [3], [6]: the RCBF is a positive function
that diverges from the inside of the safe set toward the boundary,
while the ZCBF is a function that is zero at the boundary of the
safe set. The RCBF has a form that is easy to imagine as a barrier,
while the ZCBF is defined outside the safe set, allowing the design
of control laws with robustness.

The aforementioned literature [1]–[6] focuses on systems without
stochastic disturbances. Because a stochastic disturbance often affects
a real system, a safe set is desirable to maintain invariance even
when influenced by the disturbance. Recently, various types of CBF-
based stochastic safety-critical control have been proposed in [7]–
[15]. Jagtap et al. [7] conducts a systematic and detailed study, and
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then it is developed into a data-driven framework by Salamati and
Zamani [8]. Prajna et al. [9] provides a safety verification procedure,
and then it is developed to control design procedure by Santoyo et
al. [10]. Wisniewski and Bujorianu [11] also discuss in detail safety
in an infinite time-horizon named p-stability. Bai et al. [14] analyzes
a probability for a trajectory to reach a target set, which is a subset
of a safe set. Nejati et al. [15] develop a compositional approach
for constructing CBFs for stochastic hybrid systems, which forms an
excellent theory in terms of applications because they use numerical
methods such as the sum-of-squares optimization program under the
free design of safe sets.

On the other hand, the CBF approach is closely related to a control
Lyapunov function (CLF), which immediately provides a stabilizing
control law from the CLF, as in Sontag [16] for deterministic systems
and Florchinger [17] for stochastic systems. Therefore, in the CBF
approach, the derivation of a safety-critical control law immediately
from the CBF is also important. For this discussion, the problem
setting in which the safe set is coupled with the CBF is appropriate,
as in Ames et al. [2]. The stochastic version of the Ames’s et al.’s
result is recently discussed by Clark [12]; he insists that his RCBF
and ZCBF guarantee the safety of a set with probability one. At the
same time, Wang et al. [13] analyze the probability of a time when
the sample path leaves a safe set under conditions similar to Clark’s
ZCBF. Wang et al. also claim that a state-feedback law achieving
safety with probability one often diverges toward the boundary of the
safe set; the inference is also obtained from the fact that the conditions
for the existence of an invariance set in a stochastic system are strict
and influenced by the properties of the diffusion coefficients [18].
This argument is in the line of stochastic viability by Aubin and Prato
[20]. For CBFs, Tamba et al. [19] provides sufficient conditions for
safety with probability one, which require difficult conditions for the
diffusion coefficients. Therefore, we need to reconsider a sufficient
condition of safety with probability one, and we also need to rethink
the problem setup to compute the safety probability obtained by a
bounded control law.

In this paper, we propose a way of analyzing safety probability
for a stochastic system via a CBF approach. The contributions of
this paper are as follows. First, we propose an almost sure reciprocal
control barrier function (AS-RCBF) ensuring the safety of a set with
probability one, which is considered as a stochastic version of an
extended RCBF in [5]; see also [4] (and note that the condition is
relaxed around the boundary of the safe set compared with an RCBF
in [1]). Second, we propose an almost sure zeroing control barrier
function (AS-ZCBF) satisfying an inequality somewhat different from
the one in [12]. Then, we suggest a new stochastic ZCBF for
calculating a probability that a trajectory achieves a designed subset
of a safe set before leaving the safe set. Our stochastic ZCBF satisfies
an inequality, which differs from the previous results in [9]–[15]
because the inequality directly includes the diffusion coefficients.
In the procedure, we also provide control design strategies using
AS-RCBF/AS-ZCBF and our stochastic ZCBF. In addition, we
demonstrate our stochastic ZCBF is available for stochastic systems
including input constraints by simple examples.

The rest of this paper is organized as follows. In Section II, we
define mathematical notations, a target system, and a global solution
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used in this paper. In Section III, by considering a simple example, we
confirm that a stochastic system is generally difficult to have a safe
set invariance with probability one. In Section IV, first, we propose an
AS-RCBF and an AS-ZCBF ensuring the invariance of a safe set with
probability one. Second, we design a safety-critical control ensuring
the existence of an AS-RCBF and an AS-ZCBF and show that the
controller diverges towards the boundary of a safe set. Third, we
construct a new type of a stochastic ZCBF clarifying a probability
for the invariance of a safe set and showing the convergence of a
specific expectation related to the attractiveness of a safe set from
the outside of the set. In Section V, we confirm the usefulness of the
proposed functions and the control design via simple examples with
numerical simulation. Section VI concludes this paper.

II. PRELIMINARY

A. Notations
Let Rn be an n-dimensional Euclidean space and especially R :=

R1. A Lie derivative of a smooth mapping y : Rn → R in a mapping
F = (F1, . . . , Fq) : Rn → Rn×q with F1, . . . , Fq : Rn → Rn is
denoted by

LF y(x) =

(
∂y

∂x
F1(x), . . . ,

∂y

∂x
Fq(x)

)
. (1)

For constants a, b > 0, a continuous mapping α : [−b, a] → R is
said to be an extended class K function if it is strictly increasing
and satisfies α(0) = 0. A class K function α is said to be of K∞
if lims→∞ α(s) = ∞. If a function α : Rn → R is continuously
differentiable for r-times, we state it as “α is Cr .” The boundary of
a set A is denoted by ∂A.

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space, where Ω is
the sample space, F is the σ-algebra of Ω, {Ft}t≥0 is a filtration of
F and P is a probability measure. In the filtered probability space,
P [A|Ao] is the conditional probability of event A conditioned on
event Ao, E [y|Ao] is the conditional expectation of the random
variable y conditioned on event Ao, and Wt is a d-dimensional
standard Wiener process. For a process Xt ∈ Rn with an initial
state Xt = x0, we often use the following notations Px0 [A] =
P [A|X0 = x0] and Ex0 [y] = E [y|X0 = x0]. The minimum of
a, b ∈ R is described by a∧ b := min(a, b). The differential form of
an Itô integral of f : Rn → Rn over Wt is represented by f(x)dWt.
The trace of a square matrix Q is denoted by tr[Q].

B. Target system, the related functions, and a global solution
In this subsection, we describe a target system, the related functions

frequently used throughout the paper, and the definition of a solution
in global time.

The main target of this paper is the following stochastic system

dXt = {f(Xt) + g(Xt)(uo(Xt) + u(t))}dt+ σ(Xt)dWt, (2)

where Xt ∈ Rn is a state vector, uo : Rn → Rm is a pre-
input assumed to be a continuous state-feedback, u ∈ U ⊂ Rm

is a compensator for safety-critical control, where U denotes an
acceptable control set, and maps f : Rn → Rn and g : Rn → Rn×m

and σ : Rn → Rn×d are all assumed to be locally Lipschitz. The
local Lipschitz condition of f , g and σ implies that there exists a
stopping time T > 0 such that (Xt)t<T is the maximal solution to
the system.

For simplicity, we further define some functions. For a C2 mapping
y :M → R, where x ∈ M ⊂ Rn, letting

LD
f,g(u, uo(x), y(x)) := (Lfy)(x) + (Lgy)(x)(u+ uo(x)), (3)

LI
σ(y(x)) :=

1

2
tr

[
σ(x)σ(x)T

[
∂

∂x

[
∂y

∂x

]T]
(x)

]
, (4)

we consider an infinitesimal operator L in [22] satisfying

Lf,g,σ(u, uo(x), y(x)) := LD
f,g(u, uo(x), y(x)) + LI

σ(y(x)) (5)

and

Hσ(h(x)) :=
1

2
Lσh(x)(Lσh(x))

T . (6)

For a mapping v : M → (0,∞) smooth in M ⊂ Rn, we often
consider the relationship

−(v(x))−2LD
f,g(u, uo(x), v(x)) = LD

f,g(u, uo(x), (v(x))
−1). (7)

Moreover, based on [21], we describe the following notion meaning
the existence of a global solution in forward time for the system (2):

Definition 1 (FIiP and FCiP; a slight modification of (C2) in [21]):
Let an open subset M ⊂ Rn and the system (2) be considered with
u = ϕ(x), where ϕ : M → Rn is a continuous mapping. If a C2

mapping Y : M → [0,∞) is proper; that is, for any L ∈ [0,∞),
any sublevel set {x ∈ M |Y (x) ≤ L} is compact, and a continuous
mapping ψ : [0,∞)× (0, 1) → [0,∞) both exist for every x0 ∈M
such that

Px0 [∀t ∈ [0, l], Y (Xt) ≤ ψ(l, ϵ)] ≥ 1− ϵ (8)

holds for all l ∈ [0,∞) and all ϵ ∈ (0, 1], then the system is said
to be forward invariance in probability (FIiP) in M . In addition, if
M = Rn and Y (·) = | · |, the system is said to be forward complete
in probability (FCiP). □

Theorem 1: (A slight modification of Proposition 17 in [21]): Let
us consider the system (2), an open subset M ⊂ Rn, a continuous
mapping ϕ : M → Rn and an initial condition x0 ∈ M . If there
exists a proper and C2 mapping Y :M → [0,∞) such that

Lf,g,σ(ϕ(x), uo(x), Y (x)) ≤ c1Y (x) + c2 (9)

is satisfied for all x ∈M and for some c1 ∈ [0,∞) and c2 ∈ [0,∞),
then the system with u = ϕ(x) is FIiP in M . In addition, if M = Rn,
the system is FCiP. ♦

Definition 1 and Theorem 1 are the same as (C2) and Proposi-
tion 17 in [21], respectively, except for two differences; x is restricted
in M and Y is allowed to be not positive definite in this paper,
while x is allowed to be in Rn and Y is restricted to be positive
definite in the literature. Because M is an open set and Y is non-
negative and proper, Y (x) → ∞ always holds as x→ ∂M [5]. The
positive definiteness of Y is required for stability analysis and it can
be omitted for just analyzing forward invariance and completeness.
Therefore, Theorem 1 is straightforwardly proven via the proof of
Proposition 17 in [21] by replacing Rn by M .

Note that, FIiP in M implies that the probability of Y (Xt) → ∞
is infinitesimal; this estimate that the solution Xt starting at x0 ∈M
stays in M with probability 1− ϵ for arbitrarily small ϵ.

III. MOTIVATING EXAMPLE

A. An example of safety-critical control for a deterministic
system

Firstly, let us consider a safety-critical control problem based on
Theorem 2 in [2]; that is, assume that a set χ̃ ⊂ Rn is a superlevel set
of a continuously differentiable mapping h : χ̃ → R which satisfies
h(x) ≥ 0 for all x ∈ χ̃, h(x) = 0 for any x ∈ ∂χ̃ and ∂h/∂x ̸= 0
for all x ∈ χ̃. For a system ẋ = f(x) + g(x)u, if there exists a
compensator u = ϕ(x) such that (there exists a global solution in
forward time in Rn and) there exists an extended class K∞ function
ᾱ : χ̃→ R satisfying

LD
f,g(ϕ(x), 0, h) ≥ −ᾱ(h(x)), (10)
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then any solution x(t) starting at x0 ∈ χ̃ satisfies x(t) ∈ χ̃ for all
t ∈ [0,∞).

As an example, we consider

ẋ = u, (11)

where x ∈ R, u ∈ U = R, and x(0) = x0 > α ≥ 0. Now we
let a safe set as χ̃ = [α,∞); that is, we aim to design u so that
x(t) ∈ χ̃ is satisfied for all x0 ∈ χ̃ and all t ≥ 0. If, for hs(x) =
x − α and γ > 0, we design u = ϕhs := −γ(x− α), then we
obtain LD

0,1(ϕhs(x), 0, hs(x)) ≥ −γhs(x), which satisfies (10) by
considering h = hs and ᾱ(hs) = γhs. Therefore, χ̃ becomes safe
by u = ϕhs .

The same result as above is also derived by using Bs(x) :=
(hs(x))

−1 = (x− α)−1, provided that the function satisfies

LD
0,1(ϕhs(x), 0, Bs(x)) ≤ γBs(x) (12)

in x ∈ χ̃; the condition is somewhat different from an RCBF in [2]
and similar to an extended RCBF in [4], [5]. (Strictly, an extended
RCBF further requires Bs to be proper, and it is defined for a time-
varying system.) Note from this discussion that the extended RCBF is
inferred to be a counterpart concept to the ZCBF. Then, (12) implies
that the value of the extended RCBF is allowed to be large, but is
guaranteed not to be out of the safe set in finite time.

A ZCBF hs(x) is defined in whole R and Bs(x) is bounded just
inside of χ̃ \∂ χ̃ ⊂ Rn. Therefore, hs(x) is generally useful in
the viewpoint of robust control because modeling and measurement
errors often cause an initial value outside of χ̃.

B. Trying extension of safety-critical control to a stochastic
system

In this subsection, we try to extend the discussion in the previous
subsection to a stochastic system.

A stochastic version of a CBF is discussed in [12] and [13].
Roughly speaking, Theorem 3 in [12] claims that, considering a
stochastic system (2) with x0 ∈ χ̃, if the condition (10) is replaced
by

Lf,g,σ(ϕ(x), 0, h(x)) ≥ −h(x) (13)

for x ∈ χ̃ \ ∂χ̃, then any solution satisfies Xt ∈ χ̃ for all t ≥ 0
with probability one. However, another previous result in [13] shows
that the first exit time of Xt from χ̃ has a finite value with a non-
zero probability. The claim implicitly implies that the probability of
exiting χ̃ is generally not zero even if (13) holds.

Here, we consider the answer to the above contradiction by
considering a safety-critical control for a stochastic system

dXt = udt+ cdWt, (14)

which is the same form as (11) except for the existence of the
diffusion term cdWt, where c ̸= 0.

As with the previous subsection, we consider hs(x) = x−α as a
candidate for a ZCBF. Because the Hessian of the function is always
zero, we obtain LI

c(hs) = 0. This implies that, setting u = ϕhs

results in

L0,1,c(ϕhs(x), 0, hs(x)) ≥ −γhs(x), (15)

which satisfies the condition (13) with γ = 1. However, a solution to
the resulting system dXt = −γ(Xt − α)dt+ cdWt has a non-zero
probability to escape χ̃ even if x0 ∈ χ̃ because the solution is

Xt = α+ (x0 − α)e−γt + c

∫ t

0
e−γ(t−s)dWt (16)

(see Sec. 3.5 in [24]). For example, if x0 = α, Xt − α follows
the normal distribution with the mean zero and the variance c2(1−
e−2γt)/(2γ); that is, Xt−α is possible to be negative. This example
implies that the condition (13) ensures χ̃ to be safe “in probability”.

On the other hand, considering Bs(x) = (x− α)−1, the Hessian
does not vanish and results in LI

c = c2(x − α)−3; hence, we can
estimate that Bs yields an answer to the control problem different
from hs; that is, a compensator u = ϕBs(x) := −γ(x−α)+c2Bs(x)
yields

L0,1,c(ϕBs(x), uo(x), Bs(x)) ≤ γBs(x). (17)

Because the compensator diverges at ∂ χ̃, it may have the potential
to cage the solution x in χ̃ with probability one. The answer will be
given in a later section.

For a stochastic system, a subset of the state space is generally
hard to be (almost sure) invariance because the diffusion coefficient
is required to be zero at the boundary of the subset1. To avoid the tight
condition for the coefficient, we should design a state-feedback law
whose value is massive, namely diverge in general, at the boundary
of the subset so that the effect of the law overcomes the disturbance
term. Moreover, a functional ensuring the (almost sure) invariance
of the subset probably diverges at the boundary of the set as with a
global stochastic Lyapunov function [22]–[24] and an RCBF.

The above discussion also implies that if a ZCBF is defined for
a stochastic system and ensures “safety with probability one,” the
good robust property of the ZCBF probably gets no appearance. The
reason is that the related state-feedback law generally diverges at the
boundary of the safe set. Hence, the previous work in [13] proposes
a ZCBF with analysis of exit time of a state from a safe set. In
the next section, we consider another way to construct a ZCBF for
a stochastic system; especially, we propose two types of ZCBFs; an
almost sure ZCBF (AS-ZCBF) and a stochastic ZCBF, which have
somewhat different conditions compared with ZCBFs in [12] and
[13]. Then, in Section V, we confirm the usefulness of our ZCBFs
for control design by a few examples with numerical simulation.

IV. MAIN CLAIM

A. Definitions of a safe set and safety for a stochastic system

Let us define a safe set χ ⊂ Rn being open, and there exists a
mapping h : Rn → R satisfying all the following conditions:

(Z1) h(x) is C2 for x ∈ χ.
(Z2) h(x) is proper in χ; that is, for any L ∈ [0,∞), any

superlevel set {x ∈ χ|h(x) ≥ L} is compact.
(Z3) The closure of χ is the 0-superlevel set of h(x); that is,

χ = {x ∈ Rn|h(x) > 0}, (18)

∂χ = {x ∈ Rn|h(x) = 0}, (19)

are both satisfied.

If needed, (Z2) is sometimes replaced by the following:

(Z2)’ h(x) is proper in Rn.

We also notice that the reciprocal function B(x) := (h(x))−1 is
often used after.

1The detail is discussed in [18], which aims to make the state of a stochastic
system converge to the origin with probability one and confine the state in
a specific subset with probability one. The aim is a little like the aim of a
control barrier function. Tamba et al. make a similar argument for CBFs in
[19], but their sufficient condition is more stringent.
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Here, we set some sets and stopping times used in this subsection.
For µ > 0, let

χµ := {x ∈ Rn|h(x) ∈ (0, µ]} ⊂ χ, (20)

χh>µ := χ \ χµ = {x ∈ Rn|h(x) > µ}, (21)

Rn
h≤µ := {x ∈ Rn|h(x) ≤ µ}, (22)

be defined. For a solution to the system (2) with x0 ∈ χµ, the first exit
time from χµ is denoted by τ0µ, and for the solution with x0 ∈ χ,
the first exit time from χ is denoted by τ0.

Let p ∈ [0, 1]. System (2) is said to be transiently safe in (χµ, χ, p)
if

Px0

[
inf
t≥0

h(Xt∧τ0µ) > 0
∣∣∣x0 ∈ χµ

]
≥ p (23)

is satisfied. Moreover, if τ0µ = τ0 holds, the system is said to be
safe in (χµ, χ, p).

B. CBFs ensuring almost sure safety and safety-critical control
design

In this subsection, we describe sufficient conditions for h(x) and
B(x) to ensure that the target system is FIiP in χ.

First, we consider a reciprocal type of CBF for safety with
probability one:

Definition 2 (AS-RCBF): Let (2) be considered with χ and h(x)
satisfying (Z1), (Z2) and (Z3). Let also x0 ∈ χ be assumed. If there
exist a continuous mapping ϕ : χ→ Rm and a constant γ > 0 such
that, for all x ∈ χ,

Lf,g,σ(ϕ(x), uo(x), B(x)) ≤ γB(x) (24)

is satisfied, then B(x) is said to be an almost sure reciprocal control
barrier function (AS-RCBF). □

The existence of an AS-RCBF ensures the target system is safe
with probability one because the following theorem is derived:

Theorem 2: If there exists an AS-RCBF B(x) for the system (2),
then it is FIiP in χ. ♦

The above condition (24) is more relaxed than the condi-
tion of a stochastic RCBF shown in [12] because the value of
Lf,g,σ(ϕ(x), uo(x), B(x)) is allowed to be large near the boundary
of the safe set (B(x) → ∞ as x tends to ∂χ from the inner),
while Lf,g,σ(ϕ(x), uo(x), B(x)) ≤ 0 is required at x ∈ ∂χ̃ in [12].
Moreover, our condition is similar to the condition of an extended
RCBF for a deterministic system proposed in [4], [5]. The dual notion
of the AS-RCBF is defined as follows.

Definition 3 (AS-ZCBF): Let (2) be considered with χ and h(x)
satisfying (Z1), (Z2) and (Z3). Let also x0 ∈ χ be assumed. If there
exist a continuous mapping ϕ : χ→ Rm and a constant γ > 0 such
that, for all x ∈ χ,

Lf,g,σ(ϕ(x), uo(x), h(x)) ≥− γh(x) + LI
σ(h(x))

+ (h(x))2LI
σ(B(x)) (25)

is satisfied, then h(x) is said to be an almost sure zeroing control
barrier function (AS-ZCBF). □

The above definition of an AS-ZCBF is proposed to derive the
following result:

Theorem 3: If there exists an AS-ZCBF h(x) for system (2), then
it is FIiP in χ. ♦

Next, we show a control design of u = ϕ(x) using an AS-RCBF
and an AS-ZCBF.

Corollary 1: Consider the system (2), the safe set χ, h(x) and
B(x) satisfying all the conditions of (Z1)–(Z3). Let

I(uo(x), h(x)) := LD
f,g(0, uo(x), h(x)) (26)

J(h(x)) := −γh(x) + (h(x))2LI
σ(B(x)) (27)

and

ϕN (x) :={
− I(uo(x),h(x))−J(h(x))

Lgh(x)(Lgh(x))T
(Lgh(x))

T , I < J ∩ Lgh ̸= 0

0, I ≥ J ∪ Lgh = 0
(28)

be designed. If

Lfh(x) > −γh(x) + (h(x))2LI
σ(B(x)) (29)

holds for Lgh = 0, then the compensator u = ϕN (x) yields that the
system (2) is FIiP in χ. ♦

Remark 1: The control design in Corollary 1 is a stochastic version
of the control design in [6]. As in the literature, we can probably
discuss optimality of a stochastic system (14) with u = ϕN (x). The
issue is out of the scope of this paper; it will be left as a topic for
future work. ♢

Remark 2: If the condition (25) becomes strict; i.e., “≥” is re-
placed by “>”, the additional condition (29) obviously holds. ♢

C. A Stochastic ZCBF and safety-critical control design

In this subsection, we propose a new type of a ZCBF for a
stochastic system to yield a quantitative evaluation of how safe the
system is from the viewpoint of probability. Then, we propose a
design procedure for constructing a state-feedback law based on our
ZCBF.

We propose the following notion of a stochastic ZCBF:
Definition 4 (Stochastic ZCBF): Let (2) be considered with χ and

h(x) satisfying (Z1), (Z2)’ and (Z3). If there exists a continuous
mapping ϕ : Rn → Rm such that, for all x ∈ Rn

h≤µ,

Lf,g,σ(ϕ(x), uo(x), h(x)) ≥ bHσ(h(x)) (30)

is satisfied with some b > 0, then h(x) is said to be a stochastic
ZCBF. □

The quantitative evaluation of the safety probability is specifically
given by the following result:

Theorem 4: If there exists a stochastic ZCBF h(x) for the system
(2), then it is transiently safe in (χµ, χ, 1− e−bh(x0)). Moreover, if
(30) is satisfied for any µ > 0, then the system is safe in (χ, χ, 1−
e−bh(x0)). ♦

Next, we show a control design of u = ϕs(x) using a stochastic
ZCBF.

Corollary 2: Consider the system (2), the safe set χ and a candi-
date of a stochastic ZCBF h(x) satisfying all the conditions of (Z1),
(Z2)’ and (Z3), and χµ with µ > 0 as with (20). Let

Is(uo(x), h(x)) := Lf,g,σ(0, uo(x), h(x)) (31)

Js(h(x)) := bHσ(h(x)) (32)

and

ϕs(x) :={
− Is(uo(x),h(x))−Js(h(x))

Lgh(x)(Lgh(x))T
(Lgh(x))

T , Is < Js ∩ Lgh ̸= 0

0, Is ≥ Js ∪ Lgh = 0
(33)

be designed. If

Lfh(x) + LI
σ(h(x)) > bHσ(h(x)) (34)

holds for all x ∈ χµ satisfying Lgh = 0, then the compensator

u =

{
ϕs, x ∈ Rn

h≤µ,

ϕ′s, x ∈ χh>µ,
(35)
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where ϕ′s : χh>µ → Rm is continuous and satisfies ϕ′s(x) = ϕs(x)
for all x ∈ ∂χh>µ, yields that the system (2) is transiently safe in
(χµ, χ, 1− e−bh(x0)). Moreover, if the above discussion is satisfied
for any µ > 0, the system is safe in (χ, χ, 1− e−bh(x0)). ♦

Remark 3: A characteristic feature of our stochastic ZCBF in
Definition 4 appears in the condition (30) that includes the diffusion
coefficient σ(x) explicitly, which differs from the main previous
study such as [9]–[11]. The benefit appears in the control design; for
example, if x,w ∈ R, we obtain Js = (σ(x))2b/2(∂2h/∂x2) that is
directly included in the control law (33). For many control application
problems, σ(x) has modeling errors or varies depending on the
experimental environment. To deal with these situations, in (33), we
can redesign σ(x) according to the assumed error or variation. ♢

In addition, because the condition (66), which will appear later in
the proof of Lemma 4 in Appendix I-D, implies that Bb(x) is non-
negative supermartingale [22], [24] outside of the safe set χ, sample
paths approach the safe set χ in probability. More concretely, we can
employ the analysis of µ-zone mean-square convergence shown in
[25]. Letting µb := e−bµ and

[E [Bb(Xt)]− µb]+ :=

{
E [Bb(Xt)]− µb, E [Bb(Xt)] ≥ µb
0, E [Bb(Xt)] < µb

,

(36)

V (x) := ([E [Bb(Xt)]− µb]+)2, (37)

then the following holds.
Corollary 3: If there exists a stochastic ZCBF h(x) for (2), and

moreover, for all x ∈ Rn
h≤µ, the condition (30) is replaced by

Lf,g,σ(ϕ(x), uo(x), h(x)) > bHσ(h(x)), (38)

then, for solutions of the system with u = ϕ(x) and x0 ∈ Rn
h≤µ,

lim
t→∞

V (Xt) = 0 (39)

is satisfied. ♦

V. EXAMPLES

A. Revisit to the motivating example

In this subsection, we revisit the motivating example dealt with in
Section III. Let us consider the stochastic system (14), provided that
a safe set is χ1 = (α,∞) according to Section IV and the pre-input
uo(x) is added; that is, dXt = (uo(Xt) + u(t))dt+ cdWt.

First, we remake the CBFs Bs(x) = 1/(x− α) and hs = x− α
so that it is proper in χ1. Referring to [5], set

pN (x) :=
1

2
(x−N)4 +

1

2
(x−N)3|x−N | (40)

for a sufficiently large N > α. Then, the functions

B1(x) =
1

x− α
+ pN (x), (41)

h1(x) = (B1(x))
−1 =

x− α

1 + (x− α)pN (x)
, (42)

are proper in χ1. The shape of h1(x) is shown in Fig. 1a.
Here, we consider u = ϕN (x) defined in Corollary 1. If x ≥ N ,

ϕN is somewhat complicated because pN (x) = (x−N)4. However,
if x < N , the calculation results in Section III can be used because
pN (x) = 0. That is, ϕN for any x < N , ϕN = −uo(x) + ϕBs

satisfying I < J , otherwise ϕN = 0. Thus, we conclude B1 and h1
are an AS-RCBF and an AS-ZCBF, respectively.

Next, we consider the same problem setting as above, provided that
the amplitude of the input is bounded; that is, for some UM > 0,

an extra condition −UM ≤ uo(x) + u ≤ UM is considered. Let a
compensator u = ϕ1(x) by designing

ϕ1(x) :=


UM , hs ≤ 0 ∪ ϕBs > UM

−UM , hs > 0 ∩ ϕBs < −UM

ϕBs(x), hs > 0 ∩ |ϕBs | ≤ UM

(43)

if I < J , otherwise, ϕ1(x) = 0 if I ≥ J and h1 be considered as a
candidate of a stochastic ZCBF. Then, we obtain

L0,1,c(ϕ1(x), 0, h1)≥ b1Hc(h1(x)) (44)

with b1 = 2/µ1 + 2γµ1/c
2 and µ1 < c/

√
γ. The above results

imply that h1 is a stochastic ZCBF and the system is transiently safe
in (χµ1 , χ, 1− e−b1h1(x0)).

On the other hand, using Corollary 2, ϕs(x) = bc2/2 is derived.
Because L0,1,c(uo(x), ϕs(x), h1(x)) ≥ bc2/2 is satisfied for all x ∈
R, the system with u = ϕs(x) is safe in (χ1, χ1, 1 − e−bh(x0)).
Moreover, if the input constraint |u| ≤ UM exists, we have to restrict
b ∈ (0, 2UM/c2], which affects the safety probability 1−e−bh(x0).

B. Confinement in a bounded subset

In this subsection, we consider a stochastic nonlinear system

dXt =

2∑
j=1

gj(Xt)(uoj(Xt) + uj(t))dt+GdWt, j = 1, 2, (45)

where |uoj(x) + uj | ≤ Uj with j = 1, 2 for some U1, U2 > 0 and

g1(x) =

 1
0
x2

 , g2(x) =
 0

1
−x1

 , G =

c10
c3

 , c1, c3 ∈ R. (46)

If G = 0, the system is said to be a Brockett integrator, which is a
typical model appearing in various real nonholonomic systems such
as a two-wheeled vehicle robot [27].

Let a candidate of a stochastic ZCBF h2 and a safe set χ2 by

h2(x) =M − 2x23 +
1

2
X(x)(1 + x23)− 2

x23
2 (X(x))1+

x3
2 (47)

χ2 = {x ∈ R3|h2(x) > 0}, (48)

where X(x) = x21+x22 and M > 0. Note that V2(x) =M −h2(x)
is a candidate of a stochastic control Lyapunov function for (45)
proposed in [28]. The function h2(x) is proper in R3 and Lgh2 ̸= 0
for all x ∈ R3 \M2, where M2 := {x ∈ R3|x1 = x2 = 0}. If
x ∈M2, then we obtain

L0,g,Gh2(x)− bHG(h2(x)) = c21(1 + x23)− 4c23 − 8bc23x
2
3; (49)

that is, if c21−4c23 > 0 and b2 ≤ c21/(8c
2
3) both hold, (34) is satisfied.

Therefore, using Corollary 2, we design u = ϕ2(x) by

ϕ2(x) :=


Φ2(x), h(x) ≤ µ2,

Φ2(x)
h2(x)−M ′

µ−M ′ , h(x) ∈ (µ2,M
′),

0, h(x) ≥M ′,

(50)

where Φ2(x) is designed by the same way to ϕs(x) in (33) with
b = b2 ∈ (0, c21/(8c

2
3)], 0 < µ2 ≤ M ′ < M and µ2 is designed so

that |Φ2j(x)| ≤ U2j is satisfied for all x ∈ {x ∈ R3|h(x) = µ2}
and j = 1, 2.

Applying the safety-critical control u = ϕ2(x) to the system (45),
we obtain (30) with b = b2. Therefore, we conclude that the resulting
system is transiently safe in (χµ2 , χ2, 1− e−b2h(x0)).

Moreover, considering u = Φ(x) for all x ∈ χ without input
constraints, the system (45) with u = Φ(x) is safe in (χ2, χ2, 1 −
e−b2h(x0)).
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(a) The shape of h1(x) with α = 1
and N = 7.
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(b) The shape of h2(x) for x2 = 0
with M = 1.

Fig. 1: The shape of stochastic ZCBFs h1(x) and h2(x). The safe
sets are all states for which h1(x) > 0 and h2(x) > 0, respectively.
From the figures, we can see that h1(x) and h2(x) are proper,
respectively.

C. Numerical simulation

In this subsection, we confirm the validity of the derived compen-
sators for χ1 and χ2 by computer simulation.

Example 1: Consider the system (14) with the safe set χ1 and the
compensator u = ϕ1 discussed in Subsection V-A. Letting α = 1,
γ = 0.5, c = 0.1, UM = 1 and µ1 = 0.13, we obtain xµ1 = 1.13
and b1 = 3.0. The value of N does not affect computer simulation
if we design it massively; for example, we set N = 1010. Then,
setting x0 = 1.06, the system (14) is transiently safe in ({x ∈
(1, xµ1)}, {x > 1}, 0.96). The compensator ϕ1 is illustrated as in
Fig. 2a. The simulation results of time responses of the state x, the
compensator u and the pre-input uo, and the ZCBF h1 are described
in Figs. 2b, 2c and 2d, respectively. In the simulation, we calculate
ten times sample paths in the grey lines, the average of the paths in
the red line, the results for the deterministic system (i.e., σ′ = 0 ) in
the blue line, and the pre-input uo in the green line.

Example 2: Consider the system (45) with the safe set χ2 and
the compensator u = ϕ2 discussed in Subsection V-B. Letting
c1 = 0.1, c3 = 0.025, M = 1, M ′ = 0.95, b2 = 2, µ2 = 0.83
and x0 = (0.5, 0.5, 0.2)T , the system (45) is transiently safe in
(χµ2 , χ2, 0.72). Assuming uo = (1, 1)T , the simulation results of
the time responses of the compensators u1 and u2 are described in
Figs. 3a and 3b, respectively, and the time responses of the ZCBF
h2 are described in Fig. 3c. The colors of the lines have the same
roles as in Example 1.

In the simulation results, the safety is achieved better than the
estimation of Theorem 4; note that the theorem ensures the minimum
probability of leaving safe sets. The results may imply that, for
actual control problems influenced by white noises, the designed
compensators have good performances as safety-critical control.

VI. CONCLUDING REMARKS

In this paper, we proposed an almost sure reciprocal/zeroing control
barrier function and a stochastic zeroing control barrier function
for designing a safety-critical control law for a stochastic control
system. We also show two examples to demonstrate the usefulness
of the proposed method. Because the target system is an input-
affine stochastic system, the results can be extended to more general
nonlinear control systems using, for example, the strategy of adding
an integrator [26]. We also notice that the results are now effective for
just an autonomous system with a state-feedback-type pre-input. The
extension to a non-autonomous system with a time-varying pre-input
is challenging for future work because the extension will enable us
to apply our results for recent control application problems such as
human-assist control [4]–[6]. Also, relaxing the constant that appears
in the conditions for almost sure reciprocal/zeroing control barrier
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(d) Time responses of h1.

Fig. 2: Simulation results of Ex. 1. The grey colored lines denote 10
sample paths, the red colored lines denote the average of the paths,
and the blue lines denote the results for the deterministic system
(i.e., σ = 0 ). Fig. 2d shows that the safety condition h1(x) > 0 is
satisfied in all 10 trials while the probability of the safety is 0.96.

(a) Time responses of u1.

(b) Time responses of u2. (c) Time responses of h2(x).

Fig. 3: Simulation results of Ex. 2. The grey, red and blue lines are
used in the same way as in Fig. 2. The purple and the green lines
in Fig. 3c are the boundaries of the set χµ2 . Fig. 3c shows that
the safety condition h2(x) > 0 is satisfied in all 10 trials while the
probability of the safety is 0.72.

functions to the class K∞ function is essential, however, the relax-
ation requires rediscussing the existence of the solution. In addition,
since the proposed method relaxes the conditions for the existence of
solutions in continuous-time stochastic systems, sensitive discussions
are needed to allow for discontinuous inputs, discontinuous dynamic
variations, or more complex stochastic signals. Therefore, modifying
the proposed method to support digital inputs, hybrid systems, and
Poisson processes is a critical future task for its practical application.

APPENDIX I
PROOFS

A. Proof of Theorem 2
Applying the given condition (24) and (Z1)–(Z3) to Theorem 1,

the system (2) is ensured to be FIiP in χ.

B. Proof of Theorem 3
First, the condition (25) is transformed into

LD
f,g(ϕ(x), uo(x), h(x)) ≥ −γh(x) + (h(x))2LI

σ(B(x)). (51)
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Using (7) with v = B and M = χ = {x ∈ Rn|h(x) > 0}, the
inequality is further transformed into

−(B(x))−2LD
f,g(ϕ(x), uo(x), B(x)) ≥− γ(B(x))−1

+ (B(x))−2LI
σ(B) (52)

for x ∈M . Thus, we obtain

−(B(x))−2Lf,g,σ(ϕ(x), uo(x), B(x)) ≥ −γ(B(x))−1, (53)

which results in (24). Therefore, the existence of an AS-ZCBF B(x)
ensures the system (2) is FIiP in χ via Theorem 2.

C. Proof of Corollary 1
First, we consider the case of Lgh ̸= 0. If I < J , we obtain

Lf,g,σ(ϕN (x), uo(x), h(x))

= −γh(x) + (h(x))2LI
σ(B(x)) + LI

σ(h(x)), (54)

and if I ≥ J , we obtain

Lf,g,σ(ϕN (x), uo(x), h(x)) = I(uo(x), h(x)) + LI
σ(h(x))

≥ −γh(x) + (h(x))2LI
σ(B(x)) + LI

σ(h(x)). (55)

Therefore, regardless of I < J or I ≥ J , the inequality (25) is
satisfied. Moreover, because Lgh(x), I(uo(x), h(x)) and J(h(x))
are all continuous in Lgh(x) ̸= 0 and ϕN (x) → 0 as I → J
uniformly when Lgh(x) ̸= 0, ϕN (x) is continuous in Lgh(x) ̸= 0.

Then, we consider the other case, i.e., Lgh = 0. The additional
condition (29) implies that there exists a sufficiently small constant
ϵ > 0 such that

Lfh(x)− ϵ ≥ −γh(x) + (h(x))2LI
σ(B(x)) (56)

is satisfied. Combining the inequality and the assumption of uo to
be continuous, for a subset Go ⊂ χ, which is a neighborhood of
xg ∈ {x ∈ Rn|Lgh(x) = 0},

||Lgh(x)uo(x)|| ≤ ϵ (57)

is satisfied. Thus, for x ∈ Go, we obtain

Lfh(x) + Lgh(x)uo(x) ≥ −γh(x) + (h(x))2LI
σ(B(x)), (58)

which implies that I ≥ J ; namely, ϕN = 0 in Go. Therefore, ϕN is
continuous around Lgh(x) = 0.

Consequently, ϕN is always continuous in χ and satisfies all the
assumptions and conditions of Theorem 3. This completes the proof.

D. Proof of Theorem 4
First, we prove that the existence of a stochastic ZCBF h(x)

ensures that the system (2) with u = ϕ(x) is FCiP. Let

hb(x) := ebh(x). (59)

Because

LD
f,g(ϕ(x), uo(x), hb(x)) = bhb(x)L

D
f,g(ϕ, uo(x), h(x)), (60)

is satisfied, (30) changes as follows:

LD
f,g(ϕ(x), uo(x), hb(x)) ≥ bhb(x)

{
bHσ(h(x))− LI

σ(h(x))
}
.

(61)

Moreover, letting

Bb(x) := (hb(x))
−1 = e−bh(x), (62)

we obtain

LI
σ(Bb(x)) = bBb(x)

{
bHσ(h(x))− LI

σ(h(x))
}
, (63)

which transforms (61) into

LD
f,g(ϕ, uo(x), hb(x)) ≥ (hb(x))

2LI
σ(Bb(x)). (64)

Therefore, remembering (7) with v = Bb, we obtain

−LD
f,g(ϕ, uo(x), Bb(x)) ≥ LI

σ(Bb(x)); (65)

that is,

Lf,g,σ(ϕ, uo(x), Bb(x)) ≤ 0, x ∈ Rn
h≤µ. (66)

Here, we consider the rest space χh>µ, where the assumption (Z2)’
implies that the space is bounded and h is bounded from above in
the space. In addition, Bb is decreasing, uo is continuous, and f , g,
and σ are all locally Lipschitz. Therefore, Lf,g,σ(ϕ, uo(x), Bb(x))
is bounded from above; that is, for sufficiently large values c1 > 0
and c2 > 0, we obtain

Lf,g,σ(ϕ, uo(x), Bb(x)) ≤ c1Bb(x) + c2, x ∈ χh>µ. (67)

Considering (66) and (67), all the conditions of Theorem 1 are
satisfied with Y = Bb; that is, the system (2) with u = ϕ(x) is
FCiP.

Next, going back to (66) and applying Dynkin’s formula [22]–[24],
provided that we restrict x0 ∈ χµ, we obtain

E
[
Bb(Xt∧τ0µ)

]
−Bb(x0)

= E

[∫ t∧τ0µ

0
Lf,g,σ(ϕ(Xτ ), uo(Xτ ), Bb(Xτ )dτ

]
≤ 0. (68)

Further considering P [t ≥ τ0] = P [t ≥ τ0 ≤ τµ]+P [t ≥ τ0 > τµ],
Bb(Xt∧τ0µ) = e−bµ for t ≥ τ0 > τµ and infx∈Rn\χBb(x) = 1,
then we obtain

Px0 [t ≥ τ0 ≤ τµ] ≤ Ex0

[
Bb(X(t ∧ τ0µ))

]
, x0 ∈ χµ. (69)

Since Px0
[
supt≥0Bb(Xt∧τµ) ≥ 1 ∩ τ0 > τµ

]
= 0, we obtain

Px0

[
sup
t≥0

Bb(Xt∧τµ) ≥ 1

]
= Px0

[
sup
t≥0

Bb(Xt∧τµ) ≥ 1 ∩ τ0 ≤ τµ

]
= Px0 [t ≥ τ0 ≤ τµ]. (70)

Thus, we obtain

Px0

[
inf
t≥0

h(Xt∧τ0µ) ≤ 0

]
= Px0

[
sup
t≥0

Bb(Xt∧τµ) ≥ 1

]
≤ Bb(x0).

(71)

Therefore, the system is transiently safe in (χµ, χ, 1 − e−bh(x0)).
Moreover, if the discussion is satisfied for any µ > 0, we directly
obtain

Px0

[
sup
t≥0

Bb(Xt) ≥ 1

]
= Px0 [t ≥ τ0] ≤ Ex0 [Bb(X(t ∧ τ0)]

≤ Bb(x0), x0 ∈ χ. (72)

This completes the proof.

E. Proof of Corollary 2

First, consider the case Lgh ̸= 0 in χµ. If Is < Js, we obtain

Lf,g,σ(ϕs(x), uo(x), h(x)) = bHσ(h(x)) (73)

and if Is ≥ Js, we obtain

Lf,g,σ(ϕs(x), uo(x), h(x)) = Is(uo(x), h(x))

≥ Js(h(x)) = bHσ(h(x)).
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Therefore, regardless of Is < Js or Is ≥ Js, the inequality (30) is
satisfied. Moreover, because Lgh(x), Is(uo(x), h(x)) and Js(h(x))
are all continuous in Lgh(x) ̸= 0 and ϕs(x) → 0 as Is → Js
uniformly when Lgh(x) ̸= 0, ϕs(x) is continuous in Lgh(x) ̸= 0.
Then, we consider the other case, i.e., Lgh = 0 in χµ. The additional
condition (34) implies that there exists a sufficiently small constant
ϵ > 0 such that

Lfh(x) + LI
σ(h(x))− ϵ ≥ bHσ(h(x)) (74)

is satisfied. Combining the inequality and the assumption of uo to
be continuous, for a subset Goµ ⊂ χµ, which is a neighborhood of
xg ∈ {x ∈ χµ|Lgh(x) = 0}

||Lgh(x)uo(x)|| ≤ ϵ (75)

is satisfied. Thus, for x ∈ Goµ, we obtain

Lfh(x) + LI
σ(h(x)) + Lgh(x)uo(x) ≥ bHσ(h(x)), (76)

which implies that Is ≥ Js; namely, ϕs = 0 in Go. Therefore, ϕs
is continuous around Lgh(x) = 0 in χµ.

Consequently, ϕs is always continuous in χ and satisfies all the
assumptions and conditions of Theorem 4. Moreover, because u =
ϕ′s(x) is continuous in χh>µ and ϕ′s(x) = ϕs(x) for all x ∈ ∂χh>µ,
u is continuous for all χ. This completes the proof.

F. Proof of Corollary 3

Because the condition (38) holds, for any x ∈ Rn
h≤µ, Bb(x) =

e−bh(x) satisfies µb ≤ Bb(x). Using the inequality, we obtain

Lf,g,σ(ϕ, uo(x), Bb(x)) < 0, x ∈ Rn
h≤µ (77)

via the same way to derive (66). Therefore, using Dynkin’s formula,
we obtain
dV

dt
= 2[E [Bb(Xt)]− µb]+

dE [Bb(Xt)]

dt
= 2[E [Bb(Xt)]− µb]+E

[
Lf,g,σ(ϕ(Xt), uo(Xt), Bb(Xt))

]
< 0. (78)

This completes the proof.
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