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ABSTRACT Quantum queue-channels arise naturally in the context of buffering in quantum networks,
wherein the noise suffered by the quantum states depends on the time spent waiting in the buffer. In [1],
a simple upper-bound on the classical capacity of an additive queue-channel was derived and was shown
to be achievable for the erasure and depolarizing channels. In this paper, we characterise the classical
capacity for the class of unital qubit queue-channels, and show that a simple product (non-entangled)
decoding strategy is capacity-achieving. As an intermediate step, we present a simpler derivation of an
explicit capacity achieving product decoding strategy for any i.i.d. unital qubit channel, which may be
of interest. As an important special case, we also derive the capacity and optimal decoding strategies for
a symmetric generalized amplitude damping (GAD) queue-channel. Our results provide useful insights
towards designing practical quantum communication networks, and highlight the need to explicitly model
the impact of buffering.

I. INTRODUCTION

There is considerable and growing interest in designing
and setting up large-scale quantum communication networks
[2], [3]. To that end, understanding the fundamental capacity
limits of quantum communications in the presence of noise
is of practical importance. In this context, the inevitable
buffering of quantum states during communication tasks
acts as an additional source of decoherence. One concrete
example of such buffering occurs at intermediate nodes
or quantum repeaters, where quantum states have to be
stored for a certain waiting time until they are processed
and transmitted again [4]. Indeed, while quantum states
wait in buffer for transmission, they continue to interact
with the environment, and suffer a waiting time dependent
decoherence [5], [6]. In fact, the longer a qubit waits in a
buffer, the more it decoheres.

To characterise the impact of buffering on quantum com-
munication, researchers have recently combined queuing
models with quantum noise models [1]. In particular, the
buffering process inherently introduces correlations across
the noise process experienced by consecutive qubits, since
the waiting times are correlated according to the queuing
dynamics. Thus, to properly characterise the decoherence

introduced due to buffering, we need to look ‘beyond i.i.d’
quantum channels and noise models. Beyond i.i.d noise
models known as arbitrarily varying channels (AVCs) have
been well-studied in the classical literature [7] and have
more recently been studied in the quantum literature as
well [8]–[11]. Queue-channels are characterised by well-
defined stochastic models, and lend themselves to a capacity
notion that is less pessimistic than the typical worst-case
capacity notion that is used for AVCs. In particular, the
stationary and ergodic nature of typical queuing systems
leads us to a more natural ‘ergodic capacity’ for queue-
channels.

Unital qubit channels are ubiquitous models for decoher-
ence [12], [13] in the communication medium as well as in
the buffer. Though the former mode of decoherence has been
the main topic of interest in quantum Shannon theory, recent
research has started to focus on the impact of the buffering
on the design of a practical quantum communication system
[1], [4]–[6].

The i.i.d. unital channel has been studied extensively and
its classical capacity has been characterized [14]–[19]. In
[20], it was shown that non-entangled (product) encoding
and decoding can achieve the classical capacity, assuming

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2024.3417816

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



the additivity conjecture, which was later proved in [14].
However, the following question needs attention: can

product decoding achieve the classical capacity of the
channel, in the presence of decoherence at the transmission
buffer? This question is well-motivated, because entangled
measurements (non-product decoding) require a reliable
quantum processor.

A. RELATED WORK
Our work interleaves different aspects of quantum com-

munication networks, from quantum Shannon theory to
queuing theory. In quantum Shannon theory, one studies
ultimate limits for transmitting information in the presence
of quantum noise. One simple model of study is transmis-
sion of classical information across qubits experiencing i.i.d
noise. However even this simple model can exhibit a variety
of complex behaviour [21]–[23]. The qubit generalized
amplitude damping channel (GADC) is a relevant model of
noise in a variety of physical contexts including communica-
tion over optical fibers or free space [24]–[27], T1 relaxation
due to coupling of spins with a high temperature envi-
ronment [28]–[30], and super-conducting based quantum
computing [31]. Quantum capacities of the i.i.d. GADC have
been studied (see [32] and reference therein). Of particular
interest to us are expressions for the Holevo information
of the GADC, found in [33] using techniques from [34],
[35], and channel parameters [32] where additivity of the
GADC Holevo information is known. While the primary
focus of quantum Shannon theory [36] has been to study the
classical and quantum capacities of stationary, memoryless
quantum channels [13], recently there has been a spurt of
activity in characterizing the capacities of quantum channels
in non-stationary, correlated settings. We refer to [37] for
a recent review of the different capacity results obtained
in a context of quantum channels that are not independent
or identical across channel uses. In particular, we focus on
the quantum information-spectrum approach in [38], which
provides bounds on the classical capacity of a general,
non-i.i.d. sequence of quantum channels. The idea of a
quantum queue-channel was originally proposed in [39] as
a way to model and study the effect of decoherence due
to buffering or queuing in quantum information processing
tasks. The classical capacity of quantum queue-channels has
been studied for certain classes of quantum channels, and a
general upper bound is known for additive quantum queue-
channels, additionally the upper bound can be achieved for
for the erasure and depolarising queue-channels [1]. The
effect of queuing-dependent errors on classical channels
has been studied earlier [40], with motivation drawn from
crowd-sourcing. More recently, a dynamic programming
based framework for characterising the queuing delay of
quantum data with finite memory size has been proposed
in [41]. Finally, we note that ideas of queuing theory have
also been used to study aspects of entanglement distribution
over quantum networks such as routing [42], switching, and
buffering [43].

B. OUR CONTRIBUTIONS:

We show that the upper-bound on the classical capacity
of additive queue-channel is achievable for any unital qubit
queue-channel if the encoder has non-causal side infor-
mation regarding the waiting times of the qubits. In the
absence of this side information, we show that for the class
of unital qubit queue-channels that are ‘Pauli-ordered,’ the
same upper-bound can be achieved. In both cases, we show
that non-entangled projective measurements can achieve the
capacity and provide explicit descriptions of the encoders
and the projective measurements. As an intermediate result,
we present a much simpler and shorter derivation for explicit
capacity achieving non-entangled projective measurement
for any i.i.d. unital qubit channel, whose general form seems
to offer an advantage over the known form [44], like in the
concise proof of Theorem 7.

The generalized amplitude damping (GAD) channel is
paramterized by two parameters n and p, both between
zero and one. We find an induced binary symmetric channel
whose capacity equals the classical capacity of the GAD
channel at n = 1/2, the only parameter where this channel is
unital for all p. Making p an explicit function of the waiting
time w for each qubit, we obtain a unital GAD queue-
channel. Our construction of the induced channel together
with an upper bound in [1] allows us to give a matching
upper and lower bound for the capacity of the GAD queue-
channel. In this way, we give a fully classical capacity
achieving scheme for the encoder and decoder across a
GAD queue-channel. Finally, we obtain useful insights for
designing practical quantum communication systems by
employing queuing theoretic analysis on the queue-channel
capacity results.

The paper is organized as follows. In the Sec. I-A we
discuss related work. To keep this discussion somewhat self-
contained, in Sec. II, we provide an extended discussion of
induced channels, classical capacities of quantum channels,
and non-i.i.d queue-channel capacities. Sec. III discusses
unital qubit queue-channels and includes a capacity achiev-
ing product encoding-decoding strategy for i.i.d. unital chan-
nels (see Th. 1). In Sec. IV-A, we analyze the generalized
amplitude damping channel (GADC). Here we discuss and
compare capacities of various natural choices for induced
channels of a GADC (see Fig. 2). In Sec. IV-D we discuss
the queue-channel capacity of the symmetric GADC. We
offer useful design insights by analyzing and numerically
plotting (see Fig. 3) the capacity expression. Sec. V contains
a brief discussion and outlines potentially interesting future
directions.

II. PRELIMINARIES
A. CLASSICAL AND QUANTUM CHANNELS

A random variable, X , taking discrete value x from
a finite set X with probability p(x) := Pr(X = x)
has Shannon entropy H(X) = −

∑
x∈X p(x) log2 p(x). A

discrete memoryless channel N taking x ∈ X to y ∈ Y
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FIGURE 1: Qubit ρi decoheres to ρ′i while waiting in the buffer for transmission. This further decoheres to ρ′′i while passing
through the channel. Decoherence in the buffer depends on the waiting time and results in non-i.i.d. "effective" decoherence.

with conditional probability p(y|x) := Pr(Y = y|X = x)
has channel capacity

CShan(N) = max
p(x)

I(X;Y ), (1)

where I(X;Y ) := H(X) + H(Y ) − H(X,Y ) is the
mutual information between input X and output Y . A binary
symmetric channel (BSC) with flip probability q, is defined
by the conditional probability distribution p(0|0) = 1 −
q, p(1|0) = q, p(0|1) = q, p(1|1) = 1−q, where 0 ≤ q ≤ 1;
it has capacity 1 − h(q), where h(q) := −[q log2 q + (1 −
q) log2(1−q)] is the binary entropy function. A binary asym-
metric channel (BAC), defined by the conditional probability
distribution p(0|0) = 1 − q, p(1|0) = q, p(0|1) = r, and
p(1|1) = 1− r, has capacity CShan

(
BAC(q, r)

)
, given by

1

1− s− t
(sh(t)− (1− t)h(s)) + log2(1 + 2

h(s)−h(t)
1−s−t ), (2)

where, s = min(q, r) and t = max(q, r) (see Ch.4 in [45]
or [46]). Let H denote a finite dimensional Hilbert space,
L(H) denote the space of bounded linear operators on H.
A density operator ρ is a positive semi-definite operator in
L(H) with unit trace, Tr(ρ) = 1. Any qubit density operator
can be written in the Bloch parametrization,

ρ(r) =
1

2
(I + r.~σ) :=

1

2
(I + xσ1 + yσ2 + zσ3), (3)

where the Bloch vector r = (x, y, z) has norm |r| ≤ 1,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
(4)

are the Pauli matrices, written in the standard basis
{|0〉, |1〉}. Using the Bloch parametrization, the entropy

S
(
ρ(r)

)
= h

(
(1− |r|)/2

)
, (5)

where h(x) := −[x log x+ (1−x) log(1−x)] is the binary
entropy function and |r| =

√
r.r is the norm of r. A positive

operator valued measure (POVM) is a collection of positive
operators that sum to the identity.

A classical quantum (c-q) channel, E : X 7→ L(H) maps
a symbol x ∈ X to a density operator ρ(x) ∈ L(H). Such a
channel has two capacities for sending classical information
depending on whether the information is decoded using

a product or joint measurement. Product decoding to an
alphabet Y is given by a linear map D : L(H) 7→ Y . Any
input ρ(x) is measured using some POVM {Λ(y)} resulting
in an outcome y ∈ Y with probability

p(y|x) = Tr
(
Λ(y)ρ(x)

)
. (6)

This conditional probability defines an induced channel N :
X 7→ Y that depends on D and the c-q channel E . The
product decoding capacity, also called the Shannon capacity
of E is the supremum of the capacity of N over all product
decoding maps D,

CShan(E) := sup
D
CShan(N) = sup

D,p(x)

I(Y ;X). (7)

Joint decoding to an alphabet Y×k is defined in an analo-
gous way by a linear map D : L(H⊗k) 7→ Y×k. This joint
decoding together with product encoding (this encoding
simply maps (x1, x2, . . . , xk) to E(x1)⊗E(x2)⊗ . . . E(xk))
naturally defines an induced channel Nk : X×k 7→ Y×k.
The product encoding and joint decoding capacity is defined
as

Cpj(E) := lim
k 7→∞

1

k
Ik(E), (8)

where Ik(E) is supremum of CShan(Nk) over Dk and the
subscript pj denotes product encoding and joint decoding.
Such notation is used to denote various classical capacities
Remarkably, the Holevo-Schumacher-Westmoreland theo-
rem [47], [48] gives the above multi-letter expression a
single-letter form; that is,

Cpj(E) = χ(1)(E) := max
{p(x)}

χ
(
p(x), ρ(x)

)
, (9)

where the Holevo quantity,

χ
(
p(x), ρ(x)

)
= S

(∑
x∈X

p(x)ρ(x)
)
−
∑
x

p(x)S
(
ρ(x))

)
,

(10)
and S(ρ) = −Tr(ρ log ρ), is the von-Neumann entropy of a
density operator ρ. Due to the close connection between Cpj
and χ, sometimes Cpj(E) is also denoted by Cχ(E). There
are cases where Cχ(E) is strictly greater than CShan(E) [49],
[50]. However, much remains unknown about when and how
such separations occur.
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B. CLASSICAL CAPACITIES OF A QUANTUM CHANNEL
A quantum channel B : L(Ha) 7→ L(Hb) is a completely

positive trace preserving (CPTP) map. It can have four basic
types of channel capacities for sending classical information
across B. These correspond to using product or joint inputs
to B and product or joint measurements at the output of B.
The product input and product measurement capacity, also
called the the Shannon capacity of B is defined as

CShan(B) := sup
E,D
I(N) = max

{E,D}
max
p(x)

I(X;Y ), (11)

where N : X 7→ Y is an induced channel obtained by
using product encoding E : X 7→ L(Ha) and product
decoding D : L(Hb) 7→ Y . The joint input and product
measurement capacity Cjp(B) is defined via an encoding
Ek : X×k 7→ L(H⊗k) and product decoding D in a mannar
analogous to (8). This capacity equal CShan(B) [20]. Let
product encoding E and joint decoding Dk across B⊗k
define an induced channel Nk. The product input and joint
measurement capacity of B is defined as

Cpj(B) = lim
k 7→∞

1

k
Ik(B), (12)

where Ik(B) is the supremum of CShan(Nk) over E and
Dk. This capacity can be shown to equal to a single-letter
formula,

Cpj(B) = χ(1)(B) := max
{ρa(x),p(x)}

χ
(
p(x), ρb(x)

)
, (13)

where ρb(x) = B(ρa(x)).
Let joint encoding Ek : X×k 7→ L(H⊗ka ) and decoding

Dk : L(H⊗kb ) 7→ Y×k across B⊗k define an induced
channel Ñk : X×k 7→ Y ×k. The joint encoding and
decoding capacity, also called the classical capacity, of B
is defined as

Cjj(B) = lim
k 7→∞

1

k
Ĩk(B), (14)

where Ĩk(B) is the supremum of CShan(Ñk) over Ek and
Bk. Using the product state capacity χ(1)(B) (13), Cjj(B)
can be written as follows,

Cjj(B) = lim
k 7→∞

1

k
χ(1)(B⊗k) := χ(B). (15)

In general, the limit in (15) is required because the product
state capacity can be super-additive [51]; that is, for any two
quantum channels B and B′, the inequality,

χ(1)(B ⊗ B′) ≥ χ(1)(B) + χ(1)(B′), (16)

can be strict. For certain special classes of channels, the
Holevo information is known to be additive; that is, the
inequality above becomes an equality when B′ is any
channel and B belongs to a special class of channels
that includes unital qubit channels [14], depolarizing chan-
nels [52], Hadamard channels [53], and entanglement break-
ing channels [54].

C. CLASSICAL CAPACITY OF NON-I.I.D. QUANTUM
CHANNELS

Much of the focus in quantum shannon theory is on
quantum channels that are independent and identically dis-
tributed (i.i.d.) across multiple uses. As mentioned in Sec. I,
the effective channel seen by qubits in the presence of
decoherence in the transmission buffer is non-i.i.d. Charac-
terizing the capacity is a harder problem in such a setting. In
the classical setting, a capacity formula for this general non-
i.i.d. setting was obtained using the information-spectrum
method [55], [56]. This technique was adapted to the
quantum setting in [38], and a general capacity formula was
obtained for the classical capacity of a quantum channel.

III. UNITAL QUBIT QUEUE-CHANNELS
A unital qubit channel Φ satisfies Φ(I) = I where I is the

2×2 identity operator. By itself, the channel describes i.i.d.
noise. The capacity of sending classical information in this
i.i.d. setting was discussed in Sec. II-B, where we mentioned
that the product state classical capacity of Φ is additive and
thus the channel’s capacity, χ(Φ), can be achieved using
product encoding.

A unital qubit queue-channel models the total decoher-
ence experienced by the qubits while waiting in the buffer
for transmission and passing through the channel. Each qubit
experiences a (potentially) different unital qubit channel ΦW
parametrized by the random time W that it spends in the
buffer. In this case, for the transmitted state ρ12...k, the
output state would be (ΦW1

⊗ΦW2
· · ·ΦWk

) (ρ12...k), if the
waiting times W k = (W1,W2, . . . ,Wk) are known at the
receiver. Examples of unital qubit queue-channels include
the depolarising queue-channels [1] and the symmetric gen-
eralized amplitude damping queue-channel (see Sec. III-C).

The buffering process is modeled as a continuous-time
single-server queue. To be specific, the single-server queue
is characterised by (i) A server that processes the qubits in
the order in which they arrive, that is in a First Come First
Served (FCFS) fashion1, and (ii) An "unlimited buffer" —
that is, there is no limit on the number of qubits that can wait
to be transmitted. We denote the time between preparation
of the ith and i+1th qubits by Ai, where Ai are i.i.d. random
variables. These Ais are viewed as inter-arrival times of a
point process of rate λ, where E[Ai] = 1/λ. The "service
time," or the time taken to transmit qubit i, is denoted by Si,
where {Si} are also assumed to be i.i.d. random variables,
independent of the inter-arrival times Ai, i ≥ 1. The "service
rate" of the qubits is denoted by µ = 1/E[Si]. We assume
that λ < µ (i.e., mean transmission time is strictly less than
the mean preparation time) to ensure stability of the queue.
Qubit 1 has a waiting time W1 = S1. The waiting times
of the other qubits can be obtained using the well known
Lindley’s recursion:

Wi+1 = max(Wi −Ai, 0) + Si+1.

1The FCFS assumption is not required for our results to hold, but it
helps the exposition.
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In queuing parlance, the above system describes a
continuous-time G/G/1 queue. Under mild conditions, the
sequence {Wi} for a stable G/G/1 queue is ergodic, and
reaches a stationary distribution π. We assume that the
waiting times {Wi} of the qubits are available at the receiver
during decoding.

An important difference between the queue-channel in-
troduced above and the usual i.i.d. channels is that this
channel is a part of continuous time dynamics. Hence, the
usual notion of capacity per channel use for i.i.d. channels is
not pertinent here. As mentioned before, the above channel
model is closely related to quantum queue-channels studied
in [1]. So, we first do a short review of the notion of capacity
per unit time and some relevant capacity results in [1].

A. CLASSICAL CAPACITY OF UNITAL QUANTUM
QUEUE-CHANNELS
Definition 1. A rate R is called an achievable rate for
a quantum queue-channel if there exists a sequence of
(n, 2RTn) quantum codes with probability of error P (n)

e →
0 as n→∞ and E

[∑n−1
i=1 Ai +Wn

]
≤ Tn.

Definition 2. The information capacity of the queue-channel
is the supremum of all achievable rates for a given arrival
and service process, and is measured in bits per unit time.

Note that the information capacity of the queue-channel
depends on the arrival process, the service process, and the
noise model.

As discussed in Sec. I, in this paper, we derive the
capacity of this channel and show that product encoding
and product decoding achieve that capacity. Towards this,
an important intermediate step of (possibly) independent
interest is to design an explicit product encoding and product
decoding strategy for i.i.d. unital qubit channels.

B. PRODUCT ENCODING/DECODING FOR I.I.D. UNITAL
QUBIT CHANNELS

It was shown in [44] that product decoding achieves the
i.i.d. classical capacity of unital qubit channels under the
conjecture that minimum output entropy is additive, which
was proved later. Here, we present a simpler derivation of
another explicit product encoder and decoder based on the
capacity expression in [14]. Our product encoder and de-
coder are especially suited for studying unital qubit queue-
channels. In particular, our approach is quite commensurate
to a direct and concise proof of Theorem 7.

The classical capacity of an i.i.d. unital qubit channel Φ
is given by the Holevo information [14]

χ(Φ) = sup
p,ρ,ρ′

(S(Φ(pρ+ (1− p)ρ′))− pS(Φ(ρ))

− (1− p)S(Φ(ρ′))) . (17)

1) Product encoding and decoding
For a unital qubit channel Φ, let

MΦ = sup
ρ
||Φ(ρ)||, (18)

where || · || is the operator norm (it equals the largest
eigenvalue of a density operator).

We define RΦ to be the set of states that achieves the
supremum in (18), i.e., for any ρ ∈ RΦ, MΦ = ||Φ(ρ)||.
Since for a qubit channel ρ lives in a compact space and
the function ||Φ(ρ)|| is continuous, RΦ is non-empty.

For any state ρ ∈ RΦ, we define ΓΦ,ρ to be the set of
states such that for any τ ∈ ΓΦ,ρ

MΦ = Tr(Φ(ρ)τ). (19)

By the same argument on compactness and continuity that
was used for RΦ, ΓΦ,ρ is also non-empty.

Message to classical bits: Consider the classical binary
symmetric channel (BSC) with cross-over probability MΦ

and choose any capacity achieving encoder and decoder. For
example, one can choose the well known random coding
and typical decoding, or an appropriate polar code and the
corresponding decoder [57], [58].

Encoding classical bits to quantum states: For sending
a message over the unital channel, first map the message to
an appropriate classical binary codeword from the chosen
classical codebook. Then map symbol 0 to a state ρ∗ ∈ RΦ

and symbol 1 to I−ρ∗, and transmit over the unital channel.
Decoding quantum states: Pick a pure state τ∗ ∈ ΓΦ,ρ∗ ,

which exists and can be found via eigen-decomposition of
Φ(ρ∗). At the receiver, use projection measurements {P0 =
I − τ∗, P1 = τ∗} and obtain a sequence of 0 and 1. Then,
use the classical decoder chosen for the BSC(MΦ).

Theorem 1. The above product encoding and decoding
strategy for the unital qubit channel achieves the capacity
in (17).

Proof. First, we prove that the above encoding and decoding
across an i.i.d. unital qubit channel results in a classical i.i.d.
BSC (MΦ). The rest follows using the fact that χ(Φ) =
1−h(MΦ) [14] and 1−h(MΦ) is the Shannon capacity of
BSC(MΦ).

The probability that bit 0 is decoded as bit 1 is equal
to the probability that the projective measurement {P0, P1}
on Φ(ρ∗) gives 1. Similarly, the probability that bit 1 is
decoded as bit 0 is same as the probability of the event
that the projective measurement on Φ(I − ρ∗) gives 0. The
second probability is given by

Tr((I − τ∗)Φ(I − ρ∗))
= Tr((I − τ∗)(I − Φ(ρ∗))) (unital channel)
= Tr(I − τ∗ − Φ(ρ∗) + τ∗Φ(ρ∗))

= Tr(τ∗Φ(ρ∗)).

This expression, however, is exactly equal to first probabil-
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ity, which in turn is given by

Tr(τ∗Φ(ρ∗))

= sup
τ :pure state

Tr(Φ(ρ∗)τ)

= ||Φ(ρ∗)|| (by the defn. of operator norm)
= MΦ.

This completes the proof. �

The main insight from the above theorem is summarized
in the following remark.

Remark 1. Every unital qubit channel has an induced
binary symmetric channel whose Shannon capacity equals
the classical capacity of the unital qubit channel.

Next, building on the above insight and Theorem 8 in [1],
we study unital qubit queue-channels.

C. CAPACITY OF UNITAL QUBIT QUEUE-CHANNELS
We start with the capacity upper-bound in [1], which is

applicable to any additive queue-channel. We assume that
the waiting times of the qubits are available at the receiver
during decoding.

Theorem 2 ( [1], Theorem 1). The classical capac-
ity of a unital qubit queue-channel is upper-bounded by
λ Eπχ(ΦW ), irrespective of whether the encoder knows
the waiting times or does not know the waiting times. Here,
Eπ is expectation with respect to the stationary distribution
π of {Wi}.

Proof. The case where waiting times are not known at the
encoder is a direct re-statement from [1]. The other case
follows by noting the fact that in deriving the upper-bound
in [1], the encoder was allowed access to the additional side
information regarding the waiting times. �

We study encoding and decoding strategies that achieve
the above bound in both settings. We start with the simpler
setting where encoder knows the waiting times and later we
study the more practical setting, where the encoder does not
know the waiting times.

1) Encoder knows waiting times
Knowledge of the future parameters of a time-varying

channel at the receiver is called non-causal side information.
This is not practical when the channel variation is fast and
unpredictable (i.i.d. like). However, as the waiting times
result into a Markov process, such an assumption is not so
impractical. In certain slowly varying queues, the waiting
times can be predicted within a reasonable accuracy. In this
setting, the product encoding and product decoding strategy
is similar to the one considered in Sec. III-B. However, some
modifications are necessary to address the non-i.i.d. nature
of the queue-channel.

First, we introduce a modified version of (17). For an
unital qubit channel parametrized by waiting time W , let

MΦW
= sup

ρ
||ΦW (ρ)||,

RΦW
= {ρ : ||ΦW (ρ)|| = MΦW

},
ΓΦW ,ρ = {τ : Tr(τΦ(ρ)) = MΦW

} for ρ ∈ RΦW
. (20)

Message to classical bits: Pick any capacity achieving
encoder and decoder for the classical binary symmetric
queue-channel {BSC(MΦWi

)}. A detailed discussion on this
channel can be found in [1].
Product encoding and decoding of qubits: The encoder
and the decoder agree a priori on a choice of ρW ∈ RΦW

for all W ≥ 0. The encoder maps the ith classical bit to ρWi

or I − ρWi
, depending on whether it is 0 or 1, respectively.

For the ith quantum state at the output of the channel, the
decoder uses the projective measurement {I − τWi , τWi},
where τWi ∈ ΓΦWi

,ρWi
.

Theorem 3. The above product encoding and product
decoding strategy for unital qubit queue-channel achieves
the capacity upper-bound in Theorem 2.

Proof. Using the steps from the proof of Theorem 1, it
directly follows that the above strategy converts the unital
qubit queue-channel into a binary symmetric queue-channel
{BSC(MΦWi

)}. Rest follows from Theorem 8 in [1]. �

2) Encoder does not know waiting times
In this setting the queue evolution cannot be predicted

and hence, the encoder has no knowledge of {Wi}. This is a
more prevalent setting in quantum communication. In many
practical quantum communication systems, the encoding
and the decoding has to be chosen at time zero, and cannot
be adapted according to the queue evolution. We show that,
in this setting, again a simple product encoder and product
decoder achieves capacity for a large class of unital qubit
queue-channels.

We obtain two results in this setting. First, we show that
for a class of unital qubit queue-channels with certain Pauli
decomposition characteristics whose Pauli decompositions
satisfy a certain invariant ordering, the capacity can be
achieved by product encoding and decoding in terms of
Pauli matrices (Theorem 5 and Lemma 6). This class of
channels includes the well known depolarizing channels,
the symmetric generalized amplitude damping channel and
other Pauli channels such as bit-flip and phase-flip channels.
Second, we further introduce a broader class of unital
qubit queue-channels which can be characterized without
using the Pauli decomposition for which product encoding
and decoding is optimal, independent of their Pauli noise
characteristics (Theorem 7).

Let us consider a family of i.i.d. unital qubit channels
{Φw}, parametrized by a non-negative real number w. This
means that the channel acts on any joint state ρ12...k as

(Φw ⊗ Φw ⊗ . . .Φw)(ρ12...k),
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where the parameter w determines the map. As discussed in
Theorem 1, the classical capacity of this channel is achieved
by the product encoding: 0 → ρ∗w and 1 → I − ρ∗w, and
product decoding using the projectors {τ∗w, I − τ∗}, where

ρ∗w ∈ RΦw and τ∗w ∈ ΓΦw,ρ∗w
.

Further, the classical capacity of this unital qubit channel is
equal to the Shannon capacity of a binary symmetric channel
with crossover probability MΦw

= ||Φw(ρ∗w)||.
It is well known that any qubit state ρ can be expressed as

linear combination of the Pauli matrices σi, i = 1, 2, 3, and
I . This leads to three natural induced classical channels for
any qubit channel: map 0 and 1, respectively, to I+σi

2 and
I−σi

2 , the projectors onto the two eigenvectors of σi, and
measure using these same projectors. For the i.i.d. unital
qubit channel Φw, parametrized by w, this leads to three
induced binary symmetric channels Bi(w), i = 1, 2, 3.

A family of i.i.d. unital qubit channels {Φw} and an
unital qubit queue-channel are closely related. In a unital
qubit queue-channel, each qubit i sees a different unital
qubit channel depending on its waiting time Wi. Thus, any
unital qubit queue-channel can be described using a family
of i.i.d. unital qubit channels {Φw}, such that the channel
seen by any qubit i is Φw, where w = Wi. Clearly, the
physical environment of the buffer decides the nature of the
queue-channel and thus, determines the family {Φw} that
corresponds to it.

Definition 3. We call a unital qubit queue-channel Pauli-
ordered if the ordering of the Shannon capacities of the
induced channels B1(w), B2(w) and B3(w) of the corre-
sponding family of the i.i.d. unital qubit channels {Φw} is
the same for all w ≥ 0.

Examples of Pauli-ordered unital qubit queue-channels
are depolarising queue-channels [1] and symmetric general-
ized amplitude damping channels considered in Sec. IV-A.

As discussed before, a queue-channel models decoher-
ence of a qubit due to its interaction with the environment
while waiting in a buffer. In this context, it is physically
well motivated to work in a Markovian regime, leading to
the well known quantum Markov semigroup structure [59]
for the channel that models the decoherence. In particular,
it can be shown that for a unital qubit queue-channel with
a Markov or memoryless structure, the ordering of the
Shannon capacities of B1(w), B2(w) and B3(w) do not
change with w.

To see this, suppose that the unital qubit queue-channel,
Φδw, has the following Markovian or memoryless form: for
all w and δw ↓ 0, Φw+δw(ρ) = Φδw (Φw(ρ)). First observe
that for a unital channel Φw(ρ) = (1 −

∑3
i=1 pi(w))ρ +∑3

i=1 pi(w)σiρσi, {pi(w) : i} depends on w. It is natural to
assume that pi(0) = 0 for all i since zero waiting time corre-
sponds to no decoherence. Next, for the Markovian channel,
after some calculations it can be seen that pi(w)−pj(t) are
of the form 1

2 (exp(−γit)− exp(−γjt)) for some constants
γi > 0. These make the ordering of {pi(w)} invariant to

w. Finally, since Bi(w) are monotonic in the corresponding
pi(w), it follows that the ordering of {Bi(w)} is invariant
to w.

The following lemma is useful in designing an optimal
encoding and decoding for Pauli-ordered unital qubit queue
channels.

Lemma 4. For a Pauli-ordered unital qubit queue-channel
there exists a Pauli state σ̂ such that for all w ≥ 0, (I +
σ̂)/2 ∈ RΦw

. This, in turn, implies that for any w ≥ 0,
(I + σ̂)/2 ∈ ΓΦw,(I+σ̂)/2.

Proof of this lemma is presented later. Here, we first
derive an optimal product encoding and decoding strategy
using this lemma.

Encoding and decoding: We pick a capacity achieving
encoder and decoder for the classical binary symmetric
queue-channel {BSC(MΦWi

)}. We map the message to a
string of 0 and 1 using that encoder. Then, we map 0
to (I + σ̂)/2 and 1 to (I − σ̂)/2 and use the projective
measurement {(I − σ̂)/2, (I + σ̂)/2} on the output states
to obtain strings of 0 and 1. Finally, we use the capacity
achieving decoder for the classical binary symmetric queue-
channel {BSC(MΦWi

)} to decode the message.

Theorem 5. The above product encoding and product
decoding strategy achieves the capacity upper-bound in
Theorem 2 for Pauli-ordered unital qubit queue-channels.

Proof. Lemma 4 implies that the above product encoding
and decoding strategy converts a Pauli-ordered unital qubit
queue-channel into a binary symmetric queue-channel with
crossover probabilities

Tr
(
ΦWi

((I + σ̂)/2) (I + σ̂)/2
)

= MΦWi
.

This is because by lemma 4, (I + σ̂)/2 ∈ RΦWi
and (I +

σ̂)/2 ∈ ΓΦWi
,(I+σ̂)/2. The rest follows from Theorem 8

in [1]. �

Proof of Lemma 4. First, note that up to local unitaries at
the channel input and output, any unital channel can be
written as a convex combination of Pauli channels :

Φ(ρ) = (1−
3∑
i=1

pi)ρ+

3∑
i=1

piσiρσi,

where σi are the Pauli matrices (see discussion between
Prop. 6.41 and Ex. 6.43 in [13]).

Thus, any Φw can be equivalently represented by the three
probabilities {pi(w), i = 1, 2, 3}, where

Φw(ρ) = (1−
3∑
i=1

pi(w))ρ+

3∑
i=1

pi(w)σiρσi,

and
∑
i pi(w) ≤ 1.

We prove Lemma 4 using the following lemma, which
gives an explicit expression for the optimal encoding and
decoding in terms Pauli matrices.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2024.3417816

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Lemma 6. For a unital channel Φ, given by Φ(ρ) = (1 −∑3
i=1 pi)ρ+

∑3
i=1 piσiρσi,

(I + σi∗)/2 ∈ RΦ and (I + σi∗)/2 ∈ ΓΦ,(I+σi∗ )/2,

where

i∗ = arg max
i∈{1,2,3}

|1− 2

3∑
j 6=i

pj |.

Lemma 6 is applicable to any Φw parametrized by
{pi(w)}. Thus, if the ordering of ηi(w) = |

∑3
j=1 pj(w)−

pi(w) − 1
2 | remains unchanged with w, ρ∗w and τ∗w remain

unchanged with w.
Finally, note that the ordering of {ηi(w)} are the same as

the ordering of the Shannon capacities of Bi(w). To see this,
let us first find the crossover probability of Bi(w). Using
simple trace calculations, one can show that the crossover
probability bi(w) of the BSC Bi(w) is pi + (1−

∑3
j=1 pj).

Thus, its Shannon capacity is 1 − h(bi(w)). Note that 1 −
h(b) = 0 at b = 1

2 and increases monotonically with |b− 1
2 |.

Thus, the capacity of Bi(w) is monotonic in ηi(w) and
hence, ordering of ηi(w) remains unchanged with w for a
Pauli-ordered unital qubit queue-channel, which completes
the proof of this lemma. �

Proof of Lemma 6. For any state ρ = I
2 +

∑3
i=1

αi

2 σi,
where

∑3
i=1 α

2
i ≤ 1,

Φ(ρ) =

3∑
i=1

αi
2

(1− 2

3∑
j 6=i

pj)σi +
I

2
.

This expression is obtained by using the fact that Φ(ρ) =
(1−

∑3
i=1 pi)ρ+

∑3
i=1 piσiρσi.

Thus, for ρ = 1
2 (I + ~α.~σ) := 1

2 (I +
∑3
i=1 αiσi), where

~α = (α1, α2, α3) and ~α.~α ≤ 1, the channel output

Φ(ρ) =
1

2
(I + (~λ ∗ ~α).~σ),

where ~λ = (λ1, λ2, λ3), λi = 1−2
∑
j 6=i pj , and (~λ∗~α)i =

~λi~αi denotes entry-wise dot product between ~λ and ~α. Thus,

MΦ = sup
ρ
||Φ(ρ)|| = sup

ρ,τ
Tr(Φ(ρ)τ) (21)

= sup
{~α: ~α.~α≤1}, pure τ

1

2
Tr{

(
(I + (~λ ∗ ~α).~σ

)
τ} (22)

= sup
{~α: ~α.~α≤1}, {~β: ~β.~β=1}

1

4
Tr{

(
(I + (~λ ∗ ~α).~σ

)
(I + ~β.~σ)}

(23)

Eq. 21 follows by the definition of MΦ and the results from
[52] that was explained before. As discussed earier and as
shown in [52], the optimum τ is a pure state. Hence, we
obtain (22). Finally, the last step in (23) follows since for
pure state ~β.~β = 1.

After doing the matrix products and using some linear
algebra involving linearity of trace, and the facts that

Tr(σi) = 0, σ2
i = I , and for i 6= j, σiσj = −σjσi, one

obtains

MΦ = sup
{~α: ~α.~α≤1}, {~β: ~β.~β=1}

1

2

(
1 + (~λ ∗ ~α).~β

)
.

It follows from the Cauchy-Schwartz inequality that the
supremum is obtained when ~α = ~β and |βi| = 1 for
i = i∗ = arg max |λi|. Using the definition of λi, it follows
that i∗ = arg max |1− 2

∑
j 6=i pj |.

�

The notion of Pauli-ordered unital qubit queue-channels
is directly connected to the binary i.i.d. classical channels
induced by the Pauli matrices. This gives a physical inter-
pretation of the conditions under which the statement in
Theorem 5 holds true. However, a result like Theorem 5,
holds for a broader class of unital qubit channels, which
can be characterized without using any reference to their
Pauli decompositions.

Definition 4. Let {Φw} be the class of i.i.d. unital qubit
channels corresponding to the unital qubit queue-channels.
We call the queue-channel to have a waiting-invariant norm
maximizer if ⋂

w≥0

RΦw 6= ∅.

This class of queue-channels includes the class of Pauli-
ordered queue-channels since it follows directly from
Lemma 6 that there exists a Pauli state σ̂ such that
(I + σ̂)/2 ∈

⋂
w≥0RΦw .

Encoding and decoding: Let ρ̄ be a state in
⋂
w≥0RΦw

and τ̄Wi
be a state in ΓΦWi

,ρ̄. We pick a capacity achieving
code for the queue-channel BSC (MΦWi

) and generate
classical codes accordingly. Then, we map {0, 1} to ρ̄
and I − ρ̄ and decode the output states using the POVM
{I − τ̄Wi , τ̄Wi}. Clearly, the encoder does not depend on
individual Wis, but the decoder may. In that sense also, this
strategy is a generalization of the strategy used for Pauli-
ordered channels.

Theorem 7. The above product encoding and product
decoding strategy achieves the capacity upper-bound in
Theorem 2 for unital qubit queue-channels with a waiting-
invariant norm maximizer.

Proof. It is enough to prove that the above encoding and
decoding strategy converts a unital qubit queue-channel with
waiting-invariant norm maximizer into a binary symmetric
queue-channel {BSC(MΦWi

)}. The rest follows from The-
orem 8 in [1].

The crossover probability for state i under this induced
channel is given by

Tr
(
ΦWi

(ρ̄) τWi

)
= Tr

(
ΦWi

(ρ) τ
)
,

for ρ ∈ RΦWi
and τ ∈ ΓΦWi

,ρ. Hence, this quantity is equal
to MΦWi

. �
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Clearly, Theorem 7 is more general than Theorem 5 as
it is applicable to a broader class of unital qubit queue-
channels. However, Lemma 6, which is an intermediate re-
sult for Theorem 5, gives a simple closed form encoder and
decoder in terms of Pauli matrices. This is of independent
interest as it applies to any i.i.d. unital qubit channel as well.
Also, we did not come across any practical scenario which
may lead to unital queue-channels that are not Pauli-ordered.

IV. QUBIT GENERALIZED AMPLITUDE DAMPING (GAD)
QUEUE-CHANNELS
A. I.I.D GAD

The qubit generalized amplitude damping (GAD) channel
Ap,n : L(Ha) 7→ L(Hb) is a two parameter family of
channels where the parameters p and n are between zero
and one. The channel has a qubit input and qubit output—
da = db = 2— and its superoperator has the form,

Ap,n(ρ) =

3∑
i=0

KiρK
†
i , (24)

where,

K0 =
√

1− n(|0〉〈0|+
√

1− p|1〉〈1|),K3 =
√
pn|1〉〈0|,

K1 =
√
p(1− n)|0〉〈1|,K2 =

√
n(
√

1− p|0〉〈0|+ |1〉〈1|)
(25)

are Kraus operators. The GAD (24) channel can also be
expressed as

Ap,n = (1− n)Ap,0 + nAp,1. (26)

The above representation provides the following insightful
interpretation. The parameter n represents the mixing of
Ap,0 with Ap,1, where each channel Ap,i (i = 0 or 1) is an
amplitude damping channel that favours the state [i] (here
we use the notation [ψ] for |ψ〉〈ψ|) by keeping it fixed
and maps the orthogonal state [1 − i] to [i] with damping
probability p. When n = 1/2, Ap,n is unital and we get
equal mixing of both Ap,0 and Ap,1. This equal mixing
represents noise where each state [i] (i = 0, 1) is mapped
to itself with probability p/2 and to [1− i] with probability
1 − p/2; in other words, this n = 1/2 noise treats both
[0] and [1] identically. However, when n is not half, the
action of Ap,n on [0] is different from its action on [1]. In
particular, [0] is mapped to itself with probability 1 − pn
and to [1] with probability pn, and [1] is mapped to itself
with probability 1 − p(1 − n) and to [0] with probability
p(1− n).

An input density operator ρ(r) of the form (3) is mapped
by Ap,n to an output density operator with Bloch vector,

r′ = (
√

1− px,
√

1− py, (1− p)z + p(1− 2n)). (27)

The GADC is unital at n = 1/2; that is, Ap, 12 (I) = I . The
GADC is entanglement breaking [14], [32], [54] when

2(
√

2− 1) ≤ p ≤ 1 and
1

2
(1− l(p)) ≤ n ≤ 1

2
(1 + l(p)),

(28)

where l(p) =
√

p2+4p−4
p2 . The Holevo capacity of unital

qubit channels and entanglement breaking channels is ad-
ditive; as a result, when n = 1/2 or when the values of
parameters p and n satisfy (28), the Holevo information
of the generalized amplitude damping channel,χ(1)(Ap,n) ,
equals the classical capacity of the channel, χ(Ap,n). For
other values of p and n, the classical capacity of the GADC
is not known because for these parameter values, the Holevo
information of the channel is not known to be additive or
non-additive. The actual value of the Holevo information
can be computed numerically. Next, we briefly discuss this
numerical calculation for completeness.

B. HOLEVO INFORMATION
Let [α+] and [α−] be projectors on states with Bloch

vector

r+ = (
√

1− z2, 0, z), and r− = (−
√

1− z2, 0, z),
(29)

respectively; here −1 ≤ z ≤ 1. Notice, [α+] and [α−] are
not orthogonal, except when z = 0. It has been shown [33]
that the Holevo information, χ(1)(Ap,n)

max
{−1≤z≤1}

S
(
Ap,n(σ)

)
−[S

(
Ap,n([α+])

)
+S
(
Ap,n([α−])

)
]/2,

(30)
where σ = ([α+] + [α−])/2. In the above equation, the
optimizing z has the value

z∗ =
u− p(1− 2n)

1− p
, (31)

where u comes from solving,(
pu−p2(1−2n)−p(1−p)(1−2n)

)
f ′(r∗) = −r∗(1−γ)f ′(u),

(32)
with

f(x) := (1 + x) log2(1 + x) + (1− x) log2(1− x), (33)

f ′(x) = log2

(1 + x

1− x

)
, and (34)

r∗ :=

√
1− p−

(
u− p(1− 2n)

)2
1− p

+ u2. (35)

Using the value of z∗ in (31) gives,

χ(1)(Ap,n) =
1

2

(
f(r∗)− log2(1− u2)− uf ′(u)

)
. (36)

Solving (28) for n ≤ 1/2 gives a range,

p∗ ≤ p ≤ 1, (37)

where the GAD channel in entanglement breaking. Here the
value,

p∗ = max
(

2(
√

2− 1),

√
1 + 4n(1− n)− 1

2n(1− n)

)
. (38)

As indicated earlier, entanglement breaking channels have
additive Holevo capacity. Thus, when p satisfies (37), the
GAD channel has additive Holevo capacity. While the
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Holevo information χ(1)(An,p) gives the product state clas-
sical channel capacity, it doesn’t give an explicit encoding
and decoding that achieves this capacity. In what follows, we
construct explicit encoding and decodings—in other words,
we construct induced classical channels, and compare the
capacity of these channels to the product state classical
capacity χ(1)(An,p). For n = 1/2, we find the optimal
encoding and decoding which achieves χ(1)(A1/2,p) for all
0 ≤ p ≤ 1.

C. INDUCED CHANNELS
To obtain an induced channel for Ap,n : L(Ha) 7→ L(Hb)

one must choose an encoding and decoding. To choose
an encoding, E : X 7→ L(Ha), one fixes a set of input
states {ρ(x)}. To choose a decoding, D : L(Hb) 7→ Y ,
one fixes an output measurement POVM {Λ(y)}. Together
this encoding-decoding results in an induced channel with
conditional probability p(y|x) = Tr(ρ(x)Λ(y)). A priori,
there is no clear choice for these input states and output
measurement. However, the generalized qubit amplitude
damping channel satisfies an equation

Ap,n
(
σza ρ (σza)†

)
= σzb Ap,n(ρ) (σzb )†, (39)

where the subscripts a and b on the Pauli operator σz signify
the space on which the operator acts. The above equation
implies that the generalized amplitude damping channel
has a rotational symmetry around the z-axis. Using this
rotational symmetry and the fact that Ap,n is a qubit input-
output channel one may choose an encoding E(x) = ρ(x)
where x = 0 or 1 and {ρ(x)} are two orthogonal input states
that remain unchanged under the σza symmetry operations;
that is, ρ(x) = [x]. To decode, one may apply a protocol
for correctly identifying a state chosen uniformly from a set
of two known states Ap,n([0]) and Ap,n([1]) with highest
probability. This protocol comes from the theory of quantum
state discrimination [60]. It uses a POVM with two elements
{E, Ib − E}, where E is a projector onto the space of
positive eigenvalues of Ap,n([0])−Ap,n([1]). An unknown
state, either Ap,n([0]) or Ap,n([1]) with equal probability,
is measured using the POVM. If the outcome corresponding
to E occurs, the unknown state is guessed to be Ap,n([0]);
otherwise, the guess is Ap,n([1]). In the present case, a
simple calculation shows that E = [0].

Encoding E(x) = [x], (x = 0, 1) and decoding based on
the POVM {[0], [1]}, coming from the state distrimination
protocol outlined above, results in an induced channel N1.
This channel is a BAC that flips x = 0 to y = 1 with
probability pn but flips x = 1 to y = 0 with probability
p(1 − n). Its capacity C(N1) has a simple closed form
expression (2). For C(N1), this expression is unchanged
when n is replaced with 1 − n, thus we may restrict our
attention to 0 ≤ n ≤ 1/2.

At n = 1/2, Ap,n is unital. In Sec. III-B, we defined
an induced channel which achieves the Holevo information
of any qubit unital channel. On the basis of that induced
channel, we may construct an induced channel for values of

n different from 1/2. In this construction the encoding map
E(0) = ρ∗, and E(1) = I − ρ∗ (ρ∗ defined below eq. (18));
the decoding map D measures the output of Ap,n using the
POVM {τ∗, I−τ∗} (τ∗ defined in eq. (19)) to return 0 when
the measurement outcome corresponds to POVM element
τ∗, otherwise return 1. This encoding-decoding results in
the induced channel N2 which is a BAC. This BAC flips
input 0 to output 1 with probability (1 − |r′|)/2, |r′|2 =
4n(1−n)(1−p)+(1−2n)2 and flips input 1 to output 0 with
probability p(1−2n)2+(1−|r′|)/2. The channel’s capacity,
C(N2) (computed using expression (2)), remains invariant
when n is replaced with 1 − n. This invariance permits us
to restrict ourselves to the parameter range 0 ≤ n ≤ 1/2.

Next, we consider a third induced channel. This channel
is based on the computation of the Holevo information
of Ap,n in Sec. IV-B. Here, encoding is performed using
possibly non-orthogonal states and decoding is performed
using a measurement designed to distinguish these encoded
states at the channel output with maximum probability.
The encoding maps x = 0 and x = 1 to [α+] and
[α−] (defined via eq. (29)), respectively. The decoding is
performed using a POVM {Λ(y)} where Λ(y) at y = 0
is the projector onto the space of positive eigenvalues of
Ap,n([α+]) − Ap,n([α−]). This projector is simply [x+],
where |x+〉 := (|0〉 + |1〉)/

√
2. This encoding-decoding

scheme results in a one-parameter family of induced chan-
nels N3(z). This channel is a BSC with flip probability
q(z) = (1 − a(z)

√
1− p)/2, where a(z) =

√
1− z2.

Interestingly, this family of induced channels, coming from
the two parameter GAD channel Ap,n, does not depend on
the parameter n. The Shannon capacity of N3(z) is simply

C(N3(z)) = 1− h
(
q(z)

)
. (40)

For a fixed p, one can easily show that C(N3(z)) is
maximum when z = 0; thus, N3 = N3(0) has the
largest Shannon capacity among the one-parameter family
of induced channels N3(z). This induced channel N3 is
simply a BSC with flip probability q = (1−

√
1− p)/2.

We compare the capacities of the three induced channels
N1, N2, and N3. As mentioned earlier, we can restrict our-
selves to 0 ≤ n ≤ 1/2. A straightforward calculation shows
that at n = 0,N1 andN2 are equivalent up to permutation of
the inputs and output and thus C(N1) = C(N2). In general,
0 ≤ n ≤ 1/2, here simple numerics can be used to show
that

C(N1) ≤ C(N2) ≤ C(N3). (41)

All inequalities above are numerically found to be strict
when 0 < n < 1/2 and 0 < p < 1. At n = 1/2, N2 and N3

become identical, they are both BSC with flip probability
q = (1 −

√
1− p)/2. This flip probability can be easily

shown to equal NAp,1/2
(defined in eq. (18)). Using this

equality, or the fact that N2 = N3 is the induced channel
which achieves the Holevo information when Ap,n is unital
at n = 1/2, we conclude C(N3) = χ(1)(Ap,1/2).
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For values of n < 1/2 we compare the capacity of the
N3, the induced channel with the largest capacity among
N1, N2, and N3 with χ(1)(Ap,n). We numerically find
that for values of n < 1/2 and 0 < p < 1, C(N3) <
χ(1)(Ap,n) (see Fig. 2).

FIGURE 2: The difference ∆ = χ(1)(Ap,n) − C(N3) as
a function of p for various values of the parameter n. For
each n, the colored triangle indicates the value of p∗ above
which χ(1)(Ap,n) is additive.

In what follows, we focus on the n = 1/2 GADC Ap,1/2.
As discussed below (26), this channel describes noise in
which both computational basis states |0〉 and |1〉 are treated
on equal footing. When information about which of these
computational basis states decays faster than the other, the
GADC with n 6= 1/2 is an apt noise model. However when
such information is unavailable, or when it is known that
both computational basis states decay but the maximally
mixed state doesn’t, one uses the n = 1/2 GADC. One
simple example of such noise is the qubit thermal chan-
nel (analogous to the bosonic thermal channel [29], [30],
[32]) in which the channel environment is represented by the
maximally mixed state. Another simple example is the effect
of dissipation to an environment at a finite temperature [12].

D. CAPACITY OF THE SYMMETRIC GAD
QUEUE-CHANNEL

For a symmetric GADC, the parameter p captures the
level of damping experienced by a qubit while interacting
with an environment. In the absence of buffer decoherence,
p depends on the time, Tf , spent in the environment of
the channel and the physical characteristics of the channel.
Similarly, the level of damping experienced in the buffer
depends on the waiting time in the buffer W and the phys-
ical parameters of the buffer. Hence, the effective GADC
parameter experienced by a qubit is a function g(Tf ,W )
of its waiting time and its flight time, where the form of
g(·) depends on the physical parameters of the channel and

Qubit preparation/transmission rate
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FIGURE 3: Capacity (effective) vs qubit preparation rate
(λ) for different buffer decoherence.

the buffer. As the flight time is almost deterministic, for
simplicity of notations we denote this function by peff(W ).

The capacity of a symmetric GAD queue-channel can be
expressed as follows.

Theorem 8. The capacity of a symmetric GAD queue-
channel is

λ Eπ

[
1− h

(
1−

√
1− peff(W )

2

)]
.

Proof. As shown in Sec. IV-C, the optimal encoding and
the optimal POVM for symmetric GAD channels do not
change with the channel parameter p. Thus, the symmet-
ric GAD queue-channel allows a time-invariant encoding.
Hence, Theorem 7 for unital qubit queue-channel with time
invariant encoding is applicable to symmetric GAD queue-
channels with parameter peff(W ).

The rest follows by noting that the induced classical
channel of a symmetric GAD channel with parameter p
is a binary symmetric channel with flip probability (1 −√

1− p)/2. �

E. USEFUL DESIGN INSIGHTS
As the motivation for this work is the practical issues

faced by current quantum networks, we discuss few impor-
tant practical insights obtained from the analytical results
for symmetric GAD queue-channels.

In Fig. 3, the capacity per unit time (in contrast to per
channel use) of an idealized i.i.d symmetric GADC with p =
0 is plotted (no buffering) against the qubit preparation rate.
This has the misleading implication that the higher the qubit
preparation rate, the higher is the capacity. However, it is
well known that in any practical system, especially at a high
qubit preparation rate, there will be significant buffering at
the transmitter, which will result in additional decoherence
of qubits, of significant magnitude, thus, resulting in the loss
of capacity. This is a fundamental concept in communication
network design.

To illustrate this, we use a simple queue-channel model
involving the well known M/M/1 queue [61] that can
analytically capture the loss in capacity at a high qubit
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preparation rate due to buffering. In Fig. 3, two such plots
are shown for symmetric GADC with M/M/1 buffering and
exponential decoherence

peff(W ) = 1− exp(−κ W ), (42)

with mean decoherence time κ−1. We obtain these plots
using the capacity expression in Theorem 2.

Clearly, in Fig. 3, the optimal λ is not close to µ (= 1).
Moreover, for λ close µ, the capacity is almost zero. This is
because very high λ leads to large waiting times for qubits
and thus results in significant decoherence. Furthermore,
the optimal λ depends on κ and hence, on the physical
parameters of the buffer. The idealized i.i.d. setting fails to
capture this crucial dependence.

In general, obtaining a closed form expression for the best
λ is not possible. However, for any buffering discipline, the
best λ can be obtained by solving

arg max
λ∈(0,µ)

λ Eπ

[
1− h

(
1−

√
1− peff(W )

2

)]
.

Though it may appear that the capacity expression increases
with λ, it is not so since π(·) depends on λ.

F. OPTIMAL QUEUING DISTRIBUTIONS
The effective capacity in the presence of buffer de-

coherence is a function of the stationary distribution of
waiting times. Thus, in turn, it is heavily influenced by
the time between preparation of two qubits and the time
to process (transmit and receive) a qubit. A quantitative
understanding of this dependence is useful for designing
quantum communication systems.

In this section, we take a short stride in that direction
by characterizing the optimal distributions in two queuing
settings of general interest when the channel and buffer
decoherence follows the exponential model in Eq. 42. The
exponential decoherence model is physically the most well
motivated model for capturing decoherence in terms of the
interaction time with the environment.

First, we obtain a simpler expression of the capacity result
in Theorem 8 for the exponential decoherence model.

Corollary 9. The effective capacity in the presence of buffer
decoherence is given by

λ

ln 2

∞∑
k=1

1

2k (2k − 1)
EW∼π [exp (−κ k W )] ,

when peff(W ) = 1 − exp(−κ W ) for some κ > 0.

Proof. For the exponential decoherence model, the capacity
expression in Theorem 8 becomes

λ Eπ

[
1 − h

(
1− exp

(
− 1

2κ W
)

2

)]
.

The rest follows using the series expansion of log(1+x) for
|x| < 1 and algebraic manipulations. Note that the swapping

of the expectation and the infinite sum is justified due to the
non-negativity of each term in the summation. �

We remark that the expression in Cor. 9 is valid for
any stable queue, irrespective of the queuing discipline and
distributions.

In the queuing literature, M/G/1 and G/M/1 are two
popular classes of queuing models. In our setting, M/G/1 is
equivalent to exponentially distributed (memoryless) prepa-
ration times and generally distributed processing or service
times of qubits. G/M/1 is equivalent to generally distributed
preparation times and exponentially distributed processing
or service times. As a first step towards optimizing queuing
distributions, one may ask: what are the best distribution for
processing times and preparation times in M/G/1 and G/M/1
queues, respectively? The following theorems answer this
question.

Theorem 10. Among all quantum communication systems
with M/G/1 buffering, symmetric GAD channel, and expo-
nential decoherence, the system with deterministic process-
ing or service time has the maximum effective capacity for
any λ and µ (> λ).

Proof. Suppose there exists a service distribution for which
EW∼π [exp(−sW )] is more than any other service distri-
bution with the same mean for any s > 0. Then, from the
capacity expression in Corollary 9, it is clear that under that
particular distribution, each term in the series will be greater
than the corresponding term for any other distribution.
Hence, that distribution will achieve the maximum capacity
among the class of all service distributions with the same
mean.

Thus, to complete this proof, we need only to show
that for exponentially distributed preparation times, the
deterministic service time maximizes EW∼π [exp(−sW )]
for any s > 0. This follows directly from the proof of
Theorem 4 in [1]. �

Theorem 11. Among all quantum communication systems
with G/M/1 buffering, symmetric GAD channel, and expo-
nential decoherence, the system with deterministic prepara-
tion/arrival time has the maximum effective capacity for any
λ and µ (> λ).

Proof. Using the argument in the proof of Theorem 10, it is
sufficient to show that for exponentially distributed service
times, the deterministic preparation/arrival time maximizes
EW∼π [exp(−sW )] for any s > 0.

The following two lemmas complete the proof of this
theorem.

Lemma 12. Among all arrival/preparation distributions
with mean λ−1 (>µ−1), EW∼π [exp(−sW )] for any s > 0
is maximized by that arrival/preparation distribution for
which the solution to the G/M/1 fixed point equation

σ = EA [exp (−(µ− µ σ) A)]

is the smallest.
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Lemma 13. Among all arrival/preparation distributions
with mean λ−1 (>µ−1), the solution to the G/M/1 fixed point
equation

σ = EA [exp (−(µ− µ σ) A)]

is the smallest for the deterministic arrival/preparation time
λ−1.

�

Proof of Lemma 12. The waiting time in a G/M/1 queue is
exponentially distributed with mean 1

µ(1−σ) , where σ is the
solution to the fixed point equation

σ = EA [exp (−(µ− µ σ) A)] .

For exponentially distributed W , E [exp(−sW )] decreases
with E[W ]. Hence, for a given µ, E [exp(−sW )] increases
as σ decreases, which, in turn, implies Lemma 12. �

Proof of Lemma 13 is similar to the proof of Proposition 2
in [40].

V. CONCLUSION AND OUTLOOK
Understanding the classical capacity of a quantum chan-

nel and the means by which it can be achieved are funda-
mental issues in quantum information theory. We derived an
explicit capacity-achieving non-entangled projective mea-
surement strategy for i.i.d unital qubit channel. This implies
that the classical capacity of a unital qubit channel can be
achieved without entanglement using essentially classical
resources.

Building on this insight, we showed that non-entangled
projective measurements achieve the classical capacity of a
broad class of unital qubit queue-channels that includes the
well known unital qubit queue-channels like Pauli channels
and symmetric generalized amplitude damping channels. In
the special case of the symmetric generalized amplitude
damping channel, we show that our result on unital qubit
channel allows one to pick the capacity achieving product
encoding-decoding strategy (induced channel) out of a few
natural yet sub-optimal choices.

By taking the symmetric generalized amplitude damping
channel as an example, we demonstrate that ignoring the
effect of decoherence in the buffer can lead to an erroneous
design choice. On the other hand, a queue-channel based
analysis, which offers a succinct model for decoherence
in the buffer, gives a procedure for finding the optimal
operating point.

For operating a practical quantum communication system
close to its capacity, efficient error correcting codes are
essential. Our results from Sec. III imply that any capacity
achieving classical error correcting code for binary sym-
metric channels, e.g., polar code, achieves the classical
capacity of i.i.d. unital qubit channels. They also imply
that a capacity achieving code for classical binary sym-
metric queue-channels achieves the classical capacity of
unital qubit queue-channels when used in conjunction with
the proposed product (classical to quantum) encoder and

decoder. However, though the existence of a capacity achiev-
ing code for classical binary symmetric queue-channels is
known [1], [40], the question of explicitly and efficiently
finding such a code remains open.

Another important question follows from our work: can
we construct induced classical channels for non-unital quan-
tum channels with additive Holevo information? Obtaining
such capacity achieving constructions remains an interesting
open problem. To solve such a problem, one may follow the
method in this work. To use this method, one starts with
a quantum channel with additive Holevo information and
then constructs an explicit induced channel which achieves
this Holevo information. As demonstrated in Sec. IV-A
using the GADC, induced channels of this type can be
non-trivial to construct. For instance, in the case of non-
unital GADC channels with additive Holevo information,
finding such induced channels remains an open problem. In
addition, finding the full parameter region where the GADC
has additive Holevo information also remains open.

Insights obtained from pursuing such open problems
have the potential to not only enrich the i.i.d setting with
point-to-point quantum channels but also provide a path to
study non-i.i.d queue channel settings that arise in quantum
networks. Another challenging avenue for future work is to
characterise the queue channel capacity when the underlying
noise model is not additive, as could be the case for certain
parameter ranges of the GADC. This may require a fun-
damentally new approach to study quantum communication
networks.
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