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ABSTRACT Relaxation is a common way for dealing with combinatorial optimization problems. Quantum
random-access optimization (QRAO) is a quantum-relaxation-based optimizer that uses fewer qubits than
the number of bits in the original problem by encoding multiple variables per qubit using quantum random-
access code (QRAC). Reducing the number of qubits will alleviate physical noise (typically, decoherence),
and as a result, the quality of the binary solution of QRAO may be robust against noise, which is, however,
unknown. In this article, we numerically demonstrate that the mean approximation ratio of the (3, 1)-QRAC
Hamiltonian, i.e., the Hamiltonian utilizing the encoding of three bits into one qubit byQRAC, is less affected
by noise compared with the conventional Ising Hamiltonian used in the quantum annealer and the quantum
approximate optimization algorithm. Based on this observation, we discuss a plausible mechanism behind
the robustness of QRAO under depolarizing noise. Finally, we assess the number of shots required to estimate
the values of binary variables correctly under depolarizing noise and show that the (3, 1)-QRACHamiltonian
requires less shots to achieve the same accuracy compared with the Ising Hamiltonian.

INDEX TERMS Combinatorial optimization, depolarizing noise, quantum random-access code (QRAC),
quantum relaxation.

I. INTRODUCTION
Combinatorial optimization is the task of finding an opti-
mum value of a function defined on some finite domain [1].
The task has a wide range of applications ranging from
industry [2], [3] to finance [4], [5]. Quantum-relaxation-
based optimizers, such as variational quantum eigensolver
(VQE) [6] and quantum approximate optimization algorithm
(QAOA) [7], [8], have been thoroughly investigated, but they
share a common scalability problem [9] when executed on
a real quantum device. That is, on real quantum devices,
the number of sequential gate operations while sustaining
a coherent quantum state is restricted by noisy operations,
such as decoherence and the limited number of qubits [10].
One way to recover scalability is to reduce the number of
qubits in a circuit, for example, by cutting a large circuit into
smaller subcircuits with fewer qubits and less sequential gate
operations [11]. In quantum algorithms for optimization, the

number of qubits employed is determined by the encoding of
a problem, i.e., how to map classical variables onto qubits.
Various encodings have been proposed to achieve a more
efficient encoding [12], [13]. Among them is the quantum
random-access optimization (QRAO) algorithm proposed by
Fuller et al. [14], which utilizes quantum random-access code
(QRAC) [15] to encode multiple binary variables per qubit,
thereby reducing the number of qubits required for problem
mapping.
QRAC was first proposed in the context of communi-

cation in order to encode as many classical bits per qubit
as possible. The central idea was to exceed the Holevo
bound [16] that forbids encoding m bits into less number
of qubits without information loss by allowing a possibil-
ity of decoding the wrong bit. The encoding of m binary
variables on n qubits with decoding probability p is de-
noted as (m, n, p)-QRAC [15]. There are (2,1,0.85)-QRAC,
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(3,1,0.78)-QRAC [15], [17], and several other constructions
of (m, 2, p > 1/2)-QRAC [18], [19], [20]. For simplicity,
the probability p > 1/2 in (m, n, p)-QRAC is omitted and
written as (m, n)-QRAC from now on.

QRAO [14], [21], [22], [23] differs from algorithms, such
as QAOA, in that it involves a process called the quantum
state rounding. Quantum state rounding is the mapping of
the candidate quantum state (with continuous degree of free-
dom) obtained by a quantum optimizer, such as VQE, onto a
binary solution (with discrete degree of freedom). Because a
candidate state perturbed by noise may still be mapped to the
same binary solution, we have the intuition that the solution
of QRAO may be robust to noise. In this article, therefore,
we investigate the effect of noise on the quality of the binary
solution obtained by QRAO in the following manner.

1) We encode the same combinatorial optimization prob-
lems onto two Hamiltonians: the QRAC Hamiltonian
and the Ising Hamiltonian.

2) We then use the same ansatz and optimizer for the
VQE to obtain the candidate states for both the cases of
Hamiltonian. We do not use the QAOA approach be-
cause it is not commonly used in the context of QRAO;
instead, the VQE ansatz is typically employed. In our
study, we use the VQE ansatz for the Ising Hamiltonian
because our objective is to explore the properties of
QRAO by comparing the QRAC Hamiltonian with the
Ising Hamiltonian.

3) Finally, we compare the binary solutions using the
approximation ratio, which is the ratio between the
value of cost function of the binary solution at hand
and the optimal binary solution. Note that, while the
effect of noise on QRAC in its original context has
been reported [24], the effect of noise on QRAC in the
context of optimization is unknown.

Here is the summary of the result.We demonstrate through
simulation using a noiseless device that as the problem size
increases, the mean approximation ratio resulting from the
(3, 1)-QRAC Hamiltonian exceeds the mean approximation
ratio resulting from the Ising Hamiltonian. The simulation
results under fake noise [25] show that the mean approx-
imation ratio obtained by the (3, 1)-QRAC Hamiltonian is
more robust to noise than in the Ising Hamiltonian case. We
provide a theoretical explanation for the effect of noise on
the mean approximation ratio of QRAO by assuming depo-
larizing noise. Finally, we derive the order of shots required
in Pauli rounding to achieve a given successful decoding
probability under depolarizing noise.

II. PRELIMINARY
A. MAXIMUM CUT (MAXCUT) PROBLEM
In this article, we deal with the unweightedMaxCut problem.
The MaxCut problem is an NP-hard combinatorial problem
involving undirected graphs [26]. Given an undirected graph
G with |V | nodes labeled vi and |E| edges labeled ei, j, the

FIGURE 1. (a) One of the optimal configurations of the MaxCut problem
for a four-node graph. (b) Example of a Ising encoding for a four-node
graph using four qubits, where Zi corresponds to the Pauli matrix Z on
the qubit index i. (c) Example of a (3, 1)-QRAC encoding for a four-node
graph using two qubits, where Pi corresponds to the Pauli matrix
P ∈ {X,Y, Z} on the qubit index i.

objective of the MaxCut problem is to find a configuration
mi ∈ {0, 1} that maximizes the cost function

max
m∈{0,1}|V |

cut(m) (1)

where

cut(m) := 1

2

∑
ei, j∈E

(1 − (−1)mi+mj ).

For example, one of the optimal solutions to the MaxCut
problem for a four-node graph is shown in Fig. 1(a), where
three out of three edges are included in the cut.
The solution accuracy is evaluated by the approximation

ratio defined by the ratio between the obtained cut value
cut(m) and the optimal cut value cut(m∗). The approximation
ratio γ = cut(m)/cut(m∗) is a real number ranging from 0
to 1. For example, the approximation ratio of the output in
Fig. 1(a) is γ = 3/3 = 1.0.

B. QUANTUM RANDOM-ACCESS OPTIMIZATION
QRAO [14] is a relaxation-based optimization algorithm that
uses QRAC to solve binary optimization problems. The use
of QRAC enables us to save the number of qubits to one-third
as many qubits as the number of binary variables (bits). De-
coding the binary solution from the qubits requires a specific
measurement procedure rather than a simple measurement
in the computational basis. QRAO consists of three steps:
encoding, optimization, and rounding. In encoding, we con-
struct the QRAC Hamiltonian, which encodes the binary op-
timization problem in a relaxed manner. In optimization, the
VQE is carried out based on the QRAC Hamiltonian. The
binary solution is then estimated from the resulting quantum
state through a measurement process termed quantum state
rounding. In this section, we overview each step of the
algorithm with the MaxCut problem as an example.

1) ENCODING
In this article, we define encoding as the embedding of clas-
sical bits into qubits. In the conventional Ising-type formula-
tion [7], the classical bit 0 is encoded to |0〉 and 1 to |1〉, which
can be viewed as the ith node of the graph is assigned to the
Pauli matrix Zi supported by the ith qubit. Hence, the score
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FIGURE 2. (a) Bloch sphere representation of (3,1)-QRAC. (b) Bloch
sphere representation of the depolarizing channel with error probability
0.5.

of ei, j is defined as 1
2 (I − ZiZ j ). As a result, the MaxCut

problem of a graph G is equivalent to the maximization of
the mean value of the following Ising Hamiltonian:

HIsing = 1

2

∑
ei, j∈E

(I − ZiZ j ). (2)

In the QRAC formulation, the classical bits (x1, x2, and x3)
are encoded to a single qubit as

f (x1, x2, x3) =
1

2

(
I + 1√

3
((−1)x1X + (−1)x2Y + (−1)x3Z)

)
(3)

where X,Y , and Z are Pauli matrices, I is the identity matrix,
and x1, x2, x3 ∈ {0, 1}. The encoded states are plotted at the
vertices of a cube in the Bloch sphere, as in Fig. 2(a). One can
assign at most three nodes to each qubit with the constraint
that adjacent nodes must be assigned to different qubits. The
Hamiltonian is constructed as

H = 1

2

∑
ei, j∈E

(I − 3PiPj ) (4)

where Pi corresponds to the Pauli matrix assigned to the ith
node. For a candidate state F (m) that is a product state of f ,
we have [14]

Tr(F (m)H ) = cut(m).

Note that asH is a relaxedHamiltonian, the expectation value
may exceed the maximum cut value. The relation between
the cut value and the (3, 1)-QRACHamiltonian is clarified in
Section II-B3b. We expect that maximizing the expectation
value of the candidate state with respect to the Hamiltonian
results in a closer state to F (m).

2) OPTIMIZATION
In the optimization step, the expectation value of the
QRAC Hamiltonian is maximized by varying the quan-
tum state via variational methods, such as VQE, QAOA,

FIGURE 3. Four-qubit single-layer hardware-efficient ansatz with linear
entanglement.

or other more recent ones [27], [28]. In the present study,
we carry out the VQE with the hardware efficient [29]
to obtain the candidate state. An example of the ansatz
with four qubits is shown in Fig. 3. Although we are
aware that there are various optimizers for parameter-
ized quantum circuits (PQCs), including free-axis selec-
tion [30], and free-quaternion selection [31], [32], we consis-
tently used the Nakanishi–Fujii–Todo (NFT) algorithm (also
termed Rotosolve) [33], [34] for both the Ising and QRAC
Hamiltonians.

3) QUANTUM STATE ROUNDING
The maximum-eigenvalue eigenstates of the Ising Hamilto-
nian directly correspond to the classical solution because the
Ising Hamiltonian is diagonal in the computational basis.
To obtain the classical solution, therefore, one needs only
to apply measurement in the computational basis {|0〉, |1〉}.
In contrast, the eigenstates of the (3, 1)-QRAC Hamiltonian
are not necessarily diagonal in the computational basis; the
obtained eigenstates are in entanglement and superposition in
general. To obtain the classical solution, a procedure called
quantum state rounding is required. QRAO has two methods
of rounding: Pauli rounding and magic state rounding [14].

a) Pauli rounding
In Pauli rounding, the classical bits are decoded by estimat-
ing the expectation values of Pauli matrices as observables.
Given a candidate state ρ, the classical bit is decoded by es-
timating the sign of the trace value Tr(Piρ), where Pi denotes
the Pauli matrix corresponding to the node i. If the trace value
is positive, +1 is assigned, if negative, −1 is assigned, and if
0, a bit of 0 or 1 is assigned uniformly at random. For the case
of example shown in Fig. 1(c), when the corresponding qubit
index and the Pauli string for node 0 are 0 andX , respectively,
Tr[(X ⊗ I)ρ] is used to decode the classical bit of node 0.
Here, the Pauli matrix on the far left corresponds to the qubit
with the smallest index.

VOLUME 5, 2024 3103009
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FIGURE 4. Quantum state rounding results of candidate states obtained via the VQE. The number of nodes on the x-axis corresponds to three plots
positioned to the left, center, and right. The error bars denote the 95% confidence intervals. (a) Results under no noise. (b) Results of fake back-end
FakeMumbaiV2 [25] provided by IBM. (c) Results under depolarizing noise with error probability 1% on the controlled-NOT gates. (d)–(f) Mean of the VQE
energy ratio corresponding to the candidate states of (a)–(c), respectively, where orange refers to the QRAC Hamiltonian and black the Ising
Hamiltonian. The VQE energy ratio for the QRAC Hamiltonian has been rescaled.

b) Magic state rounding
In magic state rounding, each qubit of the candidate state
is measured along the following four bases uniformly at
random:

μ±
1 = 1

2

(
I ± 1√

3
(X + Y + Z)

)

μ±
2 = 1

2

(
I ± 1√

3
(X − Y − Z)

)

μ±
3 = 1

2

(
I ± 1√

3
(−X + Y − Z)

)

μ±
4 = 1

2

(
I ± 1√

3
(−X − Y + Z)

)
.

This procedure is equivalent to mapping each qubit to one
of the eight states shown in Fig. 2(a). A single iteration of
magic state rounding involves measuring each qubit on the
randomly assigned basis {μ+

i , μ−
i }, where i ∈ [4]. This is

repeated for a number of times, and the solution with the
highest approximation ratio becomes the final output. The
lower bound for the expected approximation ratio for magic
state rounding is known to be [14]

E(γ ) = E

[
cut(m)

cut(m∗)

]

= E
[
Tr(M⊗n(ρ)H )

]
Tr(F (m∗)H )

≥ 5

9
(5)

where F (m∗) is a map that achieves Tr(F (m∗)H ) = cut(m∗),
and m∗ is the optimal configuration. Here, M⊗n(ρ) is de-
fined as the n-qubit state resulting from a single shot of magic
state rounding, which is a product state of the eight QRAC
states shown in Fig. 2(a) in the case of (3, 1)-QRAC [14].
A recent study has revealed that the expected value of
the (3,1)-QRAC Hamiltonian has the relation Tr(Hρ) =
9E(Tr(M⊗n(ρ)H )) − 4|E|, whereE(Tr(M⊗n(ρ)H )) repre-
sents the expected cut value via magic state rounding [23].

III. RESULTS AND DISCUSSION
Our main result is shown in Fig. 4. We will, henceforth,
refer to the (3, 1)-QRAC Hamiltonian as the QRAC Hamil-
tonian. The approximation ratio corresponding to the QRAC
Hamiltonian is obtained by Pauli rounding unless specified
otherwise.

A. SIMULATION RESULTS OF QRAO UNDER NOISE
To examine the effect of noise on the approximation ratio of
QRAO, we solved the MaxCut problem for random three-
regular graphs with the QRAC Hamiltonian and the Ising
Hamiltonian using candidate states obtained by using the
following devices:

1) statevector simulator without noise;
2) statevector simulator with fake noise;
3) statevector simulator with depolarizing noise with er-

ror probability 1% on all the controlled-not gates.

3103009 VOLUME 5, 2024



Tamura et al.: NOISE ROBUSTNESS OF QUANTUM RELAXATION FOR COMBINATORIAL OPTIMIZATION Engineeringuantum
Transactions onIEEE

The VQE was executed with 1024 shots for each Pauli
term to estimate the energy expectation value. Fake noise
refers to a noise model that mimics the behavior of a real
device by combining the single-qubit depolarizing error,
single-qubit thermal relaxation error, two-qubit depolarizing
error, and the single-qubit readout error, whose parameters
are tuned based on real system snapshots [25]. For both the
types of Hamiltonian, the candidate states were prepared via
the VQE with three layers of the hardware efficient ansatz
shown in Fig. 3(b) and two parameter sweeps with the NFT
algorithm. Here, two parameter sweeps refer to the process of
updating each parameter in the parameterized circuit (ansatz)
twice via the NFT optimizer. We employed the linear entan-
glement ansatz, in which case the controlled-not gate depth
is n− 1 for n qubits per layer. Noisy simulations for graphs
with 20 nodes or more via the Ising Hamiltonian could not
be executed in a reasonable amount of time. This constraint
arises from the fact that we performed noisy simulations.
Noisy simulations can be done by either the density ma-
trix simulator or the statevector simulator. The former uses
2n × 2n matrices for n-qubit simulations, and the latter re-
quires extensive sampling to simulate the effect of noise. The
mean approximation ratio γ |V | for 50 |V |-node graphs for the
Ising Hamiltonian and the QRAC Hamiltonian (magic state
rounding) is defined by

γ |V | = 1

25000

50∑
j=1

500∑
k=1

(γ|V | j )k

where |V | j denotes the number of nodes of the jth graph
ranging from j = 1 to 50, and k denotes the kth measurement
result. The mean approximation ratio γ |V | for 50 |V |-node
graphs of the QRAC Hamiltonian via Pauli rounding is
defined by

γ |V | = 1

50

50∑
j=1

γ|V | j .

The mean approximation ratios obtained by the respective
devices are shown in Fig. 4(a)–(c). The error bars of the mean
approximation ratios represent the 95% confidence intervals
defined by(

γ |V | − 1.96
σγ |V |√
25000

, γ |V | + 1.96
σγ |V |√
25000

)

for the Ising Hamiltonian and the QRAC Hamiltonian via
magic state rounding, where

σγ |V | =
√√√√ 1

25000

50∑
j=1

500∑
k=1

(
(γ|V | j )k − γ |V |

)2

and (
γ |V | − 1.96

σγ |V |√
50

, γ |V | + 1.96
σγ |V |√
50

)

for the QRAC Hamiltonian via Pauli rounding, where

σγ |V | =
√√√√ 1

50

50∑
j=1

(
γ|V | j − γ |V |

)2
.

The ratio between the achieved energy of the candidate state
and the maximum eigenvalue of the Hamiltonian is shown in
Fig. 4(d)–(f), along with 95% confidence intervals. The VQE
energy ratio for 50 |V |-node three-regular graphs is defined
by

E(|V |) = 1

50

50∑
j=1

Ẽ j

where

Ẽ j :=
Ej − Ej,max

Ej,max − Ej,min

and the 95% confidence interval is defined by⎛
⎝E(|V |) − 1.96√

50

√√√√ 50∑
j=1

(
Ẽ j − E(|V |))2

E(|V |) + 1.96√
50

√√√√ 50∑
j=1

(
Ẽ j − E(|V |))2

⎞
⎠

where Ej is the VQE energy expectation value for the jth
graph, and Ej,min and Ej,max are the minimum and maximum
eigenvalues of the jth graph, respectively. Note that the VQE
energy Ej for the QRAC Hamiltonian has been rescaled by
(Ej − Ej,min)/(Ej,max − Ej,min). For each number of nodes,
50 random three-regular graphs were solved.
Fig. 4(a) shows the simulation results of the statevector

simulator without noise. It shows that as the problem size
characterized by the number of nodes increases, the mean
approximation ratio of the QRAC Hamiltonian exceeds that
of the Ising Hamiltonian. The mean approximation ratio of
the Ising Hamiltonian shows a significant decline outside
the 95% confidence interval from 8 to 20 nodes, while the
mean approximation ratio of the QRAC Hamiltonian does
not. From Fig. 4(d), we observe that there is no significant
difference in the VQE energy ratio between the candidate
states of the QRAC Hamiltonian and the Ising Hamiltonian
at 20 nodes ormore. However, themean approximation of the
QRAC Hamiltonian at 20 nodes is significantly higher than
that of the Ising Hamiltonian. This indicates that the QRAC
tends to yield a higher approximation ratio with respect to
the VQE energy ratio.
Fig. 4(b) shows the mean approximation ratios obtained

under fake noise. By comparing Fig. 4(a) and 4(b), we find
that the mean approximation ratio of the Ising Hamiltonian
shows a significant decline when subjected to noise, while
the mean approximation ratio of the QRAC Hamiltonian
does not. This implies that the mean approximation ratio of
the QRAC Hamiltonian via Pauli rounding is robust to noise
compared to the Ising Hamiltonian. Furthermore, the mean
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approximation ratios of the QRAC Hamiltonian are higher
than those of the Ising Hamiltonian with 12 and 16 nodes.
Fig. 4(c) shows the mean approximation ratio with the

candidate states obtained under depolarizing noise with error
probability 1% on the controlled-not gate. By comparing
Fig. 4(a) and 4(c), we find that the mean approximation ratio
of the QRAC Hamiltonian is robust to depolarizing noise as
well. The simulation results under depolarizing noise cap-
ture the noise robustness of QRAO. We, therefore, explain
the noise robustness of QRAO under the assumption of
depolarizing noise in Section III-B.

B. QRAO UNDER DEPOLARIZING NOISE
Depolarizing noise is where an n-qubit quantum state ρ is
mapped onto a linear combination of the unaffected state ρ

and the completely mixed state I/2n. The noise model has a
parameter p ∈ [0, 1], which can be interpreted as the prob-
ability that the state ρ remains unaffected by depolarizing
noise. The state after a single application of depolarizing
noise can be denoted as

Dp(ρ) = pρ + (1 − p)
I

2n
. (6)

Depolarizing noise has the effect of “shrinking” the Bloch
sphere, as shown in Fig. 2(b). After N applications of
depolarizing noise, the resulting state becomes [35]

DN
p (ρ) = pNρ + (

1 − pN
) I

2n
(7)

where N refers to the depth of noisy controlled-not gates in
the circuit.
The robustness of the approximation ratio of Pauli round-

ing can be explained by the fact that the sign of the trace
values is unaffected by depolarizing noise

Tr(PjDN
p (ρ)) = Tr

[
Pj

(
pNρ + (1 − pN )

I

2n

)]

= pNTr[Pjρ] + (1 − pN )Tr

[
Pj

I

2n

]

= pNTr[Pjρ] (8)

where Pj is the Pauli matrix corresponding to the jth node,
N is the number of depolarizing noise applications, n is the
number of qubits of ρ, and ρ is the candidate state of the
Hamiltonian. While the sign remains unchanged, the abso-
lute trace values decrease under depolarizing noise, causing
the number of shots required to correctly estimate their sign
to increase. Suppose that |V | Pauli matrices are assigned to
a |V |-node graph. To estimate the sign of the trace value
corresponding to each node with error probability at most δ,
the minimum number of shots S is derived in the Appendix
as

S ≥ ln(1/δ)

2ε2

and the order of shots as

O
(
ln(|V |)

ε2

)
.

Here, ε > 0 is defined by Pr(Xi j = 1) = 1/2 + ε, where Xi j
denotes themeasurement result of 0 or 1 corresponding to the
ith shot with respect to the Pauli matrix Pj assigned to the jth
node. For |V | Pauli matrices, the order of shots becomes

O
( |V | ln(|V |)

ε2

)
. (9)

As seen in (9), the order of shots grows quadratically with the
decrease of ε. Under depolarizing noise, ε has the relation

ε = −pNTr(Pjρ)/2.

The minimum number of shots required under depolarizing
noise can, thus, be written as

S ≥ 2 ln(1/δ)

p2 NTr(Pjρ)2
.

The inequality demonstrates the relationship between the
number of qubits used and the minimum number of shots
necessary to estimate Tr(Pjρ) under depolarizing noise.
Since the inequality can be applied to both the QRAC and
Ising Hamiltonians, it also indicates that the QRAC Hamil-
tonian requires fewer shots than the Ising Hamiltonian under
depolarizing noise. The number of shots required to correctly
estimate all the trace values correctly grows exponentially
with the number of depolarizing noise applicationsN and the
number of nodes |V |, assuming that the QRAC Hamiltonian
achieves the maximum compression rate where a |V |-node
graph is encoded on one-third qubits, and that the candidate
state is obtained via an ansatz with l linear entanglement
layers whose controlled-not gates are under depolarizing
noise. This results in N = NCNOT = l|V | depolarizing noise
applications, whereNCNOT denotes the number of controlled-
not gates in the l-layered ansatz. The ratio of the minimum
number of shots required for the QRAC Hamiltonian to the

Ising Hamiltonian is then given by p
4
3 l|V |, which indicates

that estimating the correct configuration of all the nodes with
the same level of accuracy requires more shots with the Ising
Hamiltonian than with the QRAC Hamiltonian.
The effect of depolarizing noise on the expected approx-

imation ratio of magic state rounding is as follows. Let
ρ1 and ρ3 be density matrices corresponding to the Ising
Hamiltonian H1 and the QRAC Hamiltonian H3 that satisfy
Tr(H1ρ1) = cut(m∗) and Tr(H3ρ3) ≥ cut(m∗), respectively.
Without noise, the expected approximation ratio for ρ1 is
given by

E(γ1) = Tr(Hρ1)

cut(m∗)
= 1 (10)

whereas the expected approximation ratio for ρ3 via magic
state rounding is given by

E(γ3) = E
[
Tr
{M⊗n3 (ρ3)H

}]
cut(m∗) ≥ 5

9
(11)
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where n3 represents the number of qubits of ρ3. Now, let
us consider parameterized circuits that output ρ1 and ρ3.
We approximate the maximum-eigenvalue eigenstates by the
VQE under depolarizing noise by assuming that the param-
eterized circuits contain N operations under the influence
of depolarizing noise. The circuits that, otherwise, output
ρ1 and ρ3 now output DN1

p (ρ1) and DN3
p (ρ3). The expected

approximation ratio of magic state rounding corresponding
to the resulting noisy states can be derived as

E(γ ′
1) = pN1 + (1 − pN1 )

|E|
2cut(m∗)

(12)

for the Ising Hamiltonian and

E(γ ′
3) =

E

[
Tr
{
M⊗n3 (DN3

p (ρ3))H
}]

cut(m∗)

≥ 5

9
pN3 + (1 − pN3 )

|E|
2cut(m∗)

(13)

for the QRAC Hamiltonian. Assuming that p ∈ (0, 1), N1 >

N3, and thus pN1 > pN3 , the inequality E(γ ′
3) ≥ E(γ ′

1) holds
only when cut(m∗)/|E| ≥ 9/10. This may seem restrictive,
but this constraint is to ensure that at one point the lower
bound of the expected approximation ratio of the QRAC
Hamiltonian exceeds the expected approximation ratio of the
Ising Hamiltonian. Because the lower bound is considered
for the QRAC Hamiltonian, it is possible for the expected
approximation ratio for the QRAC Hamiltonian to exceed
that of the Ising Hamiltonian with graphs that do not fulfill
cut(m∗)/|E| ≥ 9/10.
Considering graphs that satisfy |E| = cut(m∗), we can an-

alyze the expected approximation ratios of the Ising Hamil-
tonian and the QRAC Hamiltonian with respect to the num-
ber of noisy operations the candidate states have undergone.
We consider the ideal case where the QRAC Hamiltonian
requires one-third the number of qubits compared to the Ising
Hamiltonian, and thus, the QRAC candidate state ρ3 goes
through the depolarizing channel one-third the number of
times the Ising Hamiltonian candidate state ρ1 does. Fig. 5
shows that there exists an N1, where the lower bound of
the expected approximation ratio of the QRAC Hamiltonian
exceeds that of the Ising Hamiltonian under depolarizing
noise with error probability 1%. The intersection pointN1 de-
creases as the success probability of each depolarizing noise
application declines. Fig. 5 assumes the maximum eigenstate
for the Ising Hamiltonian and a state with a higher energy
than the maximum cut value for the QRAC Hamiltonian.
The difficulty of obtaining the respective states is not taken
into consideration, and therefore, Fig. 5 does not necessarily
suggest that the Ising Hamiltonian could be more favorable
given certain problem instances.
The robustness of the approximation ratio of the QRAC

Hamiltonian compared to the Ising Hamiltonian can be ex-
plained by the fact that the QRAC Hamiltonian requires
fewer qubits to encode the same problem than the Ising

FIGURE 5. Expected approximation ratios of the QRAC Hamiltonian via
magic state rounding and the Ising Hamiltonian under depolarizing noise
with success probability p = 0.99 and the minimum number of
depolarizing noise applications required to achieve
5
9 pN3 + (1 − pN3 )/2 ≥ E(γ ′

1). It is assumed that N1 = 3N3 and
|E|/cut(m∗ ) = 1 ≥ 9/10.

Hamiltonian. With fewer qubits, the amount of noisy oper-
ations in the PQC is reduced, leading to a candidate state
that is less affected by noise. In addition, for Pauli rounding,
the robustness is due to the sign of the trace value remaining
unaffected under isotropic noise such as depolarizing noise.

IV. CONCLUSION
In this article, we have shown that the mean approximation
of QRAO with the QRAC Hamiltonian is more robust to
noise compared to the Ising Hamiltonian. We have observed
that under fake noise, the mean approximation of the Ising
Hamiltonian drops out of the 95% confidence interval, while
the mean approximation ratio of the QRAC Hamiltonian
does not. In addition, the mean approximation ratio of the
QRAC Hamiltonian has been shown to exceed the mean
approximation ratio of the Ising Hamiltonian as the problem
size increases, even in the absence of noise. We have shown
that the mean approximation ratio of the QRACHamiltonian
is higher in relation to its VQE energy ratio compared to
the Ising Hamiltonian. Under the assumption of depolariz-
ing noise, we have explained the robustness of the mean
approximation ratio of QRAO by the fact that the sign of the
trace values remain unaffected, and have explained the effect
of depolarizing noise on the mean approximation ratio of
QRAO via magic state rounding by the fact that the candidate
state of the QRAC Hamiltonian undergoes less noisy opera-
tions in VQE compared to the Ising Hamiltonian due to using
fewer qubits. Finally, we have shown that the number of shots
required to estimate the correct binary solution with the same
level of accuracy is less for the QRAC Hamiltonian, and that
the difference increases along with the problem size and the
level of noise. These facts indicate that the use of QRAO
becomes an evermore realistic option as the problem size
increases under noise, because the mean approximation ratio
of the QRAC Hamiltonian is expected to exceed the mean
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TABLE 1. ith Measurement Result Corresponding to the Pauli Matrix Pj ,
Where j Is the Node Number

approximation ratio of the Ising Hamiltonian and requires
fewer qubits and shots.

APPENDIX
HOEFFDING–CHERNOFF BOUND FOR PAULI ROUNDING
Given a PQC with optimized parameters, apply the appro-
priate gate operation to all qubits and perform measurement
in the computational basis to estimate the trace values corre-
sponding to the Pauli matrix X , Y , or Z. The appropriate gate
operation is the Hadamard gate for the Pauli matrix X , the
Hadamard gate, and then the phase gate for the Pauli matrix
Y , and for the Pauli matrix Z, no gate operation is necessary.

Let us consider a graph with |V | nodes, where the Pauli
matrix corresponding to the jth node is denoted Pj. The
measurement results across S shots for the Pauli matrices
P1–Pm are shown in Table 1.

After S shots, we have S measurement results for each
node j as X1 j,X2 j, . . . ,XS j. The trace value is estimated as

Tr(Pjρ) = 2

(
1 −

∑S
i=1 Xi j
S

)
− 1

= 1 − 2

∑S
i=1 Xi j
S

= 1 − 2
h j1
S

.

Assume that Pr[Xi, j = 1] = 1
2 + ε, where Pr[Xi, j = 1] is the

expectation value of the measurement outcome of Xi, j, and
ε > 0. Note that under this assumption, the trace value is al-
ways negative. We estimate the sign of the trace value incor-
rectly when h j1 = ∑S

i=1 Xi j ≤ S/2, which leads to a positive
sign.
Chernoff–Hoeffding Bound: Let X1 j,X2 j, . . . ,XS j be in-

dependent random variables in {0, 1}with Pr[Xi, j = 1] = p j.

Let h j1 = ∑S
i=1 Xi j, μ j = E[h j1] = Sp j. Then, for any λ > 0,

we have

Pr
[
h j1 ≤ μ j − λ

]
≤ exp

(
−2λ2

S

)
.

By substituting μ with S(1/2 + ε) and λ with εS, we obtain

Pr
[
h j1 ≤ μ j − λ

]
= Pr

[
h j1 ≤ S

(
1

2
+ ε

)
− εS

]

= Pr

[
h j1 ≤ S

2

]
≤ exp(−2Sε2).

Now, we would like to bound the probability of estimating
the sign of the trace value incorrectly with δ as

Pr

[
h j1 ≤ S

2

]
≤ exp

(
−2Sε2

)
≤ δ.

From the aforementioned inequality, it follows that

S ≥ ln(1/δ)

2ε2
.

The probability of correctly estimating the sign of the
trace values corresponding to all Pauli matrices is given by
(1 − δ)|V |, which should be close to 1. From Bernoulli’s in-
equality, we have

α ≤ (1 − δ)|V | ≤ exp(−δ|V |)
from which δ ≤ − ln(α)/|V | can be derived. Now, we have

S = O
(
ln(|V |)

ε2

)
.

For m Pauli matrices, the number of shots becomes

O
( |V | ln(|V |)

ε2

)
.

In the case where the candidate state ρ is affected by
depolarizing noise, the trace value becomes Tr(PjDN

p (ρ)) =
pNTr(Pjρ). With this in mind, the value of ε can be derived
as ε = −pNTr(Pjρ)/2. Note that the trace value is assumed
to be negative.

ACKNOWLEDGMENT
The views expressed are those of the authors and do not
reflect the official policy or position of IBM or the IBM
Quantum team.

REFERENCES
[1] M. Grotschel and L. Lovász, “Combinatorial optimization,”

in Handbook Combinatorics, vol. 2, Amsterdam, The Nether-
lands: Elsevier, 1995, pp. 1541–1597. [Online]. Available:
https://shop.elsevier.com/books/handbook-of-combinatorics-volume-2/
luisa/978-0-444-82351-9

[2] U. Azad, B. K. Behera, E. A. Ahmed, P. K. Panigrahi, and A. Farouk,
“Solving vehicle routing problem using quantum approximate opti-
mization algorithm,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 7,
pp. 7564–7573, Jul. 2023, doi: 10.1109/TITS.2022.3172241.

[3] K. Kurowski, T. Pecyna, M. Slysz, R. Różycki, G. Waligóra, and J.
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[20] L. Mančinska and S. AL Storgaard, “The geometry of Bloch space in the
context of quantum random access codes,”Quantum Inf. Process., vol. 21,
no. 4, pp. 1–16, 2022, doi: 10.1007/S11128-022-03470-4.

[21] K. Teramoto, R. Raymond, and H. Imai, “The role of entangle-
ment in quantum-relaxation based optimization algorithms,” in Proc.
2023 IEEE Int. Conf. Quantum Comput. Eng., 2023, pp. 543–553,
doi: 10.1109/QCE57702.2023.00068.

[22] K. Teramoto, R. Raymond, E. Wakakuwa, and H. Imai, “Quantum-
relaxation based optimization algorithms: Theoretical extensions,” 2023,
arXiv:2302.09481, doi: 10.48550/arXiv.2302.09481.

[23] R. Kondo, Y. Sato, R. Raymond, and N. Yamamoto, “Recursive
quantum relaxation for combinatorial optimization problems,” 2024,
arXiv:2403.02045, doi: 10.48550/arXiv.2403.02045.

[24] A. R. da Silva and B. Marques, “Semidefinite-programming-based op-
timization of quantum random access codes over noisy channels,”
Phys. Rev. A, vol. 107, 2023, Art. no. 042433, doi: 10.1103/Phys-
RevA.107.042433.

[25] Qiskit contributors, “Qiskit: An open-source framework for quantum com-
puting,” 2023. [Online]. Available: https://github.com/Qiskit/qiskit

[26] R. M. Karp, Reducibility Among Combinatorial Problems. Boston, MA,
USA: Springer, 1972, pp. 85–103.

[27] M. Benedetti, M. Fiorentini, and M. Lubasch, “Hardware-efficient vari-
ational quantum algorithms for time evolution,” Phys. Rev. Res, vol. 3,
Jul. 2021, Art. no. 033083, doi: 10.1103/PhysRevResearch.3.033083.

[28] D. Amaro, C. Modica, M. Rosenkranz, M. Fiorentini, M. Benedetti,
and M. Lubasch, “Filtering variational quantum algorithms for combi-
natorial optimization,” Quantum Sci. Technol., vol. 7, no. 1, Feb. 2022,
Art. no. 015021, doi: 10.1088/2058-9565/ac3e54.

[29] A. Kandala et al., “Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets,” Nature, vol. 549, no. 7671,
pp. 242–246, 2017, doi: 10.1038/nature23879.

[30] H. C. Watanabe, R. Raymond, Y. -Y. Ohnishi, E. Kaminishi, and M. Sug-
awara, “Optimizing parametrized quantum circuits with free-axis single-
qubit gates,” IEEE Trans. Quantum Eng., vol. 4, 2023, Art. no. 3101016,
doi: 10.1109/TQE.2023.3286411.

[31] K. Wada et al., “Simulating time evolution with fully optimized single-
qubit gates on parametrized quantum circuits,” Phys. Rev. A, vol. 105,
no. 6, 2022, Art. no. 062421, doi: 10.1103/PhysRevA.105.062421.

[32] K. Wada, R. Raymond, Y. Sato, and H. C. Watanabe, “Full optimization
of a single-qubit gate on the generalized sequential quantum optimizer,”
2022, arXiv:2209.08535, doi: 10.48550/arXiv.2209.08535.

[33] K. M. Nakanishi, K. Fujii, and S. Todo, “Sequential minimal optimization
for quantum-classical hybrid algorithms,” Phys. Rev. Res., vol. 2, no. 4,
2020, Art. no. 043158, doi: 10.1103/PhysRevResearch.2.043158.

[34] M. Ostaszewski, E. Grant, and M. Benedetti, “Structure optimization for
parameterized quantum circuits,” Quantum, vol. 5, 2021, Art. no. 391,
doi: 10.22331/q-2021-01-28-391.

[35] T. Tanaka, Y. Suzuki, S. Uno, R. Raymond, T. Onodera, and N. Ya-
mamoto, “Amplitude estimation via maximum likelihood on noisy quan-
tum computer,” Quantum Inf. Process., vol. 20, no. 9, 2021, Art. no. 293,
doi: 10.1007/s11128-021-03215-9.

VOLUME 5, 2024 3103009

https://dx.doi.org/10.1038/s41598-019-43176-9
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1088/2058-9565/aab822
https://dx.doi.org/10.1145/3445814.3446758
https://dx.doi.org/10.22331/penalty -@M q-2021-05-04-454
https://dx.doi.org/10.22331/penalty -@M q-2021-05-04-454
https://dx.doi.org/10.1109/TQE.2021.3103050
https://dx.doi.org/10.48550/arXiv.2111.03167
https://dx.doi.org/10.1145/581771.581773
https://dx.doi.org/10.1088/1367-2630/8/8/129
https://dx.doi.org/10.1103/PhysRevA.95.052315
https://dx.doi.org/10.1103/PhysRevA.95.052315
https://research.ibm.com/publications/constructions-of-quantum-random-access-codes
https://research.ibm.com/publications/constructions-of-quantum-random-access-codes
https://dx.doi.org/10.1007/S11128-022-03470-4
https://dx.doi.org/10.1109/QCE57702.2023.00068
https://dx.doi.org/10.48550/arXiv.2302.09481
https://dx.doi.org/10.48550/arXiv.2403.02045
https://dx.doi.org/10.1103/PhysRevA.107.042433
https://dx.doi.org/10.1103/PhysRevA.107.042433
https://github.com/Qiskit/qiskit
https://dx.doi.org/10.1103/PhysRevResearch.3.033083
https://dx.doi.org/10.1088/2058-9565/ac3e54
https://dx.doi.org/10.1038/nature23879
https://dx.doi.org/10.1109/TQE.2023.3286411
https://dx.doi.org/10.1103/PhysRevA.105.062421
https://dx.doi.org/10.48550/arXiv.2209.08535
https://dx.doi.org/10.1103/PhysRevResearch.2.043158
https://dx.doi.org/10.22331/q-2021-01-28-391
https://dx.doi.org/10.1007/s11128-021-03215-9


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


