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ABSTRACT In this article, we apply a quantum optimization algorithm to solve a combinatorial problem
with significant practical relevance occurring in clutch manufacturing. It is demonstrated how quantum
optimization can play a role in real industrial applications in the manufacturing sector. Using the quantum
annealer provided by D-Wave Systems, we analyze the performance of the quantum and quantum–classical
hybrid solvers and compare them to deterministic- and random-algorithm classical benchmark solvers. The
continued evolution of the quantum technology, indicating an expectation for even greater relevance in the
future, is discussed, and the revolutionary potential it could have in the manufacturing sector is highlighted.

INDEX TERMS Clutch manufacturing, combinatorial optimization, quadratic unconstrained binary opti-
mization (QUBO) formulations, quantum annealing, quantum computing applications, quantum–classical
hybrid algorithms.

I. INTRODUCTION
Optimization problems are omnipresent in all areas of sci-
ence and industry. In particular, combinatorial optimization
problems, which consist of searching for the global minimum
of an objective function over discrete variables within a very
large space of possible solutions, appear in many practical
applications in every industry, including sectors, such as
finance, logistics, and manufacturing. For these problems,
the size of solution space usually grows exponentially with
the number of variables. Although specialized algorithms can
be used to find (often-approximate) solutions for specific use
cases, most optimization problems are intractable for suffi-
ciently large systems.
In recent years, the state of quantum computing technol-

ogy has advanced to become practically relevant [1], [2], [3].
These are machines that exploit quantum behavior (special
phenomena that can occur at small scales and low tempera-
ture) to perform certain calculations, which cannot be sim-
ulated efficiently on traditional, or classical, computers. For
example, D-Wave Systems, an early player in the field, pro-
vides access to a particular type of analog quantum computer,
referred to as a quantum annealer [4]. Quantum annealers
have already been used with great success to solve hard
optimization problems in multiple industrial applications,

such as large-scale production [3], [5], [6] and research and
development [7], [8] in manufacturing, financial investment
strategy [9], shipping logistics [10], [11], [12], and mobility
services [13], [14]. There is an abundance of excitement
around the advances that quantum computing is expected to
yield in many areas. In this article, we focus on a challeng-
ing application to a particular manufacturing quality-control
problem, which is difficult to solve classically and is among
the first studies applying quantum computing to a manufac-
turing problem (along with, for example, [5]). The problem
is used as a platform to demonstrate how quantum computing
can provide an edge in current industrial applications and
to show its potential in the future as the technology contin-
ues to advance to evermore-powerful generations. In clutch
manufacturing, one goal of shape or design optimization is
to improve the friction of clutches, and it plays a key role in
large-scale production. Previous works have considered such
improvements by analyzing different designs and material
combinations [15], [16]. The complementary approach in
this article addresses the same goal, which we refer to as disk
optimization, but with a different view and formulation of it.
More specifically, our approach to improve the friction in a
multidisk clutch consists of finding the optimal orientation
for each of the disks. For this purpose, we formulate the
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FIGURE 1. Disk sets in a multidisk clutch contained in the ZF 9HP
transmissions. Disk set 2 (lined clutch disk) consists of the friction disks
(f), which are padded with brown friction elements (see magnification).
Disk set 3 (outer multidisk) comprises smooth metal disks (s).

problem as a quadratic unconstrained binary optimization
(QUBO) problem [17] and introduce a quantum optimization
algorithm to solve it using the D-Wave quantum annealer.
First, we show that the quantum solver is able to match
the performance of current classical algorithms for small
problems by making direct use of the quantum processing
unit (QPU). Second, we demonstrate that a hybrid quantum–
classical solver shows an exceptional performance for large-
scale problems, greatly outperforming classical benchmarks.
Therefore, our application of a quantum optimization al-
gorithm provides an edge over classical solutions for large
problem sizes when deployed on a hybrid quantum–classical
solver.
The rest of this article is organized as follows. Section II

provides details on the optimization problem and its mathe-
matical formulation. Sections III and IV describe the tech-
niques used in this study (quantum solvers and classical
benchmarks) and the testing approach, respectively. Results
are presented and elaborated on, respectively, in Sections V
and VI. Finally, Section VII concludes this article.

II. PROBLEM OVERVIEW
In the ZFGroup, one optimization problem arises in theman-
ufacturing of a multidisk clutch (see Fig. 1). The multidisk
clutch contains the following two alternating sets of disks.

f) Friction disks (metal disks padded with many friction
elements); see brown paddings on lined clutch disk
(label 2) in Fig. 1.

s) Smooth metal disks; see outer multidisk (label 3) in
Fig. 1.

Disks of the same kind are fixed to each other, while kinds
(f) and (s) rotate freely relative to each other if the clutch is

FIGURE 2. Illustration of the problem setup where the clutch is made up
of a stack of rotatable disks (specifically the friction disks (f) in Fig. 1),
with this example showing a three-disk, five-segment problem. Disks are
made up of discrete elements, which line up with fixed segments. The
disks are labeled along the left and segments along the bottom, with
disk shift numbers indicated on the right. Element heights Ak,i are
labeled, where the indices correspond to the kth disk and ith segment in
the stack’s original configuration (prior to any shifts applied). The
horizontal dashed line gives the average segment height (number of
disks, three times the average element height) and the red arrows
indicate each segment’s deviation from the mean δhi .

open. When the clutch closes, friction disks (f) start press-
ing against the smooth disks (s) and assert a friction force
reducing the relative rotation speed. If the clutch is closed,
the friction between disks in (f) and (s) is high enough such
that all disks have the same rotational speed.
The combinatorial optimization problem we are interested

in arises due to manufacturing thickness variations of
the disks (f) and the attached friction paddings. During
manufacturing, the friction disks (f) can each be stacked in
42 different rotational positions, which are then locked in.
Thickness variations of each of the friction disks in a stack
(e.g., seven friction disks) add up and can lead to decreased
performance of the clutch under load. Such a decreased
performance would be rejected in quality control tests after
manufacturing.
The optimization question is therefore: in which of the

42 possible rotations should each of the disks with friction
paddings be placed to optimize the clutch performance and
therefore maximize quality according to quality control?
Two of the relevant metrics to increase the clutch perfor-

mance are as follows.

1) M1—The standard deviation of the thickness devia-
tions of the friction disks stack from the mean.

2) M2—The range is defined as the difference between
the highest and the lowest total thickness of the friction
disks stack.

Both metrics are derived in Section II-A and are given in
(3) and (4), respectively.

A. PROBLEM FORMULATION
The optimization problem focuses specifically on the clutch’s
set of friction disks (f) (see Fig. 1) and a stack ofND rotatable
disks (see Fig. 2). Each disk is made up of NS discrete ele-
ments (the friction pads), which line upwithin fixed segments
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used for reference. As such, there are (NS)ND distinct configu-
rations that the stack can take. We denote the height of the ith
element of the kth disk as Ak,i, with indexing starting at zero
(hence, i ∈ {0, 1, . . . ,NS − 1} and k ∈ {0, 1, . . . ,ND − 1}).
The height variation of an element is Bk,i = Ak,i − Ā, where

Ā = 1

NDNS

ND−1∑
k=0

NS−1∑
i=0

Ak,i. (1)

The rotation of the kth disk in the stack is captured by
its shift number, sk ∈ {0, 1, . . . ,NS − 1}, or the number of
discrete shifts to the left relative to its initial position. Thus,
following a rotation of the kth disk, the height of the element
shifted into the ith fixed segment is Ak,i+sk , where the sum-
mation in the index is understood to be modulo NS. Finally,
this takes us to the ith segment’s height variation away from
the mean segment height

δhi =
ND−1∑
k=0

Bk,i+sk . (2)

The goal of this optimization problem is to find the combi-
nation of shift numbers, which achieves as-close-as-possible-
to uniformity in the full-stack height in line with the perfor-
mance metrics standard deviation 1 and range 2. From the
vector of segment height variations δh = (δh0, . . . , δhNS−1),
these metrics 1 and 2, respectively, are computed as

σ (δh) =
√

1

NS

∑NS−1

i=0
(δhi)2 (3)

range(δh) = max(δh) − min(δh). (4)

Note that the mean of δh is zero and thus is not included in
the definition of the standard deviation.
To form this as a programmable optimization problem, we

can consider all segments in tandem, which yields

min
s0,...,sND−1

‖δh‖n. (5)

That is, the optimization involves minimizing the Ln-norm
of δh over the shift numbers. For example, the L∞-norm
minimizes the most extreme value in δh and is thus related
to minimization of the range in segment height variations,
although they are not equivalent in the sense that they do not
lead to the same optimum. To see the distinction, consider
a vector f with positive and negative elements f+ and f−,
respectively. Then

‖ f‖∞ = max (‖ f+‖∞, ‖ f−‖∞) (6)

range( f ) = ‖ f+‖∞ + ‖ f−‖∞. (7)

While these are indeed different measures, the range gives
an upper bound on the L∞-norm: range( f ) ≥ ‖ f‖∞. Alter-
natively, the L2-norm minimizes the vector elements’ stan-
dard deviation, due to σ (δh) = √

1/NS‖δh‖2, and naturally
lends itself to the formulation of the problem as a QUBO, as
discussed in Section II-B.

B. QUBO FORMULATION
Tomake use of the D-Wave solvers (discussed in Section III),
it is necessary to formulate the optimization problem as a
QUBO [17]. That is, as an objective function with only linear
or quadratic dependence on binary problem variables

H = xTQx (8)

where x ∈ {0, 1}n is a vector of n binary variables and Q
is an upper triangular real-valued n× n matrix. Note here
that squaring a binary variable gives the same value of that
variable (x2 = x), and hence any self-square terms in the
expansion are considered to be linear. From the general prob-
lem (5), we minimize the square of the L2-norm in order to
fulfill the “quadratic” requirement

‖δh‖22 =
NS−1∑
i=0

(δhi)
2 . (9)

To map the shift numbers (s0, . . . , sND−1) onto binary
variables, we use a unary encoding [18] (a.k.a., a “one-hot”
encoding). That is, for each of the ND disks, we introduce a
row vector xk made up of NS binary variables xk, j ∈ {0, 1}
(or an ND × NS matrix of variables) such that

xk, j =
{
1 if j = sk
0 otherwise.

(10)

For example, xk = (1, 0, 0, . . . , 0) corresponds to sk = 0,
xk = (0, 1, 0, . . . , 0) corresponds to sk = 1, and so on. This
encoding allows us to take the problem variable sk from its
role as an index (not applicable in a QUBO) and into us-
able function variables. This is done by using the new {xk, j}
variables as multiplicative assignment variables to indicate
whether a particular disk element resides in a fixed segment
or not. In this way, the height variation of the ith fixed
segment can be written as

δhi =
ND−1∑
k=0

NS−1∑
j=0

Bk,i+ j xk, j. (11)

Using the unary encoding requires the introduction of ND
constraints whereby one and only one of the variables in each
vector xk may be equal to one. This is equivalent to requiring
that the sum of the binary elements in xk be equal to one. This
results in a linear equality constraint that can be added to the
QUBO as a penalty term

ρ

⎛
⎝NS−1∑

j=0

xk, j − 1

⎞
⎠

2

∀k ∈ {0, . . . ,ND − 1} (12)

where ρ is a Lagrange multiplier, often referred to as the
penalty strength [19]. Each of the above penalty terms (one
for each disk) is equal to zero when the unary-encoding con-
straint is satisfied and is otherwise greater than zero. Hence,
adding these to the cost function with the appropriate penalty
strength will force all infeasible solutions to have higher cost
than the optimal feasible solution. Ideally, one could set ρ
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to be arbitrarily high, which works well, for example, when
performing an exhaustive search over all possible solutions
and ranking them by cost. However, some of the solvers
considered in this work (as discussed in Section III), have
a maximum achievable resolution in the cost function. That
is, relative to the full range of all possible values achievable
in the cost function, the solver can only distinguish between
neighboring solutions if they are sufficiently separated from
each other in cost. As such, choosing the penalty strength
too large can extend the range of the cost function to the
point where it becomes difficult for the solver to resolve the
optimal solution away from other feasible solutions. In such
applications, tuning the penalty strength is an important and
nontrivial endeavor.
Combining (9), (11), and (12) yields the cost function

H =
NS−1∑
i=0

⎛
⎝ND−1∑

k=0

NS−1∑
j=0

Bk,i+ j xk, j

⎞
⎠

2

+ ρ

ND−1∑
k=0

⎛
⎝NS−1∑

j=0

xk, j − 1

⎞
⎠

2
(13)

which has to beminimized. This QUBO formulation requires
NQ = ND · NS binary variables and is fully connected. That
is, by expanding the cost function into a summation of linear
and quadratic terms, at least one quadratic term exists for ev-
ery possible pairing of problem variables. As such, the prob-
lem amounts to the minimization of a fully connected graph
problem where linear and quadratic coefficients correspond
to vertex and edge weights, respectively (and any constant
term corresponds to an overall offset, which is irrelevant to
the minimization).
One final adjustment can be made by exploiting a global

rotational symmetry in the problem whereby rotating all
disks by the same shift number leaves the cost func-
tion (13) invariant. This operation is equivalent to chang-
ing the arbitrary reference point in the indexing (i.e., the
choice of which segment is labeled as zero has no ac-
tual bearing on the physical clutch). As such, we are free
to leave the first disk frozen in its initial configuration
(a shift number of zero), reducing the problem to finding
the optimal rotation of all disks relative to the first. Then,
by setting s0 = 0 or equivalently x0 = (1, 0, . . . , 0), (13)
becomes

H =
NS−1∑
i=0

⎛
⎝B0,i + ND−1∑

k=1

NS−1∑
j=0

Bk,i+ j xk, j

⎞
⎠

2

+ ρ

ND−1∑
k=1

⎛
⎝NS−1∑

j=0

xk, j − 1

⎞
⎠

2

.

(14)

Exploiting the global rotational symmetry reduces the
problem size to NQ = (ND − 1) · NS binary variables.

III. METHODS OVERVIEW
We used a variety of methods and hardware implementations
to address the disk optimization problem, with the goal of as-
certaining the quantum solvers’ performance against selected
benchmarks on a classical computer. These are listed below
and each solver is detailed in the following.

1) ZF exact classical solver.
2) ZF approximate classical solver.
3) D-Wave simulated thermal annealer.
4) D-Wave quantum annealer.
5) D-Wave Leap hybrid.

A. ZF EXACT CLASSICAL SOLVER
This solver optimizes the range 2 and is guaranteed to find
one of the optimal configurations (there could be multi-
ple) of the discrete shift numbers (s0, . . . , sND−1). It uses
the “branch and bound” method [20], [21], consisting of
two steps: the branch step followed by the bound step. The
branch step divides the current problem under considera-
tion in two or more subproblems. The bound step is re-
sponsible for estimating a lower (or upper) bound of the
objective function with respect to an already divided sub-
problem. If the lower bound guarantees no optimal solution,
then no further investigation of the whole branch is neces-
sary and the whole branch is cut. This method is thus also
sometimes called “branch and cut.” Therefore, the perfor-
mance of this method stands and falls with the feasibility and
“sharpness” of the bound. Note that, in the worst case, the
complexity of the branch and bound method is O(NND−1

S ),
identical to an exhaustive search, but an optimal solution is
guaranteed.

B. ZF APPROXIMATE CLASSICAL SOLVER
As a result of the scaling mentioned above, large-scale prob-
lems are hard or even impossible to solve with the ZF exact
classical solver in a reasonable time. To tackle this challenge,
an approximate classical solver is proposed, subdividing the
large-scale case into smaller problems, which may be op-
timized efficiently. In short, the ND disks are split into K
subsets, where K − 1 subsets contain �ND/K	 disks and one
subset contains the remaining ND − (K − 1)�ND/K	 disks.
K is chosen such that �ND/K	 ≤ 8 and K ≥ 3. The entire
subsets are optimized separately and then rotated relative to
each other to find the optimum of the range 2. Note, that this
approach does not guarantee to find the global optimum be-
cause it only searches through a fraction of thewhole solution
space.

C. D-WAVE SIMULATED ANNEALER
Simulated thermal annealing (typically referred to as “sim-
ulated annealing”) is a random algorithm, which seeks to
find the global minimum of an optimization problem while
avoiding getting trapped in local minima. By making use of
a parameter analogous to temperature, the system is “hot”
in the beginning to allow it jump to other states in successive
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iterations, so that it can escape local minima by hill climbing,
and progressively “cooled” to converge to a local minimum
(think of a popcorn kernel jumping around a hot kettle with
many divots, which is gradually cooled). An advantage of
this approach is that it allows the system to escape local
minima when the temperature is sufficiently high. However,
it can struggle when there are many thin but deep minima,
meaning that this random algorithm is not guaranteed to con-
verge to the optimal solution. Further details on this method
can be found, for example, in [22].
In this work, we made use of the D-Wave simulated an-

nealer available in the dimod python package [23]. This
implementation allows for the user to input a QUBO, such
as the one in (14). The algorithm scales quadratically in the
number of variables, and linearly in the number of sweeps
(steps of the algorithm), which corresponds to the number of
different temperatures that are traversed. The initial state is
selected at random, so that many runs of the algorithms can
allow for a better exploration of the possible solutions.

D. D-WAVE QUANTUM ANNEALER
Quantum annealing is named in analogy to thermal annealing
in that the physical process uses random quantum fluctu-
ations (as opposed to thermal fluctuations). The algorithm
seeks out the optimal solution as the system is slowly tran-
sitioned such that its energy landscape (determined by the
Hamiltonian) reflects the cost function to be optimized. By
leveraging quantum behavior, the system begins in the lowest
energy configuration of a “mixing Hamiltonian,” [24], which
places the quantum bits (qubits) in a complete superposition
of all possible bitstring combinations at once. By slowly
transitioning to the “problemHamiltonian,” the quantum adi-
abatic theorem demonstrates that the quantum system will
remain in the lowest energy configuration, ultimately arriv-
ing at that which corresponds to the optimal solution of the
cost function of interest [25]. Unwanted thermal fluctuations
in the hardware can introduce noise to the system so that
the optimal solution is not always obtained. Hence, many
samples are typically made in order to increase the likelihood
of finding that optimum.
In this work, wemade use of the D-Wave Advantage QPU,

introduced in 2020. Here, over 5000 physical qubits (super-
conducting loops held at the extremely low temperature of
15 mK) are laid out in a Pegasus graph architecture [26]
(where each qubit is generally connected to 15 other qubits
in the system), so that it is possible to embed a fully con-
nected graph with 180 vertices.1 This is a major improve-
ment compared to the previous generation D-Wave 2000Q
processor, based on more than 2000 qubits on a Chimera
architecture [27] (connectivity per qubit of 6) where the
largest fully connected graph embedding is of size 65. In
addition, the Advantage QPU is said to introduce less noise

1Minor embedding is the problem of replicating one graph onto another
of different structure. In this context, several physical qubits can be chained
together with strong coupling to represent a single logical qubit.

than earlier generation QPU’s [28]. In the context of the QPU
with reference to the minor graph embedding, we refer to
a logical qubit (not to be confused with an error-corrected
qubit [29]) as a single binary variable appearing in the objec-
tive function. A physical qubit is a single superconducting
loop in the QPU hardware. Following the embedding, many
physical qubits may be chained together to represent a single
logical qubit.

E. D-WAVE LEAP HYBRID
The final solver we explored from D-Wave is their Leap
hybrid. This uses a hybrid quantum–classical approach,
whereby the submitted problem (14) gets strategically de-
composed into subproblems, which are then passed in paral-
lel to theD-WaveAdvantageQPUdescribed in Section III-D,
as well as classical solvers [24]. Following several iterations,
Leap hybrid then outputs the best solution obtained within a
set run time. As with the simulated annealer and the QPU,
the Leap hybrid is a probabilistic solver and is thus not guar-
anteed to produce the optimal solution, but has a high level
of performance (as presented in Sections V and VI). For the
moment, it can handle problem sizes of up to 106 binary
variables.
As a proprietary solver, the Leap hybrid is understandably

not entirely transparent. This can make it difficult to com-
pare against other solvers in some respects. For example, a
single run of this hybrid solver may make limited use of the
QPU depending on the length of the queue for that quan-
tum machine. As such, it can be somewhat unclear exactly
how much the quantum component contributed to finding
a solution. Nevertheless, we show below that the Leap hy-
brid has exceptional performance for large problem sizes.
Alternative hybrid solvers are available, which provide more
transparency, such as the Kerberos solver available in the
dwave-hybrid python package [30] (also developed by
D-Wave, as the name suggests). However, exploring alterna-
tive hybrid solvers was outside the scope of this project.

IV. TEST APPROACH
A. PROBLEM INSTANCES
To test the various methods, quantum and classical, we gen-
erate random matrices corresponding to ND disks with each
NS elements. We draw the element thickness Ak,i out of
a uniform distribution over the interval

[
A0 − �

2 ,A0 + �
2

]
,

whereA0 is the target element thickness and� is themaximal
thickness variation of each element.
Relevant for the current manufacturing process in ZF are

problem sizes with ND ≤ 7 and NS = 42 corresponding to
(ND − 1) · NS ≤ 252 binary variables (or logical qubits) in
the QUBO formulation. Despite the practical limit, we ex-
plored problem sizes larger than this to analyze the perfor-
mance and scaling of the different methods, giving us valu-
able insights in how to solve other fully connected QUBO
problems in the future.
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B. BENCHMARK TESTING
Each of the random-algorithm solvers (simulated annealing,
quantum annealing, and hybrid) was run repeatedly a certain
number of times in order to increase the probability of sam-
pling the best solution. These solvers, in contrast to the ZF
solvers, aim to minimize the QUBO in (14), which corre-
sponds to optimizing the standard deviation in (3). The sim-
ulated annealing method acts as a random-algorithm bench-
mark for comparison against the quantum solvers, and the ZF
solvers provide deterministic classical benchmarks. In con-
trast to the QUBO formulation of the optimization problem,
the ZF solvers focus on minimizing the range in (4). We find,
however, that an optimal solution with respect to standard
deviation corresponds to a low (but not necessarily optimal)
range, and vice versa. In the following, we detail some of the
specifications used in the three random-algorithm solvers.

1) Simulated Annealer—35 samples were taken for each
problem, using 1500 as the number of sweeps.

2) Quantum Annealer—From 20 up to 2000 samples
were taken for each problem, depending on the prob-
lem size, and annealing pauses were used to enhance
the success probability as in [31].2

3) Hybrid Solver—Three samples were taken for each
problem. Note, however, that in a single run of the
hybrid solver, the backend runs iteratively over several
subproblems and takes many samples directly from the
quantum annealer in the process.

V. RESULTS
In this section, we show the different results obtained by
the considered solvers described in Section III under the
approach described in Section IV. For varying problem sizes,
the main quantities of interest are the problem metrics stan-
dard deviation, (3), and range, (4), associated with the solu-
tion that each solver outputs, as well as the runtimes. All of
these results are provided in Fig. 3(a)–(c), respectively. Note
that all of the solutions presented in the figurewere confirmed
to satisfy the constraints in (12). For the quantum annealing
solver, in particular, obtaining feasible solutions without sac-
rificing solution quality (i.e., low values for the metrics 1 and
2) required careful tuning of the penalty strength ρ, which
was carried out empirically.

A. PROBLEM METRIC COMPARISONS
To begin with, it is important to recall which quantities have
been optimized by the different solvers. For the simulated
annealing (pink triangles in Fig. 3), quantum annealing (blue
circles), and the hybrid (orange crosses) solvers, the L2-norm
of δh is minimized [corresponding to minimization of the
standard deviation, (3)]. Data points for each of these solvers

2Imposing an annealing pause involves adjusting the annealing schedule
as the QPU transitions from the mixing Hamiltonian to the problem Hamil-
tonian. As indicated in the cited work, a carefully positioned pause during
the anneal can enhance the probability of finding the ground state of the
problem Hamiltonian.

are connected by solid lines for added clarity. For the ZF
Exact (green squares) and Approximate (gray inverted tri-
angles) solvers, it is instead the range that is minimized, see
(4), with data points in the figure connected by dashed lines.
Both of the quantities 1 and 2 are equally relevant and a
solution is considered good or high quality if it is low in both
(preferably optimal). The optimal solution with regard to the
two different quantities can sometimes be different, but typ-
ically a configuration with minimal range yields a relatively
low standard deviation, and vice versa. As a result, when
comparing two solutions for the same problem instance, if
one solver yields a lower standard deviation but a higher
range than the other, we consider both solutions to be of a
similar quality.
It is also important to note that the optimal metric value

is instance dependent. Any perceived trends with varying
problem sizes (such as oscillations) are mostly coincidental.
However, the magnitude of the metrics M1 and M2 tend to
increase with the problem size.
In Fig. 3(a), we see that for all problems considered, the

hybrid solver yields solutions with the lowest standard de-
viation compared with all other solvers. While there is no
guarantee from this solver that it finds the optimal solution,
its consistently strong results across all investigated problems
indicate that these solutions are at least close to optimal (es-
pecially for the smaller problem sizes where sampling errors
are lower). Direct use of the quantum annealing solver yields
good solutions, which are close to the hybrid’s solutions in
standard deviation (although not necessarily optimal) up to
problem sizes of 40 logical qubits. Beyond that, sampling
errors lead to results that are far above optimal, even for 50
qubits (well below the embedding limit of 180 qubits). We
further discuss these limitations of the quantum annealing
solver in Section VI. As for the benchmarks, the ZF Exact
solver yields solutions that are close to optimal (if not opti-
mal) in the standard deviation, despite its optimization of the
range, see (4). The high quality of solutions is consistent for
all problem sizes up to its limit around 340-qubit equivalent
[recall that the ZF solvers do not use the QUBO formulation
of the problem and hence do not use the binary encoding
of the problem variables in (10)]. Beyond this limit, the ZF
Approximate solver is applied to large problems, which yield
solutions well separated from those obtained from the hybrid
solver. Finally, the simulated annealing solver consistently
yields suboptimal results (indicating the presence of deep
local minima in the cost function). In a practical setting, the
results from the simulated annealing could be sufficient to
pass quality-control requirements depending on the allowed
tolerance, with the advantage that this solver is run locally.
However, it is also limited in that it cannot handle large
problem sizes at about 400 qubits or greater, similar to the
ZFExact solver. In such instances, the hybrid solver is clearly
preferred.
In Fig. 3(b), the observations in the comparison of so-

lutions’ ranges are quite similar to the standard deviation
results. The main difference here is that the ZF Exact solver
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FIGURE 3. Comparison of (a) standard deviation [see (3)], (b) range [see (4)], and (c) runtimes for the different solvers across independent random disk
optimization problem instances. For added clarity, solvers which optimized the standard deviation (range) are connected by solid (dashed) lines. Each
problem corresponds to a fully connected graph with a certain number of logical qubits (e.g., the problem with ND = 7 disks and NS = 42 segments
corresponds to (ND − 1)NS = 252 qubits). Vertical dashed lines indicate the embedding limit of a fully connected graph in the Pegasus architecture of the
D-Wave Advantage QPU on the right (used for both the quantum annealer and hybrid solvers) and in the Chimera architecture of the D-Wave 2000Q
QPU (indicated only for reference). Note that the vertical scale in (c) and the horizontal scale in all three panels are logarithmic.

yields solutions with the guaranteed optimal range compared
with the other solvers. Interestingly, in many instances, the
hybrid solver manages to find a solution with the same min-
imal value of the range, despite that solver’s optimization
of the standard deviation. There are even instances, such as
the one with 50 qubits, where the hybrid solver matches the
minimal range and still manages to find a lower standard
deviation as compared to the ZF Exact solver.

B. RUNTIME COMPARISONS
Fig. 3(c) provides the total runtimes of each solver for the
various problem sizes. Note that comparisons of the abso-
lute runtimes (i.e., the levels) are not fundamentally relevant
given the different platforms each solver was run on, but are
still useful for practical reasons. For example, the simulated
annealing solver was run locally on a MacBook Pro laptop,
the ZF solvers on a ThinkPad, and the classical components
of the Hybrid solver are run on supercomputing clusters.

More relevant is the relative scaling of each solver’s runtime
with the problem size that does not depend on the underlying
hardware (beyond the classical versus quantum qualities).
Furthermore, for the random-algorithm solvers (simulated
annealing, quantum annealing, and hybrid), a different, often
more-relevant, measure is time to solution (which considers
the probability of finding the optimal solution relative to a
given level of confidence), rather than total runtime. How-
ever, since the simulated and quantum annealing solvers did
not find the optimal solution in most instances, we chose to
instead present total runtime for a fixed number of samples.
For both the ZF Exact and ZF Approximate solvers, the

runtime appears to be super exponential (increasing slope in
the log–log plot), although the runtime of these approaches is
very instance dependent. For problem sizes corresponding to
about 200 qubits ormore (or even earlier, depending on usage
requirements), the runtimes in the ZF Exact solver become
prohibitive at the order of an hour or more.

VOLUME 5, 2024 2500610



Engineeringuantum
Transactions onIEEE

Malcolm et al.: MULTIDISK CLUTCH OPTIMIZATION USING QUANTUM ANNEALING

At all problem sizes (small, medium, and large), the sim-
ulated annealing presents among the longest runtimes and
scales quadratically (according to theory). From a runtime
perspective in practical applications, this approach becomes
infeasible for medium-size problems and beyond.
Making direct use of the quantum annealing solver has

very low runtimes, even for a problem size approaching its
embedding limit. For problem sizes below 40 qubits, where
this solver was able to find close-to-optimal solutions (if not
optimal), it had the fastest runtime compared to all other
solvers (even when including internet latency). This is partic-
ularly promising in that the quantum computing technology
is still rather nascent and the solution quality is only expected
to improve. This topic is discussed further in Section VI.
The runtimes for the hybrid solver are fairly consistent on

the order of 10 s, based on the minimum fixed runtime (3 s)
for each of the three samples made per problem. Fluctuations
seen in the runtime are due to internet latency and other
time-costing overhead processes. There is a shallow, almost
imperceptible, increase in runtime (beyond 1024 variables,
the minimum runtime of the solver per sample gradually
grows from the baseline 3 s). For small- and medium-size
problems, the ZF Exact solver is faster and yields similar-
quality results as the hybrid. However, for large problem
sizes, the hybrid solver is incredibly fast while still yielding
high-quality results. For a problem corresponding to 336
qubits, the ZF Exact solver took nearly 3.5 h (11 659 s)
while the hybrid solved it in only 29 s. The ZF Solver was
unable to handle problems larger than this, while the hybrid
continued to yield high-quality results with a runtime of only
56 s on the largest problem considered (1176 qubits). The
specifications indicate that it can handle problem sizes of
up to 106 variables. In this work, the calculations were not
pushed to these boundaries due to a lack of readily available
benchmarks.

VI. DISCUSSION
Based on the results presented in Section V, the different
scales of problems show differences in the performance of
the solvers. For small problems, below 50 qubits, all solvers
find high-quality solutions except maybe the simulated an-
nealing. However, in terms of runtime, the quantum anneal-
ing solver is fastest—by several orders of magnitude than
most solvers, and slightly better than the ZF Exact solver. For
small problem sizes, where sampling errors are reduced, tak-
ing 20 to 100 samples typically suffices to find (near-)optimal
results, and so runtimes could be reduced without sacrificing
solution quality as compared to larger problem sizes.
For medium-size problems, 50 to 350 qubits, the quan-

tum annealing solver no longer performs well. This is due
to noise in the machine arising from thermal fluctuations,
which lead to sampling errors. In particular, as the number
of problem variables increases linearly, embedding of the
fully connected graph problem onto the Pegasus architec-
ture (16-qubit connectivity) requires that evermore physical
qubits be chained together to represent a single logical qubit.

FIGURE 4. Number of physical qubits required for the embedding of
fully connected graph problems on the Pegasus architecture (relevant to
the advantage QPU used in this study) and the Chimera architecture (in
the previous-generation 2000Q QPU, included for reference). The data
points included here correspond to the problem sizes tested with the
quantum annealing solver in Fig. 3. Numbers assigned to a subset of the
data points indicate the runtime in seconds for calculating the minor
embedding.

This relationship is demonstrated in Fig. 4, which shows
the number of physical qubits used for each of the prob-
lem sizes considered with this solver in blue (as well as the
embedding limit assuming an availability of 5000 physical
qubits). The physical qubit chain is achieved by imposing a
strong ferromagnetic coupling across all qubits in the chain
in an attempt to fix them all at the same value (either 0
or 1), which then corresponds to the value of the corre-
sponding logical qubit. However, for large problem sizes,
chain breaks are more likely to occur (where the strong
coupling fails to ensure all physical qubits in the chain are
equal valued, potentially leading to an incorrect assignment
in the corresponding logical qubit) because the chains are
longer and are thus more susceptible to sampling errors.
In addition, there is more competition between the chains’
couplings and the couplings that encode the optimization
problem itself, obfuscating the details of the problem and
making it more difficult for the solver to discern the optimal
solution.
While there are clear limitations to the performance when

making direct use of the quantum annealing solver, we point
out again that this technology is still in its early stages and
that there are major improvements with each new genera-
tion of quantum annealer from D-Wave. To demonstrate this,
Figs. 3 and 4 indicate the limits of embedding fully connected
graphs onto the previous generation QPU, the 2000Q, com-
pared with the Advantage QPU used in this study. The latter
figure shows that the increased connectivity in the Advan-
tage QPU architecture means that fewer physical qubits are
required to represent each logical qubit in the same size prob-
lem. Had we made use of the 2000Q QPU, we would have
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only been able to run problem sizes up to about 65 qubits and
the quality of the solutions would have been reduced relative
to the Advantage QPU results.
As an aside, we also include the runtimes (in seconds)

in Fig. 4 for determining the embedding of a subset of the
problems considered (using the minorminer python pack-
age from D-Wave [32]). Minor graph embedding is itself an
NP-Hard problem and if done for each run of the quantum
annealer solver would completely wash out the fast runtimes
seen in Fig. 3(c). However, since all problems are known to
be on fully connected graphs, we are able to precompute the
embedding for each problem size and store this in a library
for subsequent and repeated use. As such, we did not include
the embedding times in Fig. 3(c).

It is in the latter half of this medium-size region (at about
200 qubits and greater) that the hybrid solver becomes the
preferred approach. For all problem sizes, it yields consis-
tently high-quality results, and at this scale of problems, it has
a faster runtime than the ZF Exact solver. Also, in this region,
the runtimes of the ZF Exact solver increase rapidly, to a
point where its use is prohibitively expensive in both runtime
and memory constraints. For large problem sizes, 350 qubits
or more, the ZF Approximate solver has reasonable runtimes
(up until about 800 qubits), but the solution quality is much
poorer than in the hybrid solver.
To rank the different solvers considered in this work, di-

rect use of the quantum annealing solver is preferred for
small problem sizes due to its capacity to find high-quality
solutions in very short times. However, hardware limita-
tions in that solver mean that both the hybrid and ZF Exact
solvers outperform it for medium-sized problems. In this
region, these two algorithms yield similar results in terms
of solution quality. In particular, we observe that the hybrid
solver finds solutions with slightly better standard deviation,
whereas the ZF Exact solver finds solutions with a smaller
range. For large-size problems, the hybrid solver shows an
impressive performance, clearly outperforming the ZF Ap-
proximate solver in terms of solution quality and runtime. In
this region, the ZF Exact solver has no data points as it be-
comes prohibitively expensive in both runtime and memory,
highlighting the benefits of the hybrid solver.

VII. CONCLUSION
We have successfully applied a quantum optimization
algorithm to tackle the optimization problem of improving
the configuration of friction pads in a clutch, a challenging
quality-control problem in manufacturing. As far as we
are aware, this is among the first studies applying quantum
computing to a manufacturing assembly problem (in league
with, for example, [5]). We presented the mathematical
formulation of the problem in Section II-A, a minimization
of the range (for the deterministic classical benchmark
algorithms) of height variations or the L2-norm (for the
random algorithms, including the quantum approaches that
were the main focus of this work). For the latter, we derived
a QUBO formulation using unary encoding for the shifts

in order to meet the problem-formulation requirements for
quantum annealing. We ran the algorithm on two quantum
solvers (direct use of the quantum annealing solver and the
quantum–classical hybrid solver) on randomly generated
problem instances of varying sizes and compared against
classical benchmarks. In a more general sense, this work
is applicable to the optimization of fully connected QUBO
problems with unary-encoding constraints.
From the results presented in Section V and elaborated on

in Section VI, we found that for small problem sizes (below
about 50 qubits), the quantum annealing solver yields high-
quality solutions (although not always optimal) with very
short runtimes. The performance of this solver is only ex-
pected to improve over time with further advances in the un-
derlying technology. For medium-size problems up to about
350 qubits, the hybrid solver and the ZF exact solver were
on par in solution quality. However, in terms of runtime, the
latter rapidly scales upward as the number of variables is
increased. In contrast, the hybrid solver remarkably has only
limited scaling in runtime while maintaining high quality of
solutions. Using the hybrid solver, we were able to solve
large problems of up to 1200 fully connected variables, with
relatively short runtime. Furthermore, much larger problem
sizes could have been run using the hybrid solver, but without
a useful benchmark for comparison we limited our investiga-
tions there.
With further advances in the quantum technology (ex-

tending, for example, the evolution of the D-Wave quantum
annealer’s capabilities highlighted in Fig. 4), the benefits of
making direct use of the QPU in combinatoric optimiza-
tion are only expected to improve. In addition to such im-
provements from technological advances, we believe that the
current generation’s performance could be made better with
techniques available now that were outside the scope of this
project. For one, the penalty strength in (14) could be opti-
mized in a better way: an ideal penalty strength would limit
the sampling of infeasible solutions picked by the solver,
while preserving the details of the energy landscape of fea-
sible solutions. While we tuned the penalty strength empir-
ically in this work, there are ideas available in the litera-
ture that suggest more systematic approaches (for example,
in [33] and [34]).
From this work, we point out the strong performance of

quantum–classical hybrid approaches, such as in D-Wave’s
leap hybrid solver used here, which can lead to significantly
better results than only classical or only quantum approaches.
The results presented in this work demonstrate the compet-
itive advantage that quantum computing can already offer
in challenging problems encountered in the manufacturing
sector. In our point of view, this study underlines the revolu-
tionary potential of quantum computing in themanufacturing
sector and the role it could play in the reshaping of industry.
In addition to our findings, future work could explore

the use of domain-wall encoding to further enhance the ef-
ficiency of encoding optimization problems into physical
qubits. Domain-wall encoding represents a variable with N
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possible states using N−1 binary variables. This encoding
method not only reduces the number of required qubits but
also requires fewer and simpler penalty terms, which can im-
prove the performance of quantum annealers. The potential
benefits of domain-wall encoding have been demonstrated in
various studies, showing improved embedding efficiency and
performance in quantum optimization problems [35], [36],
[37]. By incorporating domain-wall encoding, larger prob-
lem instances could be encoded more efficiently, potentially
allowing quantum annealers to tackle even more complex
and large-scale industrial problems.
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