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ABSTRACT
The drug design process currently requires considerable time and resources to develop each new compound
that enters the market. This work develops an application of hybrid quantum generative models based on
the integration of parametrized quantum circuits into known molecular generative adversarial networks,
and proposes quantum cycle architectures that improve model performance and stability during training.
Through extensive experimentation on benchmark drug design datasets, QM9 and PC9, the introduced
models are shown to outperform previously achieved scores. Most prominently, the new scores indicate an
increase of up to 30% in the quantitative estimation of druglikeness. The new hybrid quantum machine
learning algorithms, as well as the achieved scores of pharmacokinetic properties, contribute to the
development of fast and accurate drug discovery processes.

INDEX TERMS Quantum machine learning, drug design, hybrid quantum neural network, quantum
generative adversarial network, variational quantum circuit

I. INTRODUCTION

In the current pharmaceutical landscape, the drug design
process is a prolonged and costly endeavor. It typically
spans up to 15 years [1] from target identification to clinical
application, incurring expenses of approximately $1 billion
for each new drug. Machine learning has shown successful
uses through the different stages of drug development, from
the search for specific protein inhibitors [2] to the evaluation
of pharmacokinetic properties and adverse effects.

Generative Adversarial Networks (GANs) [3] have gained
prominence in molecular design. Their architecture is adept
at generating a vast array of potential drug candidates from
extensive molecular spaces, thereby facilitating more effi-
cient preliminary screenings. GAN models, especially when
compared to recurrent neural networks [4] and variational
autoencoders [5], have demonstrated superiority in gener-
ating SMILES [6] representations of compounds. A novel
quantum approach introduced in Ref. [7] used the Deep Vari-
ational Autoencoder model trained to construct molecules as
SMILES strings. The advancements in molecule representa-
tions led to the use of graph representations of compounds.
The use of graphs instead of SMILES, which are invariant to

the permutations of atom orders, has allowed GANs, partic-
ularly MolGAN [8], to become the state-of-the-art approach
in generative chemistry.

Quantum-enhanced GANs, with their inherent probabilis-
tic nature, offer a moderate advantage over their classi-
cal counterparts by encompassing a broader and more di-
verse chemical space [9]. However, in the current Noisy
Intermediate-Scale Quantum (NISQ) era, the feasibility of
purely quantum algorithms is limited. Here, hybrid algo-
rithms may find a reasonable equilibrium between the high
expressivity of modern quantum simulators and the stability
of classical approaches.

The study of hybrid quantum neural networks (HQNNs)
represents a convergence of classical deep learning ar-
chitectures with quantum machine learning (QML) algo-
rithms [10]–[14], specifically through parameterized quan-
tum circuits [15]. This hybrid approach harnesses the
strengths of classical and quantum computing, introducing
a system capable of efficiently processing large datasets
compared to classical deep learning architectures alone [16],
[17]. HQNNs have exhibited promising applications across
various industrial domains, including healthcare [18]–[20],
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FIGURE 1: Histograms of distribution of values of QED, SA, and LogP scores in QM9 and PC9 datasets. The mean QED and
LogP scores for molecules in the PC9 dataset are greater than those in QM9, while the mean score for SA is lower.

chemistry [21], [22], routing [23] and aerospace [24], also in
image classification [25], [26]. While HQNNs have demon-
strated efficacy in these fields, further research is essential to
explore their potential in drug design.

This article introduces the Hybrid Quantum Cycle
MolGAN for generating graph representations of small
molecules. By incorporating a Cycle Component into the
Hybrid Quantum MolGAN (HQ-MolGAN), where both the
Generator and the Cycle Component are represented using an
HQNN [10], [27], we have been able to stabilize the training
process for molecular samples and improve key metrics.
This includes increases of up to 30% in the Quantitative
Estimate of Druglikeness (QED score) [28], a composite
metric that evaluates a molecule’s overall drug-likeness based
on its chemical structure. The QED score is instrumental
in assessing the potential of a compound to qualify as an
effective drug, providing a quantitative measure that can
guide early drug discovery efforts. Additionally, we have
observed improvements in the Synthesis Accessibility score
(SA) [29] and the logP score [30]. The SA score quantifies
the complexity of synthesizing a given molecular compound,
offering insights into the practicality of its production at
scale. A lower SA score indicates easier synthesis, which
is favorable for drug development. The LogP score mea-
sures a compound’s solubility and permeability, indicating
its balance between hydrophilicity (water solubility) and
lipophilicity (fat solubility). This balance is crucial for a
drug’s absorption, distribution, metabolism, and excretion
properties, impacting its effectiveness and safety. Proposed
hybrid models have shown an advantage over nearest com-
petitors among quantum models in terms of pharmacokinetic
properties, including QED score, SA score, and logP score.

This work contributes insights into the potential of QML
for small molecule generation, emphasizing the benefits of
hybrid quantum-classical approaches in drug design. The
results underscore the significance of employing quantum-
enhanced models to achieve improved performance across
essential molecular optimization metrics.

II. PRELIMINARIES
In this study, we introduce several models for small molecule
generation. Firstly, we present a refined classical MolGAN
with a halved parameter count, drawing inspiration from the
state-of-the-art classical MolGAN architecture [8]. Secondly,
in Sec. II-B, we present an HQ-MolGAN, fusing classical
and quantum computing approaches for enhanced capabili-
ties. Notably, we propose the novel classical Cycle MolGAN,
incorporating a multi-parameter reward function based on
reinforcement learning principles, inspired by the state-of-
the-art Cycle MolGAN [31]. Additionally, in Sec. II-C, we
introduce the innovative Hybrid Quantum Cycle MolGAN
(HQ-Cycle-MolGAN). Through rigorous experimentation on
the QM9 and PC9 datasets, described in Sec. II-A, our results
demonstrate that models trained on PC9 exhibit higher LogP
scores than their QM9 counterparts. Furthermore, the hybrid
quantum models showcase better performance, achieving the
highest QED, SA, and LogP metrics scores. Remarkably, our
hybrid quantum model outperforms a similar QGAN-HG MR
hybrid model from Ref. [9] and QuMolGAN from Ref. [32],
emphasizing the efficacy of our proposed approaches in small
molecule generation. We summarize our conclusions and
outline future research directions in Sec. IV.

A. DATASET

This study employed two datasets for model training: QM9
and PC9. The QM9 dataset [33], [34], a well-established
benchmark in small molecule drug design since 2012, com-
prises approximately 134, 000 neutral molecules, each with
no more than nine atoms (C,O,N, F ) apart from hydrogen.
Its comprehensive and diverse chemical space makes it par-
ticularly relevant for this field.

The second dataset, PC9, is a subset of the extensive Pub-
Chem database, containing around 99, 000 molecules [35].
A notable distinction between QM9 and PC9 is that the latter
includes not only neutral molecules but also those with a mul-
tiplicity greater than one. While PC9 was initially proposed
as a replacement for the QM9 dataset, its practical usage
alongside QM9 has demonstrated benefits in generating a
more diverse set of molecular structures.
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FIGURE 2: (a) Structure of HQ-Cycle-MolGAN: Generator (G), Discriminator (D), Cycle Component (C). The part
highlighted in green is the same as HQ-MolGAN. (b) Illustration of the work of the Cycle Components. Suppose Z is a space
of normally distributed noise vectors, and Y is a chemical space of datasets. The Generator maps Z to some chemical space
Y ′, and after the Cycle Component restores vector G(Z) back to noise. The accuracy of these restorations is then optimized.
(c) Quantum Depth-Infused Neural Network Layer used as the HQ-Cycle component.
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FIGURE 3: Chart of (a) QED, (b) LogP, and (c) SA scores during the training of classical MolGAN and Hybrid MolGAN. It
can be seen that while MolGAN limits its scores to a narrow beam of values even after 50, 000 iterations, Hybrid MolGAN
presents a wider range of compounds, covering greater scores of key metrics.

Fig. 1 shows that the mean QED and LogP scores for
molecules in the PC9 dataset are higher than those in QM9,
while the mean score for Synthesis Accessibility (SA) is
lower. Theoretically, this suggests that models trained on
the PC9 dataset might be inclined to generate samples with
higher values in these two key metrics than similar models
trained on QM9. However, as detailed in Sec. III, this is not
always the case.

It is important to note that during training, normalized val-
ues of logP, NP, and SA scores were evaluated and optimized.

B. HQ-MOLGAN
In this section, we introduce the HQ-MolGAN, which is
based on the classical MolGAN architecture [8]. As depicted
in the shaded green rectangle of Fig. 2(a), the architec-
ture of HQ-MolGAN is comprised of three primary com-
ponents: the Generator (G), the Discriminator (D), and the
Reward component (R). This model operates on the princi-
ples of the Wasserstein Generative Adversarial Network [36],
wherein the Generator endeavors to synthesize molecular
graph representations indistinguishable from authentic ones,
thereby “deceiving” the Discriminator. The training regimen
of HQ-MolGAN encapsulates a min-max optimization game,
wherein the Generator and Discriminator engage in a con-
tinuous adaptive process to refine the generative quality of
molecular representations:

min
G

max
D∈D

Ey∼Pdata [D(y)]− Ez∼Pz [D(G(z))]−

−λEŷ∼Pŷ

[(
∥∇ŷD(ŷ)∥2 − 1

)2]︸ ︷︷ ︸
gradient penalty

.

The Reward Component in our HQ-MolGAN architecture
functions as a sophisticated Reinforcement Learning objec-
tive, tasked with evaluating the Generator’s output based on
several chemical property metrics. This evaluation extends
beyond the conventional metrics of QED, LogP, and SA

scores. It incorporates a comprehensive assessment of “va-
lidity,” quantified as the ratio of valid molecular samples
to the total number of generated samples. Furthermore, it
considers “novelty,” defined by the proportion of generated
valid samples not present in the training dataset. Additionally,
the Reward Component assesses “diversity,” a measure of
the variance in the chemical structures of the generated
molecules, and the “Natural Product likeness” (NP) score,
as delineated by Ref. [37]. These multifaceted evaluation cri-
teria enable a more nuanced and thorough assessment of the
Generator’s performance, aligning the generated molecules
more closely with desired chemical characteristics.

In the architecture of HQ-MolGAN, a pivotal role is played
by the Variational Quantum Circuit (VQC), which is inte-
grated as the initial layer in MolGAN’s generator. The VQC
operates by encoding a noise vector into N qubits. Subse-
quent to the application of rotation and entanglement gates,
the VQC outputs a probability distribution vector, denoted
as [p(0), ..., p(2N − 1)], where each element represents the
probability of a corresponding quantum state. This vector,
with a dimensionality of 2N , undergoes a truncation process
where only the first 2N−Nancilla elements are retained. The
truncated vector is then fed into a classical fully-connected
layers, which constitutes the remaining component of HQ-
MolGAN’s generator.

In our experimental analysis, two distinct configurations of
the VQC were evaluated: the Vanilla Variational Repetitive
Quantum Layer (VVRQ) [38] and the Exponential Fourier
Quantum Layer (EFQ) [39]. These configurations offer dif-
ferent approaches to quantum state transformation, thus pro-
viding a comparative understanding of their efficacy in the
context of molecule generation.

The operational mechanism of the VVRQ layer within our
HQ-MolGAN framework (Fig. 2(a)) is as follows: encoding
the noise vector directly onto the qubits in a single step
using angle embedding [40] (green rectangles in Fig. 2(a)).
Following this initialization, the VVRQ layer implements
several variational layers which consist of a sequence of Rot
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(rotation) gates (blue rectangles in Fig. 2(a))

Rot(θ1, θ2, θ3) = Ry(θ1) ·Rz(θ2) ·Ry(θ3)

Ry(θ) =

(
cos( θ2 ) − sin( θ2 )

sin( θ2 ) cos( θ2 )

)

Rz(θ) =

(
exp(− θ

2 ) 0
0 exp( θ2 )

)
and controlled NOT (CNOT) gates.

CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


Originally this approach was proposed in Ref. [41] for

image generation, but it can be applied to any generative task.
The CNOT gates are applied between sequentially adjacent
qubits, i.e., between qubit i and qubit i + 1, thereby facil-
itating quantum entanglement and information propagation
across the qubit array.

This process is iteratively repeated for three variational
layers, ensuring a thorough and complex manipulation of
the quantum state. The final step in the VVRQ process in-
volves measuring the probability distribution of the quantum
states of the qubits. These measurements yield a probability
vector that encapsulates the resultant quantum state post-
entanglement and rotation, reflecting the encoded informa-
tion from the initial noise vector.

In the EFQ layer, the data encoding process is distinctly
characterized by a dual-phase approach. Initially, the input
data is encoded onto the qubits using angle embedding.
This is followed by several variational layers and a second
encoding phase, in which the amplitude of the rotational
gates is systematically increased to double its initial value.

This dual encoding scheme, particularly with the amplified
rotational amplitude in the second phase, is designed to
enhance the expressive power of the quantum circuit [42].
By manipulating the amplitude of rotations in this manner,
the EFQ layer could potentially induce a more diverse and
complex quantum state space.

C. HQ-CYCLE-MOLGAN
The Cycle-MolGAN model introduces an innovative “Cycle
component” (C) (Fig. 2(b)) to the established MolGAN ar-
chitecture. This component is ingeniously designed to reverse
the molecule generation process. Specifically, it converts the
generated molecular samples back into their originating noise
vectors and assesses the accuracy of this reverse conversion.
This approach, as proposed by Ref. [31], has been identified
as particularly advantageous in the realm of molecular opti-
mization tasks. It contributes significantly to the stability of
the training performance and is instrumental in suppressing
the training of the non-isomorphic generator compounds
within the Hybrid-MolGAN framework, especially pertinent
in generating small molecules.

Practically implemented, the Cycle component takes the
form of a Multi-Layer Perceptron (MLP) model. This model
effectively combines the adjacency matrix and the feature
matrix of each generated molecular sample into a singular,
unified tensor. Following this integration, the Cycle compo-
nent proceeds to “mirror” the layers of the Generator, albeit
in reverse order. This mirroring process is a critical step as it
compresses the expanded dimensions of the combined tensor,
specifically batch_size × 405 from the adjacency matrix
and batch_size × 45 from the feature matrix, down to a
more manageable size of batch_size × 8. This reduction
is pivotal for effectively re-encoding the complex molecular
information back into the concise form of noise vectors.

In the development of the Hybrid Cycle component within
the Cycle-MolGAN framework, we adhere to the classical
design but with a crucial modification in the final layer.
This layer is replaced by a Quantum Depth-Infused Neural
Network Layer, as described in Ref. [43]. This quantum
depth-infused layer undertakes the task of encoding a vector
of size batch_size × 64 into 8 qubits through a series of 8
repetitive encoding layers (blue rectangles in Fig. 2 (c)).

To optimize the performance of the Generator within this
architecture, we employ a combined loss function, articulated
as follows:

L(θ) = λ · L(θ)WGAN + (1− λ) · L(θ)Cycle + γL(θ)Reward

γ, λ ∈ [0, 1].

This loss function integrates the Wasserstein GAN loss
(L(θ)WGAN), the Cycle loss (L(θ)Cycle), and the Reward loss
(L(θ)Reward). The coefficients γ and λ regulate the relative
influence of each component in the overall loss calculation.
In our experiments, we set λ to 0.5, thereby assigning equal
importance to both cycles of transformation (from noise
vector Z to generated sample Y ′, and back from Y ′ to Z),
as illustrated in Fig. 2 (b).

III. RESULTS
The models in this study were developed in Python3, uti-
lizing the PyTorch framework [44] and PennyLane [45] for
quantum computations. The simulations described further
were performed on classical simulators emulating quantum
hardware. To evaluate the chemical properties of the synthe-
sized compounds, we utilized the RDKit library. Our com-
putational experiments leveraged GPU hardware, specifically
the Tesla V100 and RTX 3060 GPUs, to facilitate efficient
processing.

For testing the potential performance on quantum hard-
ware, Qiskit [46] implementation of VQC was used on the
simulator of the IBM Brisbane device [47], [48].

For the classical MolGAN models, the generator’s archi-
tecture was scaled down by reducing the number of param-
eters in each layer by half, resulting in a total of 157, 570
parameters in the Generator. The classical models, including
both the standard MolGAN and Cycle-MolGAN, underwent
a training regime of 200, 000 iterations with a batch size of
10 samples. In contrast, the hybrid quantum models were
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FIGURE 4: (a) Samples generated by HQ-MolGAN-VVRQ trained on QM9. (b) “Highly entropy state”: HQ-MolGAN-VVRQ
generated inappropriate samples and RDKit rewarded them with an average metric of LogP ∝ 0.9. (c) Samples generated by
HQ-Cycle-MolGAN-VVRQ trained on both datasets. (d) Samples generated by MolGAN with HQ-Cycle trained on both
datasets.

subjected to a shorter training duration of 50, 000 iterations.
The validation set size was limited, containing either 100
samples when training on a single dataset or 250 samples
in cases where multiple datasets were employed. In both the
EFQ and VVRQ models, the number of ancilla qubits is equal
to 2.

The experimental investigation was conducted in four dis-
tinct stages:

• The First Stage (Sec. III-A): This phase focused on eval-
uating the performance differences between the VVRQ
and EFQ layers when integrated into the hybrid genera-

tor in HQ-MolGAN.
• The Second Stage (Sec. III-B): The objective was to

assess the impact of the classical Cycle Component on
the performance of MolGAN and HQ-MolGAN.

• The Third Stage (Sec. III-C): This stage involved an
analysis of the Hybrid-Cycle Component, including a
comparative study against the classical Cycle Compo-
nent.

• The Fourth Stage (Sec. III-D): This phase included a
setup and analysis of HQ MolGAN models performance
test after forward pass on the classical simulator of the
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IBM Brisbane quantum device.

These four stages are described in detail in the next three
subsections.

A. HQ-MOLGAN
We start the investigation into the efficacy of the Hybrid Gen-
erator within the MolGAN framework with a comparative
analysis focusing on the chemical properties of the generated
molecular samples. Specifically, this analysis evaluates the
logP and the QED scores. By contrasting the logP and QED
scores yielded by the molecules generated from each model,
we aim to quantify and elucidate the impact of the Hybrid
Generator’s integration on the model’s performance in gener-
ating chemically viable and optimally structured molecules.

Fig. 3 illustrates a notable distinction in the behavior of
the classical MolGAN and the HQ-MolGAN in terms of
their generated molecular score distributions. The classical
MolGAN model demonstrates a tendency to produce scores
that converge towards a relatively narrow range. In contrast,
the molecular samples generated by HQ-MolGAN exhibit
an oscillatory behavior in their score values. This variability
in the HQ-MolGAN’s scores can significantly influence the
model’s training dynamics, particularly due to the Reward
component which calculates the product of these metric
values.

A potential explanation for the discontinuous score trends
observed in the HQ-MolGAN could be attributed to its lim-
ited validation set size. Nevertheless, the HQ-MolGAN can
generate molecular samples with competitive scores in terms
of Drug-likeness, Synthesizability, and Solubility, as depicted
in Fig. 4(a). As shown in Table 1, the HQ-MolGAN-VVRQ
model trained on the QM9 dataset achieves a LogP score
of 0.84, the HQ-MolGAN-EFQ model trained on the PC9
dataset results in a QED score of 0.62, and the HQ-MolGAN-
EFQ model trained on both datasets attains an SA score of
0.84.

The HQ-MolGAN-VVRQ model exhibits a propensity
for generating samples with higher SA scores. In contrast,
the HQ-MolGAN-EFQ model demonstrates superior perfor-
mance in achieving greater QED and LogP scores.

Furthermore, a dataset-dependent variance in performance
is observed. Models trained on the PC9 dataset consistently
reach higher LogP scores compared to those trained on the
QM9 dataset. This trend aligns with the inherent distribution
of scores within these datasets, as illustrated in Fig. 1. How-
ever, such a correlation does not extend to the QED scores,
where no discernible pattern is evident based on the choice
of training dataset.

These findings underscore the nuanced impact of model
configuration and training dataset on the performance of
HQ-MolGAN in generating molecular samples with desired
chemical properties. They highlight the need for careful
consideration of both the model architecture and the dataset
characteristics in optimizing the performance of molecule
generation models.

During our experiments, we observed a notable limita-
tion of the Hybrid models, characterized by the generator’s
tendency to gravitate towards a "high entropy state." This
phenomenon is illustrated in Fig. 4(b). In this state, the gen-
erator predominantly produces molecular structures that are
either bare, unbound atoms or a collection of disconnected
small molecules. Intriguingly, despite their simplistic and
fragmented nature, these structures are often assigned high
scores in terms of LogP and SA by the RDKit library within
the Reward component. This paradoxical scoring poses a
challenge to the model’s reliability in generating chemically
meaningful and complex molecules.

This observation indicates a critical issue in the generator’s
mapping process. Essentially, various noise samples Z are
mapped to a limited and similar region in the chemical space
Y ′, resulting in repetitive and high-entropy molecular sam-
ples. Such a mapping significantly diminishes the generator’s
expressivity, constraining its ability to generate a diverse
range of molecular structures.

To ensure that the models generate unique and varied
molecular samples, it is imperative to establish a one-to-one
correspondence between different noise vectors and distinct
molecular structures. In other words, the model must possess
isomorphic properties to map distinct noise vectors to chem-
ically diverse molecular samples. To achieve this objective,
the integration of a Cycle component is proposed. The Cycle
component is designed to reinforce the isomorphic nature
of the model by facilitating a more diverse and accurate
mapping from noise vectors to molecular samples and vice
versa, thereby enhancing the model’s capability to generate a
wider array of unique molecular structures.

B. HQ-CYCLE-MOLGAN

Prior to assessing the effect of the Cycle component on the
training of HQ-MolGAN, it is essential to first examine its
impact on the conventional MolGAN framework. As indi-
cated in Fig. 5(a), the incorporation of the Cycle component
into MolGAN (termed Cycle-MolGAN) results in a more
stable training process compared to the ordinary MolGAN
model. This stability significantly enhances the quality of the
generated molecular samples, as reflected in their improved
Uniqueness scores (Table 1, 2). Furthermore, the Cycle com-
ponent contributes to the generation of more complex and
“bounded” molecular structures, indicating a higher degree
of chemical realism (Fig. 4(c, d)).

In the context of HQ-MolGAN, while the integration of the
Cycle component does not markedly alter the loss curve as
depicted in Fig. 5(b), its influence is evident in the improved
key metric scores of the final HQ-Cycle-MolGAN models.
Whether trained on the PC9 dataset or a combination of
datasets, the HQ-Cycle-MolGAN demonstrates superior per-
formance in key metrics, as shown in Table 2. The stabilizing
properties of the Cycle component aid the model in con-
sistently generating “bounded” molecular samples. Notably,
both the VVRQ and EFQ variants of HQ-MolGAN achieve
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e f

FIGURE 5: On figures (a)-(d) presented comparison of combined losses during training on the QM9 dataset: (a) MolGAN and
Cycle-MolGAN. Cycle-MolGAN has a more stable training process compared to the MolGAN. (b) HQ-Cycle-MolGAN-EFQ
and HQ-MolGAN-VVRQ. (c) MolGAN an HQ-Cycle-Component MolGAN. (d) HQ-Cycle-MolGAN-EFQ versus Hybrid-
MolGAN-EFQ. No significant impact of the Cycle component on the loss curve is observed. On figures (e)-(f) presented IBM
Brisbane execution charts: (e) Graph of relative errors of simulators probability matrices with respect to a number of shots. (f)
Comparison of probabilities generated by noisy and ideal simulators using 2× 105 shots.
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TABLE 1: MolGAN and HQ-MolGAN

Model Unique (%) Valid (%) Diversity Druglikeliness Synthesizability Solubility
MolGAN (QM9) 63.0 1.1 0.98 0.47 0.64 0.52
MolGAN (PC9) 39.9 14.6 0.96 0.51 0.38 0.80
MolGAN (Both Datasets) 46.2 3.7 0.99 0.53 0.42 0.68
HQ-MolGAN-VVRQ (QM9) 71.1 14.3 0.97 0.53 0.84 0.61
HQ-MolGAN-VVRQ (QM9) 71.1 14.3 0.97 0.53 0.84 0.61
HQ-MolGAN-VVRQ (PC9) 65.7 3.2 0.99 0.51 0.40 0.66
HQ-MolGAN-VVRQ VVRQ (Both Datasets) 68.8 11.5 0.98 0.52 0.63 0.75
HQ-MolGAN-EFQ (QM9) 45.8 5.4 0.99 0.50 0.37 0.79
HQ-MolGAN-EFQ (PC9) 53.8 3.9 0.97 0.62 0.39 0.75
HQ-MolGAN-EFQ (Both Datasets) 39.4 12.9 0.97 0.53 0.49 0.84
QGAN-HG MR [9] 54.0 44.0 1.00 0.51 0.11 0.49
P2-QGAN-HG MR [9] 41.0 52.0 1.00 0.49 0.12 0.62
QuMolGAN [32] 5.4 42.94 1.00 0.57 0.76 0.44

TABLE 2: MolGAN and HQ-MolGAN with classic Cycle component

Model Unique (%) Valid (%) Diversity Druglikeliness Synthesizability Solubility
Cycle-MolGAN (QM9) 86.3 0.7 1.00 0.47 0.37 0.46
Cycle-MolGAN (PC9) 67.8 3.2 0.98 0.48 0.27 0.52
Cycle-MolGAN (Both Datasets) 68.4 4.2 0.95 0.52 0.48 0.69
HQ-Cycle-MolGAN-VVRQ (QM9) 64.2 4.3 0.97 0.54 0.38 0.92
HQ-Cycle-MolGAN-VVRQ (PC9) 73.8 14.5 0.99 0.51 0.50 0.93
HQ-Cycle-MolGAN-VVRQ (Both Datasets) 86.7 6.8 0.98 0.58 0.48 0.75
HQ-Cycle-MolGAN-EFQ (QM9) 66.9 5.8 0.98 0.55 0.33 0.69
HQ-Cycle-MolGAN-EFQ (PC9) 81.2 22.1 0.96 0.54 0.40 0.94
HQ-Cycle-MolGAN-EFQ (Both Datasets) 64.1 7.5 0.98 0.53 0.35 0.66

TABLE 3: MolGAN and HQ-MolGAN with Hybrid-Quantum Cycle component

Model Unique (%) Valid (%) Diversity Druglikeliness Synthesizability Solubility
Cycle-MolGAN (QM9) 92.4 2.7 0.99 0.47 0.35 0.64
Cycle-MolGAN (PC9) 93.2 5.1 0.97 0.46 0.28 0.65
Cycle-MolGAN (Both Datasets) 93.9 6.52 0.99 0.49 0.25 0.78
HQ-Cycle-MolGAN-VVRQ (QM9) 60.4 8.7 0.94 0.53 0.38 0.61
HQ-Cycle-MolGAN-VVRQ (PC9) 67.8 9.1 0.94 0.53 0.50 0.93
HQ-Cycle-MolGAN-VVRQ (Both Datasets) 65.5 15.0 0.98 0.51 0.35 0.95
HQ-Cycle-MolGAN-EFQ (QM9) 76.8 4.1 0.98 0.51 0.42 0.63
HQ-Cycle-MolGAN-EFQ (PC9) 88.8 11.0 0.98 0.50 0.35 0.69
HQ-Cycle-MolGAN-EFQ (Both Datasets) 74.7 9.3 0.96 0.52 0.49 0.73

TABLE 4: HQ-MolGAN-VVRQ forward pass on the noisy (IBM Brisbane) and ideal (Qiskit) simulators using 2 × 105 shots
budget.

Model Unique (%) Valid (%) Diversity Druglikeliness Synthesizability Solubility
Noisy HQ-MolGAN-VVRQ (QM9) 80.0 6.52 0.97 0.44 0.23 0.76
Ideal HQ-MolGAN-VVRQ (QM9) 80.0 6.51 0.97 0.44 0.23 0.75

significant scores in terms of LogP (0.93 and 0.94) and
QED.

Additionally, an analysis of Tables 1 and 2 reveals that
models equipped with the Cycle component are capable of
producing a greater number of unique samples. This finding
aligns with the intended objective of the Cycle component,
which is to navigate through the “high entropy state” and en-
hance the diversity and uniqueness of the molecular samples
generated by the model. The addition of Cycle components
provides a more stable (even smoother) training process for
classical MolGAN. In terms of HQ-MolGAN, it rapidly in-
creases its isomorphic properties that significantly help to get
through a “high entropy state” during training. This increase
in objectivity can be seen in the increase in uniqueness scores
of cycle models.

C. HYBRID-QUANTUM CYCLE MOLGAN
In the third stage of our experimental series, we focused on
evaluating the impact of the Hybrid-Quantum Cycle Com-
ponent on both the classical MolGAN and the HQ-MolGAN
architectures. In our simulations, the VVRQ generator uses
a quantum circuit with 3 × 8 × 3 parameters. In the case of
the QDI layer in the HQ-Cycle component, a quantum circuit
has 8× 8 parameters.

Fig. 5(c-d) presents a comparative analysis of the Gen-
erator losses between MolGAN and HQ-MolGAN models
with and without the Hybrid-Quantum Cycle Component.
According to the data presented in Table 3, the incorporation
of the Hybrid-Quantum Cycle Component does not result
in significant improvements in most of the desired metrics,
except for a notable LogP score of 0.95 achieved by the HQ-
Cycle-MolGAN-VVRQ model trained on both datasets.

This absence of a marked enhancement in performance
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metrics for models incorporating the HQ-Cycle component,
as compared to their counterparts without it, could poten-
tially be attributed to an insufficient number of training
iterations. This hypothesis is supported by the observations
from Fig. 5(c), where the training losses of HQ-MolGAN
and HQ-MolGAN with the HQ-Cycle component exhibit
minimal divergence, suggesting that extended training might
be necessary for realizing the full potential of the HQ-Cycle
Component.

Interestingly, the introduction of the Hybrid-Quantum Cy-
cle Component appears to significantly elevate the “Unique”
score of the models, surpassing even that achieved with the
standard Cycle component. This outcome validates our initial
hypothesis that a more precise generation of unique molecu-
lar samples is feasible, even with complex models like HQ-
Cycle-MolGAN-EFQ or HQ-Cycle-MolGAN-VVRQ. This
finding underscores the effectiveness of the HQ-Cycle Com-
ponent in enhancing the diversity and uniqueness of the
generated molecular structures.

D. EXECUTION ON SIMULATORS OF NOISY QUANTUM
DEVICES
In the last section of our numerical experiments, we ex-
plore the potential of executing the HQ-MolGAN-VVRQ
model on quantum devices. For that exploration we generated
molecular samples using two IBM simulators: the “noisy
simulator” of the IBM Brisbane quantum computer and the
“ideal simulator” of the noiseless IBM Brisbane quantum
computer [47], [48].

To perform the numerical experiments, we took the gener-
ator of the HQ-MolGAN-VVRQ model and separated it into
two parts: VQC and MLP. In the experiments, we executed
the VQC part on the simulator of the noisy and noiseless
quantum hardware and fed the results to MLP executed on
classical hardware. In the noisy simulation, we performed
quantum operations on 8 noisy qubits with the best fidelities
out of 127 available on the IBM Brisbane quantum computer.
In the ideal simulation, we performed the same VQC with the
same initial Gaussian-distributed vector on an ideal simula-
tor.

The comparison between noisy and ideal simulations is
shown in Fig. 5(e), where relative losses of noisy and ideal
simulators with respect to the number of given shots are
shown. The relative error is estimated as:

Err(N) =
|
∑256

n=1[Psim i(N)− Pideal i(+∞)]|∑256
n=1 Pideal i(+∞)

,

where Pideal(+∞) is the matrix of probabilities generated on
the ideal simulator after a large number of iterations (N →
+∞), Psim(N) is the matrix of probabilities generated on the
specific simulator (either ideal or noisy) after N shots.

While on a chart of relative error on an ideal simulator,
its value approaches zero as a number of shots grows, as
the shot noise is the only source of the error, on the noisy
simulator, relative error hits the limit specific to the noise
model of the quantum device. This systematic error of the

device has an impact on the probability values given by the
circuit, leading to slightly different initial states of the vector
(Fig. 5(f)), which is given to the MLP layer in the course of
generation.

For generation of molecular samples we created 1000
vectors [x1, .., x8], xi ∼ N (0, 1), forward pass them on
both simulators, postprocessed, and used in the MLP layer.
After that, we generated molecular graph properties were
evaluated. As seen from Table 4, molecular graphs generated
on the noisy simulator have slightly greater validity and
solubility. This may be because, on the one hand, probability
vectors obtained on the noisy simulator do not differ too
much from the ideal one. On the other hand, the MLP layer
can play its own role as an error correction algorithm.

IV. DISCUSSION
In this article, we propose a novel approach leveraging QML
for small molecule generation. Our chosen task of small
molecule generation serves as a benchmark for the perfor-
mance of hybrid quantum machine learning models.

To enhance the classical MolGAN, we introduce two so-
lutions: the incorporation of VQCs as the initial layer of
the generator and the utilization of a cycle component to
restore the original data from the graph representation of the
generated molecule.

Our empirical results substantiate the merit of diversifying
training datasets, not limiting to the QM9 dataset alone but
also incorporating the PC9 dataset or a combination of both.
Notably, the HQ-MolGAN model, with their Generator’s
layers scaled down by half and trained for 4 times fewer
iterations, has outperformed the classical MolGAN model
[8] and its hybrid quantum analogues [9], [32] across key
chemical metrics: QED, logP, SA, and uniqueness. The HQ-
MolGAN model was also tested for potential execution on
quantum computers. By using a noisy and ideal simulators
of an IBM quantum computer, we observed that the HQ-
MolGAN model is resilient to noise: the achieved scores of
the noisy simulation are shown to be similar to the ideal
noise-free simulation.

The introduction of the HQ-Cycle-MolGAN, and espe-
cially its variant with the HQ-Cycle component, marks an
advancement in the training of hybrid quantum models.
These models not only enhance the desired uniqueness score
but also effectively mitigate the occurrence of the “high
entropy state,” a notable challenge in molecular generation
tasks. Consequently, these models hold substantial promise
for applications in the domain of small drug compound
design, both for commercial and scientific purposes within
pharmacology.

This work contributes insights into the potential of QML
for small molecule generation, emphasizing the benefits of
hybrid quantum-classical approaches in drug design. The
results underscore the significance of employing quantum-
enhanced models to achieve improved performance across
essential molecular optimization metrics.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Transactions on Quantum Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TQE.2024.3414264

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Anoshin et al.: Hybrid quantum cycle generative adversarial network for small molecule generation

Looking ahead, we see a potential for hybrid quantum
machine learning models to further advance the field of
molecule generation using hybrid quantum models. We plan
to delve deeper into refining the model architecture, particu-
larly focusing on optimizing the balance between the quan-
tum and classical components. This involves experimenting
with different configurations and parameters to enhance the
overall efficiency and accuracy of the models.

Another critical avenue we intend to pursue is the ex-
pansion of our training datasets. By incorporating a broader
range of chemical compounds and molecular structures, we
aim to increase the diversity and representativeness of our
models. This expansion is expected to improve the models’
generalization capabilities and their applicability. Through
these focused research efforts, we aspire to contribute signif-
icantly to the advancement of hybrid quantum computing in
drug discovery, ultimately aiding in the development of more
effective and innovative therapeutic solutions.
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APPENDIX. SUPPLEMENTARY MATERIAL
A. QUANTUM CIRCUITS ANALYSIS
In this section, we analyze the quantum circuits employed in
the HQ-Cycle-MolGAN framework, specifically the VVRQ
and the QDI layers. We assess these circuits using several
metrics:

• ZX calculus circuit reducibility
• Fisher information degeneracy

1) ZX calculus
ZX-calculus serves as a graphical language capable of depict-
ing a quantum circuit through diagrams consisting of “spi-
der”—nodes interconnected by edges. These ZX diagrams
can be simplified [49] and minimized using the language’s
graphical rewriting rules [50], which are grounded in the
fundamentals of quantum operations. By simplifying these
diagrams, we can derive a more efficient circuit configura-
tion. Moreover, ZX-calculus offers a metric for evaluating
circuit efficiency by comparing the number of parameters in
the simplified diagram against the initial number of parame-
ters. A reduction in redundant parameters indicates enhanced
circuit performance. A circuit deemed unable to be optimized
in this manner is classified as ZX-irreducible.

The key adjustments to the circuit shown in Fig. 6(a-b)
consist of the rearrangement of certain weights after their
reduction. During the optimization phase, 139 out of 150
parameters (approximately 93%) were preserved, illustrating
the circuit’s significant degree of optimization. As illustrated
in Fig. 6(c-d), for QDI, the ZX-calculus algorithm merely
adjusted some of the weights following their reduction.
Throughout the optimization process, 269 out of 272 param-
eters (about 99%) were maintained, indicating that the circuit
is highly optimized and yields almost perfect outcomes.

By using the ZX-calculus algorithm, it was revealed that
both VVRQ and QDI perform very well and have close to
no redundant parameters. However, other metrics should be
applied to obtain a more precise analysis.

2) Fisher information
A supervised machine learning task can be described as the
creation of a hypothesis model hθ(x̂) based on a labeled
dataset (x, y) ∈ X × Y to provide an approximation of
the distribution, f(x), of the data in nature. Using a subset
of S labeled data points from this distribution, we optimize
our hypothesis model to provide high-accuracy modeling of
f(x̂). For this, we maximize the probability of acquiring the
associated label y from the model with parameters θ and data
points x. The needed conditional probability can be written as
P (y|x, θ). Taking into account the uniform distribution over
X , the joint probability, P (y, x|θ) is used for better accuracy,
and its distribution can be calculated for any value of θ for a
data points xi. Thus, we represent the joint probability as an
N-dimensional manifold with N as the number of trainable
parameters N = |θ|. The Fisher information matrix F (θ)
[51], [52] is a metric over this manifold.
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FIGURE 6: (a) VVRQ layer with original parameters. (b) VVRQ layer without redundant parameters. (c) QDI layer with
original parameters. (d) QDI layer without redundant parameters.

F (θ) = E{xi,yi}[∇θ log(P )∇θ log(P )
T ] (1)

The next step is to diagonalize this metric to get a locally
Euclidean tangential basis, where the diagonal values are
the square gradient of our joint probability in this basis.
These are the eigenvalues of the Fisher matrix. This is very
important to detect and prevent the barren plateau problem,
which involves vanishing gradients with a high number of
qubits in quantum neural networks.

As was shown in Ref. [53], their expectation values be-
come zero, and their variance decreases exponentially with a
growing number of qubits. This can be seen if the gradients
mostly degenerate near zero, which means that many param-
eters don’t participate in training at all. Therefore, calculating
the eigenvalue spectrum of Fisher matrices for many realiza-
tions of θ helps investigate the trainability and robustness of
the QNN against barren plateaus. A more highly trainable
neural network would have less eigenvalue degeneracy.

The Fisher information matrix can be calculated for the
specific hyperparameters of our circuit. Using a method from
Ref. [51], we create a Gaussian dataset x ∼ N (µ = 0, σ2 =
1). Then the joint probability can be found by overlapping
the computed state and the state of our quantum layer.

P (y, x|θ) = ⟨y|ψ(θ, x)⟩ , (2)

where y is the output state. By averaging over all x and y we
can calculate the Fisher information for any given θ.

As a result, we can see in Fig. 7(a) that both circuits
have at least half of their parameters significantly impacting
the result. The QDI shows especially good results with four
highly impactful parameters and two moderately impactful
parameters. Fig. 7(b) shows the Average Fisher Matrices
with no redundant elements on the diagonal. This shows that
all the parameters are used in training, which leads to high
trainability.

Ref. [54] stated that some QNNs may show lowered
parameter efficiency due to over-parametrization. This was
calculated by finding that, at some point, parameter addition
leaves the rank of the Fisher information matrix (FIM rank)
unchanged. This happens when the circuit starts to become
saturated. After that, there is no increase in expressivity, and
there can be a risk of over-parametrization. As one can see
in Fig. 7(d), the addition of new layers does not show any
over-parametrization on this scale. Hence, the increase in
rank with additional layers (and other metrics) can determine
the necessity of structure change. As the previous analysis
showed, VVRQ performs quite well, which may indicate that
a more complex circuit is not needed. At least two layers are
required since the addition of the second one changed the
rank from 16 to 38 while the expected scenario would be
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FIGURE 7: (a) The normalized histogram of the VVRQ (left) and QDI (right) Fisher eigenspectrum. For VVRQ, all three layers
have the first four parameters contributing the most impact (with the third layer adding extra frequency to the first parameter).
This circuit is moderately expressive. For QDI, the majority of parameters achieved very high frequencies, which indicates
excellent trainability. (b-c) Average Fisher matrices for VVRQ (left) and QDI (right). For VVRQ, the diagonal elements
show that the circuit distributes the gradients to all trainable parameters with no evident single-parameter dominance (only
a slight gradient shift towards the latter parameters for the deeper layers). For QDI, the diagonal elements show that the circuit
distributes the gradients to all trainable parameters with no single-parameter dominance and almost no non-diagonal element,
indicating high trainability. (d) FIM rank for VVRQ (left, 3/5 layers used) and QDI (right, 1/5 layers used) illustrates the
circuit’s limit of over-parameterization. For VVRQ, the circuit isn’t over-parameterized, and the addition of the second layer
more than doubled the rank (from 16 to 38). The third layer adds the same amount, so it’s not necessary to increase further. For
QDI – taking into account excellent eigenspectrum performance and the usual increase from the first to the second layer (from
72 to 144, doubled, unlike the VVRQ), it’s unnecessary to add new layers.
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an increase of the same amount as the first one (to 32). It
shows the underdevelopment of the first layer that is fixed
by the addition of a new one. For QDI, the circuit is already
optimized enough and does not show any underdevelopment
for the first layer. Thus, the need for the addition of new
layers can be determined by how much the rank increases,
complemented by other methods (such as the Fisher eigen-
spectrum analysis).

B. HYBRID QUANTUM GENERATOR OSCILLATORY
BEHAVIOR
HQ-MolGAN models have shown oscillatory behavior in
terms of chemical metrics during training (Fig. 3). The rea-
son for this phenomenon may lie in the breakdown of the
interplay between the HQ-Generator and the classical Dis-
criminator. To investigate this possibility, we provide a loss
chart of the Discriminator component during the training of
the classical MolGAN and the HQ-MolGAN-VVRQ (PC9).

0 10000 20000 30000
Iterations

−15

−10

−5

0

5

D
θ

Classical MolGAN

HQ-MolGAN-VVRQ

FIGURE 8: Loss curve of the Discriminator for the classical
MolGAN and the HQ-MolGAN-VVRQ.

Fig. 8 shows that the Discriminator competing with the HQ
generator does not show any significant change compared to
the classical MolGAN generator. Also, neither chart shows
any significant increase after 15 thousand iterations, which
means that MolGAN’s generative expressiveness converges
to a narrow beam of values due to the Generator’s properties
and not the Discriminator’s.
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