
Quantum Computing Engineeringuantum
Transactions onIEEE

Received 30 April 2024; revised 9 July 2024; accepted 9 July 2024; date of publication 17 July 2024;
date of current version 28 August 2024.

Digital Object Identifier 10.1109/TQE.2024.3429451

BeSnake: A Routing Algorithm for
Scalable Spin-Qubit Architectures
NIKIFOROS PARASKEVOPOULOS1,2 , CARMEN G. ALMUDEVER3 ,
AND SEBASTIAN FELD1,2
1Department of Quantum and Computer Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
2QuTech, Delft University of Technology, 2628 CJ Delft, The Netherlands
3Department of Computer Engineering, Universitat Politècnica de València, 46022 València, Spain

Corresponding author: Nikiforos Paraskevopoulos (e-mail: n.paraskevopoulos@tudelft.nl).

This work was supported in part by the Netherlands Organisation for Scientific Research through the Research Program OTP under
Grant 16278. The work of Carmen G. Almudever was supported in part by the Spanish Ministry of Science, Innovation and
Universities through the Beatriz Galindo Program 2020 under Grant BG20-00023 and in part by the European Regional Development
Fund under Grant PID2021-123627OB-C51.

ABSTRACT As quantum computing devices increase in size with respect to the number of qubits, two-qubit
interactions become more challenging, necessitating innovative and scalable qubit routing solutions. In this
work, we introduce beSnake, a novel algorithm specifically designed to address the intricate qubit routing
challenges in scalable spin-qubit architectures. Unlike traditional methods in superconducting architectures
that solely rely on swap operations, beSnake also incorporates the shuttle operation to optimize the execution
time and fidelity of quantum circuits and achieves fast computation times of the routing task itself. Employing
a simple breadth-first search approach, beSnake effectively manages the restrictions created by diverse
topologies and qubit positions acting as obstacles for up to 72% qubit density. It also has the option to adjust
the level of optimization and to dynamically tackle parallelized routing tasks, all the while maintaining noise
awareness. Our simulations demonstrate beSnake’s advantage over an existing routing solution on random
circuits and real quantum algorithms with up to 1000 qubits, showing an average improvement of up to 80%
in gate overhead, 54% in depth overhead, and up to 8.33 times faster routing times.

INDEX TERMS Quantum compilation, qubit mapping, qubit routing, routing algorithm, spin qubits.

I. INTRODUCTION
The quantum software’s ability to optimally transform
hardware-agnostic quantum circuits such that they comply
with all operational constraints of the architecture—a process
known as mapping—is at the forefront of quantum compiler
development right now [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. One of the tasks of the mapping process is to
account for the circuit’s two-qubit interactions and to deal
with constraints imposed by the device architectures, no-
tably the limited qubit connectivity. These restrictions are
overcome by carefully inserting swap gates and thus moving
quantum information around the devices—usually in near-
est neighbor positions—so that the needed two-qubit gates
can be performed. This particular process is also known as
qubit routing, and its effectiveness is paramount to maximize
the operational fidelity of noisy intermediate-scale quantum
(NISQ) [11] devices, which are highly prone to different
kinds of errors.

swap-based qubit routing algorithms have been exten-
sively developed for superconducting quantum devices [12],
[13], [14], [15], [16], [17], [18], [19] as these are the most
developed qubit technology when it comes to the number of
qubits and system availability in general. Spin-qubit devices,
however, are not as mature, and consequently, there are no
specialized routing techniques yet that can take advantage of
their unique features. The fundamental differentiating aspect
of a routing algorithm targeting spin-qubit architectures is the
primary method of communication. Here, the shuttling oper-
ation is used as a means of communication within the device
instead of swap gates used in superconducting technology.
Whereas a swap gate exchanges the quantum state of two
qubits, a shuttle operation results in the physical relocation
of a qubit. Note that swap gates can also be implemented
in spin-qubit devices; however, shuttling operations are pre-
ferred due to their superior operational fidelity and faster
execution time.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 5, 2024 3102822

https://orcid.org/0000-0002-6355-9317
https://orcid.org/0000-0002-3800-2357
https://orcid.org/0000-0003-2782-1469

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

Having said that, the shuttle operation brings unique rout-
ing challenges that have not been encountered before. A pri-
mary example is the need to have at least one, and prefer-
ably more, empty site for the qubits to be able to move,
as two qubits cannot be allocated to the same place at the
same time. Of course, this is not new for modular ion-trap or
neutral atom devices, as they also use shuttles for communi-
cation. However, due to their fundamental architectural and
topological differences with spin-qubit devices, the proposed
routing techniques are not compatible. In addition, routing
for spin-qubit devices deviates from the conventional notion
of only enabling two-qubit interactions. It also extends to
other types of operations benefiting from the shuttle oper-
ation, which necessitates innovative solutions that are able
to handle different cases. One of these operations is a fast
and low-error single-qubit shuttle-based Z rotation, as used
in this [20] crossbar architecture proposal.

On that note, a shuttle-based swap (SBS) routing algo-
rithm for a spin-qubit device has been introduced in [1].
Although it can perform qubit routing in polynomial time
in terms of the number of qubits, gates, or two-qubit gate
percentage, the algorithm is tightly coupled to the strict ar-
chitectural constraints of a crossbar architecture [20], making
it practically unusable for other architectures. To this date,
no routing algorithm has been proposed that fully takes ad-
vantage of the shuttle operation, adapts to any architecture,
and freely moves qubits around the topology. In this article,
we close this gap by presenting beSnake, a novel routing
algorithm for scalable spin-qubit architectures. In addition
to the mentioned characteristics, it is also able to simulta-
neously handle multiple two-qubit gates and shuttle-based
Z rotations, thus aiming at a low-circuit-depth overhead.
beSnake’s core design prioritizes execution speed, thus mak-
ing it suitable for high qubit counts. In order to further reduce
the computation time, it can be configured accordingly at
the expense of slightly higher gate overhead. Other design
considerations give beSnake the ability to choose less noisy
shuttling paths and, optionally, use swap operations, assum-
ing that the architecture supports them.
We have extensively evaluated beSnake by routing random

generated quantum circuits that stress-test all its capabilities.
Finally, comparisons with the SBS algorithm [1] on random
and real quantum circuits show on average an up to 80%
and 54% improvement in gate overhead and depth overhead,
respectively, and up to 8.33 times faster routing time.
The main contribution of this article is beSnake, the truly

first routing algorithm for scalable spin-qubit architectures.
It features the following novel characteristics:

1) utilizing the full freedom of the shuttle operation to
move qubits in any direction within a given topology;

2) efficiently handling complex routing scenarios involv-
ing parallelized two-qubit and shuttle-based Z gates;

3) adapting to various architecture topologies while being
noise-aware and able to adjust the level of optimiza-
tion;

4) significantly improving over the state of the art (the
SBS routing algorithm) with a considerable decrease
in gate and depth overhead for up to 1000 qubits.

The rest of this article is organized as follows. Section II
presents the problem statement regarding routing for
spin-qubit architectures with particular use of the shuttle
operation. In Section III, we discuss related work and their
limitations, including qubit routing techniques used in
other quantum technologies as well as algorithms used in
classical computing. We present beSnake in Section IV,
explain its internal functionality with three representative
examples, and discuss special routing cases in detail. Then,
in Section V, we thoroughly analyze the performance of
beSnake by considering several configurations related to
different levels of shortest path optimizations, the swap
replacement functionality, the behavior on more connected
topologies, and various qubit densities. In the same section,
we also compare beSnake with the SBS routing algorithm [1]
on random and real algorithms with up to 1000 qubits and
discuss the obtained improvements. Finally, Section VI
concludes this article and discusses future directions.

II. PROBLEM STATEMENT
Spin-qubit realizations come with unique physical charac-
teristics that make them a promising technology to scale
up quantum computing systems. The benefits of spin-qubits
include their remarkably small size—up to a thousand times
smaller than other qubit technologies—paired with extensive
experience in semiconductor manufacturing, prolonged co-
herence times (around to 20 µs) combined with short gate
durations (range of 100–200 ns), and the ability to operate
at higher temperatures [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30]. As for gate fidelities, they can achieve on
average 99.9% fidelity for single-qubit gates and 99% for
two-qubit gates [31], [32], [33]. The fundamental building
block offering such characteristics is the quantum dot, in
which a confined electron or a hole can define a physical
qubit [34]. The spin qubit can then be controlled electro-
magnetically through several carefully fabricated gate elec-
trodes around it. These electrodes can enable single-qubit
or two-qubit operations by precise pulse sequences across
various multiquantum dot arrangements. Such systems have
been extensively studied in 1-D and, recently, in 2-D array
formats [23], [35]. Taking, for instance, the crossbar archi-
tecture of [20] shown in Fig. 1(a), we can see the different
operational lines and sites where spin qubits can be ini-
tialized. In this case, they are initialized in a checkerboard
pattern. Two-qubit gates are only performed between two
vertically or horizontally adjacent qubits, meaning that this
architecture, or any architecture for that matter, only supports
nearest neighbor interactions. Therefore, its topology can be
represented by a 2-D grid, as shown in Fig. 1(b). Each node
(circle) represents a site of the grid, and each edge connecting
the nodes represents the possibility of interaction between the
two sites. This type of abstract view is interchangeably called

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

FIGURE 1. (a) Schematic overview of the crossbar architecture, taken from [1], with the various shared operational control lines: vertical (column line,
CL), horizontal (row line, RL), and diagonal (qubit line, QL). These lines are used with precise pulse sequences and shared among multiple sites, 16 in
this figure, to perform operations on the qubits [20], [38], [39]. Here, the qubits (green circles with numbers) are initialized in a checkerboard pattern.
(b) Abstraction of the crossbar architecture representing the coupling between qubits. Each circle represents a quantum dot, and each edge represents a
coupling link signifying allowed interactions.

either topology, coupling graph, or layout of the quantum
processor.
The problem of bringing the qubits to neighboring posi-

tions to execute a two-qubit gate is known as qubit routing.
During the NISQ era, it is crucial for the routing process to
strive for gate and depth overhead minimization of quantum
circuits due to devices suffering from high noise rates. As the
number of quantum dots in spin-qubit processors increases
in the future, operating them will be even more complex.
Qubit routing then becomes a key challenge, especially in
ever-increasing topology sizes.
Turning now our attention to other qubit technologies,

the central distinguishing aspect of spin-qubit quantum pro-
cessors is the primary communication method used for the
routing process. As mentioned, in superconducting devices,
qubits are “moved” employing swap gates, in which the
quantum state of two neighboring qubits is exchanged. Fur-
thermore, in many superconducting processors, the absence
of a native swap operation necessitates decomposition in
multiple cnot gates for its implementation, a process that
can incur significant errors. In contrast, in spin-qubit archi-
tectures, although swap operations are supported as well,
shuttling is the preferable communication operation as it
offers substantial advantages, including higher operational
fidelity and quicker execution time. Moreover, certain quan-
tum dots are deliberately left unoccupied to create free space
for facilitating qubit movements, as the shuttle process en-
tails the physical relocation of a qubit to an adjacent vacant
quantum dot.

However, this introduces new challenges, especially in
the context of a quantum compiler routing process, as high-
lighted in [1]. This is because, at any given moment, there
can be only one qubit per site; therefore, it is not physically
possible to shuttle a qubit in an already occupied quantum
dot. Consequently, there is a need to develop new qubit
routing strategies that avoid such conflicts and efficiently
move obstacle qubits away. Other limitations are related to
the unique constraints imposed by the classical control elec-
tronics, especially in those with shared control schemes [1],
which might create conflicts in certain cases when trying to
apply parallelized shuttle operations.
Broadly speaking, the main objective of a routing algo-

rithm is to determine the most efficient path(s) to satisfy
a list of, either parallelized or not, two-qubit gates while
respecting the architecture’s constraints and avoiding con-
flicts. Starting with a defined topology, initial physical and
virtual-to-physical qubit placement, the algorithm receives a
sequence of two-qubit gates, which, in most cases, cannot
be executed directly. Therefore, the primary objective of a
router is to identify and correctly integrate qubit movement
operations (i.e., shuttles or swaps) into the existing gate se-
quence to ensure that all two-qubit gates can be executed.
The overarching goal is to minimize the additional circuit
overhead required to achieve this. In the end, the final re-
vised sequence, which includes these movement operations,
constitutes the output of our routing algorithm. This process
was shown to be in complexity class NP-complete [36], [37]
and thus necessitates a fast solution, as the goal is to use it for

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

scalable architectures that will support thousands of qubits in
all sorts of topologies. To date, no algorithmic solution has
been proposed to tackle this specific path-finding problem in
a practically efficient way for the plethora of unique charac-
teristics of spin-qubit architectures.

III. RELATED WORK AND ITS LIMITATIONS
One can find problems in classical computer science that
are similar to qubit routing in spin-qubit architectures. One
example is the sliding tile puzzle (STP) [40] that aims
to achieve a specified arrangement with the least possible
moves within a squared grid by orthogonally sliding tiles
into an empty slot. One established method for addressing
this problem has been the interactive deepeningA* algorithm
assisted with a precomputed pattern database to increase the
accuracy of the admissible heuristic [41], [42]. Inmore recent
work, a 24-tile STP instance was solved using the Levin
Tree Search with Context Models [43]. This machine learn-
ing algorithm learned from 50 000 solved instances of the
puzzle and surpasses previous approaches with fewer steps.
Although these two techniques and others have been very
effective, they are not a good candidate for the qubit routing
problem for scalable spin-qubit devices.

a) These solutions heavily rely on fine-tuned datasets of
particular instances and arrangements of the puzzle.
In our problem, creating such a dataset will require
large computation resources as we are not aiming for
one instance or one specific tile (qubit) configuration
but rather a list of goals (i.e., making pairs of qubits
adjacent).

b) Another factor to consider with point (a) is that with
more moving directions per location (higher node de-
gree), the tree of possible moves expands exponentially
in size [44], as well. The presented STP results in the
literature usually assume these datasets or the train-
ing phase and do not disclose the total computational
costs. However, upon taking a closer look, it becomes
obvious that as the number of qubits increases, these
approaches become practically intractable. Our prob-
lem requires an algorithm that prioritizes speed before
optimality (regarding the number of routing steps) to
quickly satisfy multiple goals for more than 24 moving
parts.

c) As previously mentioned, circuit executions involve
many steps, some of which involve parallelized two-
qubit gates. This contrasts with the objective of aiming
for a single tile pattern in the STP problem.

Another potentially fitting formulation is the multiagent
path-finding (MAPF) problem, which has been studied ex-
tensively for multirobot systems [45]. Each agent, represent-
ing an independent robotic system, navigates to a target des-
tination through various techniques while avoiding collisions
with other agents or obstacles. Agents are sequentially exe-
cuting a plan consisting of specific goal destinations while
trying to minimize the traveled distance within a goal. We

have identified, however, the following key differences to our
problem.

1) As shown in [45], classical MAPF approaches become
slow and unsuccessful for large numbers of agents,
especially with the existence of obstacles.

2) Our problem is not limited to a single set of goals
(i.e., a set of two-qubit gates) but a plan with multiple
goals in each step. Therefore, ultimately, the focus is
on minimizing some cost function for the entire plan
(representing a quantum circuit), as it is crucial to incur
the least errors possible.

3) In our problem, qubits can be viewed as agents and as
dynamic obstacles at the same time. In addition, only
a subset of agents (qubits) need to complete goals at
each step of the plan, and these goals are not target
locations but conditions that could be satisfied in mul-
tiple locations. Currently, there is a lack of strategies
specifically tailored to address this particular problem
in a short amount of time, especially when dealing with
a large number of agents, as highlighted in [46], [47],
and [48].

In the quantum world, several qubit routing techniques
have been proposed for superconducting, trapped ion, and
neutral atom platforms. Routing for spin qubits resembles
a similar functionality of quantum charge-coupled ion trap
devices (QCCDs) [49], another promising scalable architec-
ture. In QCCDs, trap regions are dedicated to specific tasks
such as temporary storage or processing. Communication
between ions of different regions is thus implemented with
shuttles through a shared channel where collision avoid-
ance optimization techniques are used [49], [50]. However,
these techniques fundamentally differ because they are made
specifically for the QCCD’s unique regions and topology.
The unique structure of a QCCD device imposes a distinct
set of constraints on moving qubits and parallelizing oper-
ations, different from those found in 2-D spin-qubit topolo-
gies. Hence, these routing strategies cannot be implemented
in spin-qubit platforms even though both use shuttling [51],
[52].
Neutral atom quantum processors also use shuttle oper-

ations for qubit communication purposes. The distinctive
ability of this platform, besides gate-based swapping [53],
is the physical rearrangement of atoms’ positions to
arbitrary locations as they rely on optically made orthogonal
lattices [54], [55], [56]. In state-of-the-art implementations,
Rydberg atoms [57] can be dynamically rearranged. This
process begins by transitioning from a stationary atom-trap
array, which utilizes crossed spatial light modulators
(SLMs), to a dynamic atom-trap array using crossed
acousto-optic deflectors (AODs) that control horizontal
and vertical qubit movement. Consequently, many atom
qubits can be relocated simultaneously through the AODs,
adhering to specific constraints [53]. These constraints
regard the allowed distances between atoms in either SLM
or AOD trap types, as well as atom movement dependencies;

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

namely, columns (or rows) of AOD-trapped atoms are only
allowed to be moved horizontally (or vertically) together
but without ever allowing crossing of any two columns (or
rows). Having said that, different architectural designs [58],
[59], [60], [61] can introduce alternative constraints to the
routing problem. In general, the primary challenge in directly
adopting a neutral-atom shuttle-based routing algorithm for
spin-qubit devices lies in the flexibility of the topology,
which can be reconfigured almost arbitrarily by the AODs.
Although the physical limitations previously mentioned are
platform-specific to neutral atoms, in essence, the concept
of a “changing” topology does not easily fit with the static
nature of quantum dot topologies. Moreover, the majority of
routing solutions fail to show scalability for more than ∼200
qubits in a wide range of circuits [53], [58], [60], [61], [62],
[63], despite the inherent shuttling flexibility.
In superconducting systems, routing involves consecutive

state exchanges by means of swap gates along a chosen path
until the desired qubit pair is adjacent. The most commonly
used methods for qubit routing in such devices are based on
heuristic search algorithms or reinforcement learning tech-
niques [50], [51], [52], [64], [65], although recently more
theoretical proposals have been introduced for bounding the
minimal number of swaps needed [66], [67]. The only re-
quirement to determine a viable path is the presence of at
least one pair of neighboring locations within the topology
where the two qubits can interact. In spin-qubit architectures,
on the other hand, routing entails the physical relocation of
qubits instead of state swapping. Therefore, within the notion
of bringing two qubits closer to each other until adjacent,
other qubit positions play an important role as well.
When routing in superconducting devices, the predomi-

nant approach is to identify the shortest paths between qubit
operands, concurrently minimizing costs across several pa-
rameters. These parameters include circuit gate and depth
overhead, as well as noise-aware path selection [50], [51],
[52], [64], [65]. These can be optimization goals for a spin-
qubit routing algorithm as well, but finding the shortest path
is not enough because other qubits might block the way. The
problem can become even more complex when considering
routing for multiple two-qubit gates at the same time while
trying to avoid conflicts and satisfy operational constraints of
the architecture [1].

The SBS algorithm was conceptualized as the first rout-
ing algorithm for large-scale spin-qubit crossbar architec-
tures [1]. In particular, it was tailored to the unique and
complex constraints of this crossbar architecture [20], which
necessitated the maintenance of the checkerboard pattern of
physical qubits to achieve a fast compilation process. One of
the main drawbacks of these constraints was the paralleliza-
tion limitations imposed on shuttle operations. As a conse-
quence, SBS can only, yet efficiently, route one two-qubit
gate at a time on grid topologies for that particular crossbar
architecture. As extensively discussed in [1], this severely
impacts the mapping overhead for high qubit counts and high
two-qubit gate percentages.

In this article, we are extending the work on spin-qubit
routing to fully utilize and explore the benefits of shuttling-
based movement of qubits, assuming a more generalized
architecture with fewer constraints. We propose beSnake, a
qubit routing algorithm for large-scale spin-qubit processors,
which can handle any combination and number of paral-
lelized shuttle-based Z and two-qubit gates in any topology.
Furthermore, beSnake is designed to be more flexible, which
opens opportunities for more complex routing tasks. We are
highlighting their main differences in Table 1. Based on the
early stage of spin-qubit technologies, beSnake is introduced
as a concrete baseline routing algorithm for future scalable
architectures that use shuttling.

IV. BESNAKE ROUTING ALGORITHM
The main objective of beSnake is to enable nonadjacent
operand qubits of two-qubit gates to interact with each
other by strategically shuttling qubits around the topology.
It does so by considering multiple shortest paths between the
operands and subsequently implementing an adjustable path
selection heuristic to potentially minimize the added move-
ments as much as possible. Upon a path selection, beSnake
uses a breadth-first search (BFS) exploration for shuttling
qubits; hence, the first part of beSnake’s name comes from
the first letter of BFS. This approach, with the shortest path
selection, ensures the minimization of shuttle operations,
viewed from the operand’s perspective, significantly reduc-
ing the pool of qubits considered for movement. In terms
of managing parallelized gates, each is routed in turn, while
their operands are held in place once they become adjacent
until all of the gates are attempted. In case of failed at-
tempts, three strategies are implemented to overcome them,
discussed in Section IV-D1, including a lookback mecha-
nism. In the end, the gates can be simultaneously executed,
thereby maintaining the circuit depth as low as possible.
In order to further elaborate on the functionalities included

in beSnake, we will use three representative cases based on
the squared grid topology shown in Fig. 1(b). In these exam-
ples, wewill use the notion of the intermediate representation
(IR) for the input circuits, as well as output routed circuits
with the variable names ir_input and ir_output, re-
spectively. Within the IR, the gates of a cycle are placed
inside square brackets, and commas separate each gate. Note
that the notion of a cycle refers to the basic unit of time
representing one step in a sequence of gates of a quantum
circuit, and each step may contain multiple gates. Moving
on, the temporary goals variable contains a single cycle of
the input circuit given to beSnake for routing, and the goal
variable holds the current gate from goals to be routed.
Finally, we will use the prev_goal_qubits variable,
which contains the pairs of operand qubits that have already
been satisfied from goals. In Fig. 2, a high-level flowchart
of beSnake’s main stages is shown. In the next sections, we
will expand on each of these stages.

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

TABLE 1. Comparison of beSnake and Shuttle-Based SWAP

FIGURE 2. High-level flowchart of beSnake’s main stages.

A. CASE 1: FOLLOWING A FREE PATH
The first example illustrates the most simple case of qubit
routing. We assume a quantum circuit with only two two-
qubit gates (tqg) in the first cycle [see Fig. 3(a)], whose
interacting qubits are placed in nonneighboring positions
[see Fig. 3(b)] and therefore require routing. The cor-
responding IR representation of the quantum circuit can
be derived as ir_input = { [tqg [1,2], tqg
[3,4]] }. Note that there can be more than one cycle
in an IR, but we assume one for illustrative purposes. As de-
picted in Fig. 3(b), the beSnake algorithm takes the first gate
of the cycle (variable goals) and assigns it to goal. It then
calculates all possible shortest paths between its operands (1
and 2). In this case, there is only one shortest path from qubit
1 to qubit 2, comprising just two nodes. More precisely, qubit
1 will need to move upward two times.
After these movements, qubits 1 and 2 will be adjacent, as

shown in Fig. 3(c), and they will remain in that position until
the two-qubit gate is executed. Note that the ir_output
list is updated accordingly, including two new shuttles. In
addition, the algorithm updates prev_goal_qubitswith
qubits 1 and 2, indicating that they will remain fixed in their
current positions until the rest of the gates are routed. It then
proceeds to the next gate in goals and repeats the same
process. The outcome, as shown in Fig. 3(d), is that the
qubits of both gates within goals have been successfully
routed, and now the ir_output encompasses all necessary

shuttles to position the qubit operands adjacent to each other.
After that, the two-qubit gates can be executed together as
originally given from the ir_input. At this stage, beSnake
has completed the task, and more optimization passes can
further improve the output ir_output, such as a sched-
uler parallelizing even more the shuttles required for moving
qubits 1 and 3.
This example showed a straightforward operation; how-

ever, as we will explore in subsequent examples, certain
qubits may block the routing path and, therefore, necessitate
relocation to open the way.

B. CASE 2: FOLLOWING A BLOCKED PATH
In our second example, we address a similar situation, but
this time, qubits are blocking the shortest paths, as shown
in Fig. 4(a). We can identify four potential shortest paths
for addressing the first two-qubit gate between qubits 1 and
2, with each path comprising three steps. For simplicity, we
focus only on two paths, labeled a and b, as illustrated.
beSnake employs a two-tiered filtering criterion to opti-

mize the path selection. First, it will keep the path(s) with
the least obstacle qubits, and out of the remaining paths,
it will select one with the highest accumulated degree of
traversed nodes. This is to mitigate the likelihood of conges-
tion in the less connected areas, such as the corners of the
current topology. This heuristic aims to minimize obstacle

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

FIGURE 3. Example showcasing how beSnake follows the shortest path to enable two-qubit gate interactions. (a) Diagram circuit representation given
to beSnake for routing with the following IR input ir_input = { [tqg [1,2], tqg [3,4]] }. (b) First step is to consider the shortest paths of
the first gate to be routed. In this case, there is only one, shown with the red arrow. The yellow arrow represents the first step of qubit 1 following the
shortest path. (c) Completion of the first goal with the two qubits becoming adjacent and fixed until the rest of the gates in variable goals are tried. (d)
Completion of routing for all gates in goals and the final IR output.

encounters and to reduce the overhead associated with qubit
movement.
Upon comparison, both paths a and b involve a single

obstacle qubit; however, path b has a notably higher accu-
mulated degree of the traversed nodes, satisfying our selec-
tion criteria. When initiating the first step of the preferred
shortest path b, as indicated by an orange arrow in Fig. 4(b),
we encounter a blockage due to qubit 6. Then, an explo-
ration of potential movements for qubit 6 to clear the path
is conducted, and three possible directions are identified:
moving left toward qubit 5, moving up along the short-
est path, and moving to the right. Of these possible move-
ments, only one is practical—moving to the right. By do-
ing so, we avoid the additional overhead that would other-
wise arise later by moving it again away from the shortest
path.

Fig. 4(c) showcases qubit 1 having reached qubit 2, up-
dating prev_goal_qubits and removing the gate from
goals. The progression from this point on is similar to the
one presented in Fig. 3(d).

C. CASE 3: SATISFYING MULTIPLE TWO-QUBIT GATES
In the complex scenario depicted in Fig. 5(a), beSnake is
tasked with satisfying four gates within a cycle amid a denser
qubit topology. By considering routing for these four gates
simultaneously, we can achieve a lower depth overhead com-
pared to routing for each separately. We focus on the initial
gate listed ingoals. As always, we look for the shortest path
with the least number of qubit obstacles and with the largest
number of adjacent edges. Among the six conceivable paths,
each share an identical qubit count; however, only two paths
have the most connections to other vertices. The algorithm

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

FIGURE 4. Example showcasing how beSnake resolves routing scenarios with blockading qubits within the shortest path for a circuit with ir_input =
{ [tqg [1,2], tqg [3,4]] }. (a) First step is to consider the shortest paths and select one based on two heuristic criteria. For illustration
purposes, two paths are drawn with an equal number of qubit obstacles. However, path b traverses a path with higher accumulated degrees of the
traversed nodes, hence its selection. (b) BFS exploration of beSnake to move obstacle qubit 6 with the least possible number of shuttles. Each layer of
exploration is depicted with different colored arrows until an empty position can be found. (c) State of the qubit positions after completing the first
goal. The example can continue from this point on similarly to the example in Fig. 3.

resolves ties by randomly selecting a path, path b for this
example.
The subsequent phase involves determining the sequence

of shuttle movements required to reposition qubit 1 one step
further in the chosen shortest path. Fig. 5(b) illustrates the
exploratory moves beginning from qubit 1. Intuitively, we
can envision this as a BFS style of exploration where qubits
sequentially push each other until the first vacancy is encoun-
tered. Expressly, qubit 1 is set to push qubit 2 (indicated by
an orange arrow), while qubit 2 tries to push qubits 4 and
6 (blue arrows), and qubits 4 and 6 try to push qubits 3,
5, and 7 (purple arrows). At this point, a solution has been
identified, rendering additional exploration unnecessary, as
it would certainly increase the number of moves.
Fig. 5(c) updates ir_output with the first sequence of

moves from the first step of qubit 1 within a single cycle.

This figure also displays the exploration of qubit 1’s next
move, with each expansion layer marked by arrows colored
orange, blue, and purple, respectively. At this point, we see
two possible solutions, moving qubits 3 and 5. Both solutions
need the same number of shuttles. BeSnake then becomes
noise-aware by selecting the one with the highest accumu-
lated shuttle fidelity based on predefined fidelity attributes
for each coupling connection. The accumulated fidelity is
calculated by multiplying the fidelities of each shuttle on
the specific locations. This mechanism is used in case dif-
ferent fidelities are associated with each coupling link, thus
maximizing the routed circuit’s fidelity. As a result, the
movement of qubit 3 is chosen for this example, and in
Fig. 5(d), the sequence of shuttles is displayed in the sec-
ond cycle of ir_output. In the same figure, we have
fast-forwarded to the final step of the shortest path and

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

FIGURE 5. Example showcasing how beSnake resolves more complex routing scenarios with multiple blockading qubits for a circuit with ir_input =
{ [tqg [1,9], tqg [5,2], tqg [7,0], tqg [6,3]] }. (a) For illustration purposes, we present only two shortest paths that equally satisfy
our two heuristic criteria. Path b is selected for this example. (b) BFS exploration of beSnake to move obstacle qubit 2 away with the least number of
shuttles. (c) Next BFS exploration for moving obstacle qubit 4 away with the least number of shuttles. Two solutions are found in this case, and beSnake
selects one based on the least occurred error rate. (d) Completion of the first gate in goals and the exploration of shortest paths for the next, which
cannot be resolved at this stage. (e) Resolution of the next available gate in goals and the revisiting of the previous failed one. (f) Completion of the
next available gate in goals and the scheduling of all so-far successful goals in ir_output. (g) Previously fixed positions of the scheduled two-qubit
gates are freed, and now the two-qubit gate tqg [5,2] can finally be routed.

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

see the three cycles within ir_output and updates to
prev_goal_qubits. The goal now includes the next
gate from goals, and the previous gate has been removed.
A single shortest path is discovered since it is not allowed to
push fixed qubits, yet qubit 6 is immobilized. This is because
the operand qubits are prohibited from being pushed by any
other qubit as well. Consequently, beSnake omits this gate
and proceeds to the subsequent one. This mechanism is one
of three mechanisms implemented (see Section IV-D1) to
deal with unsuccessful attempts when routing certain two-
qubit gates. In this particular case, we will move on to route
the next available gate in goals, the tqg [0,7], which
might potentially move qubits around the topology and free
the blockage shown in Fig. 5(d).
Fig. 5(e) shows that the next goal is immediately satis-

fied, and the algorithm reattempts the routing of the previ-
ously unsuccessful gate, the tqg [5,2]. This is the look-
back mechanism used to iterate over the remaining gates
in goals. Once tqg [7,0] is accomplished, it is re-
moved from goals, and the algorithm revisits the goals
set, starting with any gates that previously failed. However,
the tqg [5,2] remains unsuccessful due to the same rea-
sons. Fig. 5(f) demonstrates the resolution of the following
gate, tqg [6,3], the next gate in goals, at which stage
all gates have been satisfied except for one. A repeated at-
tempt yields no solution, as no shortest path is viable any-
more between qubits 5 and 2. Due to this fact, we update
ir_output by scheduling only the satisfied gates, thus
splitting the original cycle.
Subsequently, all qubits in prev_goal_qubits are re-

leased, and the algorithm reattempts the unsolved gate. This
time, a solution is possible, and Fig. 5(g) depicts the success-
ful outcome.

D. SPECIAL CASES
This section introduces the mechanisms employed by
beSnake to address special routing cases. We outline
three primary mechanisms utilized to circumvent blockades,
showcasing the algorithm’s potential to adapt to conflicts.

1) MECHANISMS FOR DEALING WITH BLOCKADES
An obstacle qubit might disallow the movement of any
operand qubit within the shortest path. For example, in
Fig. 5(c), obstacle qubit 6 is blocking the very first step in
the shortest path. However, there can be cases where a similar
situation is reached at any step in the path due to qubits being
pushed in areas of the topology with fewer connections, such
as the corners of squared topologies. Then, the following
mechanisms will be tried in this order.

1) Revisit the same gate (goal) after satisfying other
ones. This lookback mechanism was used in Fig. 5(e).

2) Splitting the original cycle and trying the remaining
gate(s) without the previously fixed qubits. This mech-
anism was used in Fig. 5(f) and (g).

FIGURE 6. Example of how beSnake optimizes the number of shuttles
for shuttle-based Z gates. (a) beSnake will explore both possibilities to
shuttle qubit 4 left and right and select the one with the least moves. In
this case, moving qubit 5 to the right requires fewer shuttles than trying
to move qubit 3. (b) Qubit positions after the shuttles and the fixation of
positions to ensure qubit 4 can return in time.

3) Execute a forced swap between the obstacle and the
operand qubit.

Since the first two mechanisms have been demonstrated
in Section IV-C, we are now focusing on the third one: If
we isolate the scenario in Fig. 5(d) and suppose that the
first two mechanisms failed, then we will insert a forced
swap between qubits 5 and 2 to overcome this obstacle. This
mechanism was implemented to efficiently resolve such rare
scenarios where qubit obstacle(s) are located in between both
operands while having no available edges to be pushed away.
This can be triggered in topologies that may have only two
available coupling links at one ormore nodes (quantum dots),
as shown in case 3 of Section IV-C. In the case of a square
grid, this place is at the corners. Alternatively, this can be
addressed by taking another path, not necessarily a shortest
path, that avoids such restricted regions. However, this does
not guarantee a solution and most likely will result in more
overhead. In Section VI, more alternatives are discussed.

2) HANDLING SHUTTLE-BASED Z ROTATIONS
Shuttle-based Z rotation gates are a unique high-fidelity im-
plementation of a Z rotation with two time-sensitive qubit
shuttles to and from a neighboring column in either direc-
tion [1], [20], [38], [39]. This kind of single-qubit manipu-
lation technique, otherwise called “hopping spins” [68], can,
in fact, achieve an arbitrary rotation axis, but in this work,
we assume the proposal in [20] for simplicity. BeSnake can
determine which direction (left or right) will result in the
least sequence of shuttles. Then, it will fix the positions
(one empty and one containing the qubit operand of the Z
gate) so that the return shuttle can be inserted immediately.
To demonstrate that, we suppose a shuttle-based Z rotation
on qubit 4 in the example of Fig. 5(a). This will result in
the example shown in Fig. 6(a), where moving to the right
takes fewer moves than moving left. In Fig. 6(b), the original
(now empty) location of qubit 4 is not allowed to change

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

until the return shuttle is executed. More specifically, if the
empty location gets occupied before the return shuttle, qubit
4 cannot return in time. In case there are parallel Z gates to
be satisfied in a cycle, beSnake will follow the same logic as
described in Fig. 5(e) and (f) and iteratively try all of them.
An exception is applied here where succeeding Z gates can
override fixed empty locations from preceding Z gates. Since
implementing Z gates involves a second shuttle back to the
original location, multiple of these shuttles can take place
simultaneously to complete the cycle even if they previously
occupied fixed empty locations of other Z gates. One ex-
ample of this exception is when a shuttle-based Z gate for
qubit 3 is scheduled together with the Z gate on qubit 4 in
Fig. 6(b). Qubit 3 will shuttle to the right since this is the only
available direction, overriding the fixed position created by
the Z gate of qubit 4. Then, supposing that the cycle finishes
here, both qubits can return to their original locations with
the well-timed return shuttles, completing their Z rotations.
This exception provides better parallelization as extra room
is provided for more Z gates while maintaining the same gate
overhead (as we would have without this exception).
Finally, in case there are Z and two-qubit gates in a cy-

cle, the two-qubit gates will be sorted at the beginning of
goals to be tried first. This is because routing for two-qubit
gates will more likely require multiple steps to complete,
and therefore, in the beginning, it is more important to have
as few fixed positions as possible (i.e., more free space to
push/move qubits). In Section VI, more ideas are discussed
related to sorting gates in cycles.

E. OPTIONAL FUNCTIONALITIES
beSnake has two optimization settings that can potentially
improve the performance of both the routed circuit and the
speed of the algorithm itself.

1) SWAP replacement: beSnake can become even more
noise-aware by replacing a sequence of shuttles, facili-
tating a step within the shortest path through a swap
operation. One example is the sequence of shuttles
inserted in Fig. 5(c). It will do so when the accumu-
lated fidelity of those shuttles exceeds that of the swap,
particularly in these locations.

2) Shortest path optimizations: As described before,
beSnake will assess multiple shortest paths and heuris-
tically pick one that will most likely produce the least
amount of gate and depth overhead. However, this abil-
ity is by far the most time-consuming task of beSnake
as the discovery of all shortest paths, and subsequently,
their filtration is iterated several times. Tomitigate that,
there is an option to place a time limit on the discovery
of the shortest paths, thus substantially reducing the
time this process takes. In addition, there is an option to
take a single shortest path, which significantly speeds
up the process. Later, in Section V-B1, we will deliber-
ately test these options and determine the routing time
benefits at the expense of increased circuit overhead.

F. SUMMARY OF MAIN LIMITATIONS
In this section, we summarize the main limitations of
beSnake based on the previous illustrative examples.

1) Operand qubits: beSnake relies on the operand qubits
following the selected shortest path only. This means
that these two qubits cannot be pushed outside of the
designated path as obstacle qubits can, which can re-
strict some qubit movements, as demonstrated in Sec-
tion IV-C. Consequently, the mechanisms for block-
ades discussed in Section IV-D1 will be triggered.

2) Path selection: beSnake considers only the shortest
paths and tries to heuristically select one in an effort
to minimize qubit movements in the future. However,
this particular two-tiered path filtration does not always
guarantee the least qubit movements in subsequent
steps as it is a heuristic solution. Therefore, another
more optimal path could reduce the gate overhead pro-
duced and execution time. While Dijkstra’s algorithm
is one method to implement this approach, it is impor-
tant to account for the scalability of any implementa-
tion for a wide range of topology graphs.

3) High qubit density: Since beSnake predominately re-
lies on shuttling, it is expected that with fewer empty
sites (quantum dots), computation time will increase.
In fact, later in Section V-B4, we test a range of qubit
densities, and we find that after 72% ratio, the compu-
tation time becomes exponential.

4) Intermediate scheduling: As illustrated in the
preceding three examples, each routing step may
generate multiple shuttle operations. For instance,
Fig. 3(d) displays two pairs of shuttle operations
inside ir_output, each associated with a two-qubit
gate (tqg) that are color coded in red and yellow. It
is apparent that qubits 1 and 3 can be simultaneously
moved as pairs, thereby reducing the ir_output by
two cycles, but beSnake does not have the ability to
intermediately schedule them.

5) Parallelization implementation: As shown in the third
example of Section IV-C, the parallelization of two-
qubit gates is satisfied by routing one qubit at a time,
fixing the qubit operands once adjacent and repeating
the same for the subsequent two-qubit gates. How-
ever, fixing the qubits’ position gradually restricts the
topology, as demonstrated in Fig. 5(d). If those qubits
were allowed to be moved without breaking their adja-
cency (given this is implemented efficiently), it could
increase the performance of beSnake. More consider-
ations are discussed in Section VI.

V. SIMULATIONS AND EVALUATIONS
With the following simulations, our goal is to test beSnake’s
different functionalities and create valuable performance in-
sights under various use cases. More specifically, we test
beSnake’s capabilities with different levels of shortest path
optimizations and swap replacement options, as well as its

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

behavior on more connected topologies and ranges of qubit
densities. Based on these insights, we move on to thoroughly
compare it with the SBS algorithm on synthetic and real
quantum circuits with up to 1000 qubits.

A. EXPERIMENTAL SETUP
The beSnake and SBS routing algorithms have been incorpo-
rated into the SpinQ compilation framework [1] and executed
single-threaded on a 2.4-GHz and 768-GB memory server
running Python 3.6.8.
Regarding the metrics used to determine their perfor-

mance, we have used the total computation time of routing
for each circuit, which we simply named routing time. In
the case of routing time comparisons, we provide the ratio
(rTime) of the two results as (resultsa/resultsb). It should be
noted that routing times can vary depending on the server’s
total load and dynamic job scheduling at the time of sub-
mission. We have taken measures to maintain good time
consistency between our simulations by submitting jobs in
dedicated resources with no influence from other jobs.
As for overhead metrics, we have used the same gate and

depth overhead definitions as in [1]. Gate overhead is cal-
culated as the percentage relation of additional gates incor-
porated by the router divided by the number of gates (after
decomposition).Depth overhead is expressed as the percent-
age of extra depth generated by the router in relation to the
initial ideal circuit depth (after decomposition). Whenever
there are overhead comparisons, we use a relative perfor-
mance metric. Specifically, the relative gate overhead (rGO)
and relative depth overhead (rDO) are calculated as (resultsa
− resultsb)/resultsa.

Furthermore, the physical initialization of qubits follows a
checkerboard pattern and with one-to-one virtual-to-physical
qubit allocation, similar to the ones used in [1]. Although
the checkerboard pattern has a qubit density of 50%, in Sec-
tion V-B4 particularly, we use a different physical placement
to achieve a range of qubit densities.
Finally, both algorithms are benchmarked with randomly

generated circuits, as well as 11 well-known quantum algo-
rithms. Regarding the randomly generated quantum circuits,
they consist of two-qubit and shuttle-based Z gates in three
different ratios (25, 50, and 75 two-qubit gate percent) and
are sampled ten times for each data point. With this choice
of random algorithms, which contain many combinations of
the two gate types parallelized in different ways, we aim
to stress-test both routing algorithms. As for the number of
gates, we fixed it at 3000 gates since its impact on the gate
and depth overhead is negligible, according to [1]. The 11
real quantum algorithms were scaled up to 1000 qubits to
observe their performance in SectionV-C2. These algorithms
were taken from the Qlib [69], Revlib [70],MQTBench [71],
and qbench [72] libraries.

B. BENCHMARKING BESNAKE
This section focuses on testing beSnake’s various function-
alities. Specifically, we used four time limits dictating the

shortest path optimization level and compared themwith tak-
ing only one shortest path in Section V-B1. In Section V-B2,
we test the behavior of the swap replacement option and
observe the scaling on three swap fidelities while maintain-
ing the shuttle fidelity constant. Then, in Section V-B3, we
are investigating beSnake’s time performance on more con-
nected topologies, whereas, in Section V-B4, we are fixing
the topology sizes but vary the qubit density.

1) ADJUSTING THE SHORTEST PATH OPTIMIZATION
In the following simulations, we explore the effect var-
ious time limits have on gate overhead, as outlined
in Section IV-E. Therefore, in Fig. 7, we compared
the gate overhead (in blue) and total routing time (in
red) for 0.05-, 0.45-, 0.85-, and 1.05-s time limits im-
posed to NetworkX.all_shortest_paths() func-
tion against just taking one shortest path with Net-
workX.shortest_path(). The random circuits’ gates
have been fully (ideally) parallelized based only on their
dependences, and beSnake is configured without the ability
of swap replacements (see Section IV-E), such that no other
factor can influence the results. The underlying question to
answer with this simulation is as follows.

� Which time limit offers the best relation between gate
overhead and routing time, and how does it compare
with just taking one shortest path?

In Fig. 7(a)–(c), we can observe the gate overhead for
25, 50, and 75 two-qubit gate percentages, respectively. We
observe that in all cases, the increased time limits yield a
benefit in terms of gate overhead compared to taking only
one shortest path, but the benefits are negligent among the
time limits. As expected, higher two-qubit gate percentages
result in higher gate overhead and routing time. Thus, the
gate overhead gap between the one shortest path and the time
limit simulations is more prominent in higher percentages.
However, the overall routing time is severely increasing for
each time limit. In fact, finding only one shortest path appears
polynomial in time over the number of qubits with a small
rGO increase of 11.98%, 11.87%, and 11.76% on average
for 25, 50, and 75 two-qubit gate percentages, respectively.
To solidify this point, in Fig. 7(d), we isolated the one short-
est path option, clearly showing a nearly linear behavior.
A 0.05-s time limit is thus sufficient; increasing it beyond
this limit does not yield significant gate overhead benefits,
and further increases negatively impact the total routing
time.

2) SWAP REPLACEMENT
In this simulation, the behavior of the swap replacement
option on all three metrics is investigated. To test the
effect of different fidelity scales, we have fixed the shuttle
to 99.98%, but tested swap gates with 99.97%, 99.95%,
and 99.94% fidelities. As explained in Section IV-E, the
swap replacement is triggered when the accumulated

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

FIGURE 7. Routing time and gate overhead of beSnake for different shortest path optimizations. Each optimization is dictated by the time limit on
finding the shortest paths, except for one option that considers just one shortest path. (a)–(c) show the results of 25, 50, and 70 two-qubit gate
percentages. (d) focuses only on one shortest path.

shuttle fidelity is lower than the swap fidelity. Intuitively,
we expect replacements to be triggered more often with
higher swap fidelities. It should be noted that these fidelity
values are chosen for the sole purpose of demonstrating the
progressive behavior of the swap replacement functionality
of beSnake and not to represent realistic properties of

spin-qubit devices. Finally, the gates in the random circuits
are serialized in order to pronounce the effect in both
overheads (when replacing multiple shuttles at once), and the
shortest path optimization is fixed with a 0.05-s time limit.
The underlying question to answer with this simulation is as
follows.

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

FIGURE 8. Gate overhead, depth overhead, and routing time of beSnake while using the SWAP replacement option with varying SWAP fidelities. (a)–(c)
show the results of 25, 50, and 70 two-qubit gate percentages, whereas (d) focuses only on routing time.

� Is the potential increase in routing time with beSnake
worth it for architectures that support swap gates?

In Fig. 8, swap replacements improved all overheads for
every two-qubit gate percentage. As expected, the swap
replacement was utilized more often with higher swap

fidelities and higher two-qubit gate percentages. However,
there is no significant overhead difference shown in the fig-
ures for higher than 99.95% (see the clustered lines), po-
tentially due to the maximum accumulated shuttle fidelity
being somewhere between 99.94% and 99.95%. In particular,
three shuttles are needed to obtain an accumulated fidelity

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

between 99.94% and 99.95%. This indicates that the BFS
exploration never reached more than three layers, which is
equivalent to three consecutive shuttles [similar to the exam-
ple in Fig. 5(b)]. Unexpectedly, we observe that the routing
time has not worsened but mostly improved for higher than
99.94% fidelity, possibly due to less time taken to update the
IR data structure of the circuit with just one gate (a swap)
instead of multiple shuttles. Therefore, the swap replacement
functionality can be used without an execution time penalty
in most cases. It should be noted that, given a higher qubit
density on the topology, there can be more consecutive shut-
tles at one time, which will lower the trigger requirement and
allow for even lower swap fidelities.

3) BEHAVIOR ON MORE CONNECTED TOPOLOGIES
In the following experiments, we are interested in seeing how
beSnake performs on topologies with higher connectivity.
Here, the comparison is made between a squared grid topol-
ogy (i.e., each qubit is coupled with four neighboring qubits
and with two at the corners) and a squared grid topology
in which diagonal edges in every direction have been added
(i.e., each qubit is coupled with eight neighboring qubits, and
with three at the corners). Of course, it is expected that there
will be an improvement in both overheads on the topolo-
gies with more connections. However, the increased graph
size and solution space might negatively impact beSnake’s
speed in exploring solutions. The random circuits are given
the same way as in Section V-B1, as well as the configu-
ration of beSnake, but only with one time limit of 0.05 s.
The underlying question to answer with this simulation is as
follows.

� Does a highly connected topology adversely affect the
efficiency of beSnake in quickly finding solutions?

As can clearly be seen in Fig. 9, beSnake can obtain signif-
icantly better gate and depth overhead as was expected, and
surprisingly, it can also achieve it in less time. In particular,
beSnake is, on average, 1.17, 1.24, and 1.27 faster (rTime) for
25, 50, and 75 two-qubit gate percentages, respectively. The
benefit is more pronounced with higher two-qubit gate per-
centages, which is expected. One explanation for the faster
times can be attributed to the shorter traversed paths, hence
fewer steps to take and fewer BFS exploration layers.

4) QUBIT DENSITY
Unlike the other simulations using a checkerboard physical
initial placement pattern, we will try a different placement to
vary the qubit densities here. The topology sizes are fixed,
and qubits are placed next to each other in a left-to-right
bottom-up approach until a particular density is reached.
As for the executed circuits and beSnake’s configuration,
they are similar to Section V-B1 with a 0.05-s time limit.
The underlying question to answer with this simulation is as
follows.

� Up to which qubit density does beSnake perform in a
scalable manner based on all three metrics?

In Fig. 10, we have simulated seven levels of densities
in each subfigure for four different topology sizes: 25-, 49-,
64-, and 100-site topologies. On the y-axis, we can observe
the normalized mean values between 0.1 and 1 for all three
metrics. Focusing on the 25-site topology, routing time (in
green) increases exponentially after 72% density, which is
expected primarily due to the additional time needed to finish
each BFS exploration. This becomes more severe at 88%
density, where there are only three empty locations on the
topology. Observing the routing time for the larger topology
sizes, we see a steeper upward trend after 72%. However, the
routing time behavior until 72% appears linear for all sizes.
Notably, it becomes flatter for larger sizes, indicating that
beSnake can perform better on larger topologies. This shows
that beSnake’s qubit density sweet spot is around 72%.
It should be noted, however, that for another experimental

setup in regard to the hardware used to run beSnake, we
might obtain a different trend and possibly an improved one
if beSnake becomes multithreaded, for instance. In addition,
changing device characteristics can change beSnake’s perfor-
mance. For example, increasing the connectivity will favor
the run time based on the simulations in Section V-B3. Hav-
ing said that, the total run timemight be reduced equivalently
for all densities, and therefore, the same behavior at 72%
could still appear. Whether this sweet spot (or around that
region) is universally found for any given setup is likely but
left open for future work.
Focusing now on both overheads, we observe overall that

beSnake favors gate overhead (in blue) over depth overhead
(in orange), which is a direct outcome of the core routing
strategy described in Section IV. Then, depth overhead fol-
lows a linear trend for all sizes. Surprisingly, gate overhead
creates a slight curve gravitating toward 72% qubit den-
sity. Therefore, this reinforces the previous conclusion that
beSnake can operate well for more than 50% qubit density
and particularly 72% for our particular setup. Finally, the
simulations show that in terms of gate and depth circuit over-
head, there are no exponential penalties for higher than 72%
densities.

C. COMPARISON BETWEEN BESNAKE AND SBS
In this section, we will compare the performance of both
routers for random and real circuits for up to 1000 qubits.
To facilitate a fair comparison (later named as beSnake fair),
the circuits are given with their gates as parallelized as pos-
sible based on SBS’s maximum capability [1]. The swap
replacement of beSnake has been deactivated as well because
SBS does not support it. In addition, beSnake’s shortest path
optimizations are disabled, and we only use one shortest path
(see Section V-B1) to obtain the quickest routing times at the
expense of overhead (see Section V-B1). As noted before,
beSnake can handle more complex routing tasks with ideally
scheduled circuits based purely on their gate’s dependencies,

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

FIGURE 9. (a) Gate overhead, (b) depth overhead, and (c) routing time of beSnake obtained on two different topologies: one square grid and one with
additional diagonal edges. Each subfigure is dedicated to each of the three performance metrics.

and, for comparison purposes, we will provide such results
in Section V-C2, named as beSnake full.

1) RANDOMLY GENERATED CIRCUITS WITH UP TO 1000
QUBITS
The underlying question to answer with this simulation is as
follows.

� Which routing algorithmwill more likely produce lower
gate and circuit depth overhead for scalable architec-
tures that go up to 1000 qubits, and at what relative time
cost?

In Fig. 11(a) and (b), the gate overhead and depth overhead
of both algorithms (marked as SBS and beSnake) are shown
for the different two-qubit gate percentages (in yellow, blue,

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

FIGURE 10. (a)–(d) BeSnake’s normalized performance on four fixed topology sizes in each subfigure while varying the qubit density.

and pink). We can observe in beSnake (circle markers) a
relative improvement in gate overhead (rGO) of 32.2% and
in depth overhead (rDO) of 30.3% on average compared to
SBS (squaremarkers). In addition, we observe beSnake’s rel-
ative benefit in both overheads increasing with higher qubit
counts. Looking at the three two-qubit gate percentages, we
see an increased gate overhead improvement with higher
percentages (see the distance between curves of the same
color). More specifically, the average rGO is at 36.61% for
25%, 32.64% for 50%, and 30.36% for 75%, and the average
rDO is calculated at 24.05% for 25%, 30.5% for 50%, and
33.19% for 75%. BeSnake will only be, on average, 0.78
slower (rTime) than SBS at 25%, 0.88 at 50%, and 0.87 at
75%. Notably, both algorithms’ routing time starts getting
closer around and after 900 qubits, indicating that beSnake
takes almost the same amount of time at 1000 qubits,
especially for more complex routing tasks [i.e., 75 two-
qubit gate percentage shown in Fig. 11(c)]. Considering the

performance gains, beSnake is a more attractive solution
overall for large-scale architectures. Finally, as discussed be-
fore, in these comparison simulations, beSnake is not utilized
fully; hence, we expect even better performance .

2) REAL ALGORITHMS WITH UP TO 1000 QUBITS
In the following simulations, we compare the performance of
SBS over beSnake for real algorithms with up to 1000 qubits.
Previously, the random circuit set was produced to stress-test
the capabilities of both routing algorithms; however, the re-
sults are not representative of routing for real algorithms,
which might exhibit different circuit characteristics. Simi-
larly to Section V-C1, we will compare both routers fairly to
see their relative performance. However, we will also assume
ideally parallelized circuits and enable the swap replacement
option (at 99.95% swap fidelity) in order to test beSnake at

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

FIGURE 11. (a)–(c) Performance comparison between beSnake (circle markers) and SBS (square markers) on random algorithms with up to 1000 qubits.

its full capacity. The underlying question to answer with this
simulation is as follows.

� How much better can beSnake perform over SBS on
real quantum algorithms, and is it worth the potentially
increased routing time?

Table 2 summarizes the relative performance of beSnake
over SBS (used as a baseline) in two configurations: one fair

comparison, beSnake fair, and one scenario with beSnake at
its full capacity, beSnake full. Due to algorithm availability,
we have specified each algorithm’s qubit range and incre-
mented qubit steps on the second column. In the next three
columns, we have provided the average two-qubit and Z gates
together with their ratio. However, it should be noted that the
number or percentage of gates is not the only performance
indicator or predictor. To get a full picture of their features,

3102822 VOLUME 5, 2024

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

TABLE 2. Relative Performance of beSnake’s Two Configurations, beSnake Fair and beSnake Full, Over SBS for Real Algorithms Scaled up to 1000 Qubits

a deeper analysis has to be conducted with the help of the
algorithm’s internal interaction and dependence graph [1],
[72]. In this simulation, we are focusing on the performance
comparison of the two routers rather than on specific quan-
tum algorithm performance or how these algorithms scale.
Moving on to the rest of the columns, we provide the rel-

ative performance of beSnake over SBS in bold numbers for
gate overhead, depth overhead, and routing time, as defined
in Section V-A. For example, beSnake obtained a 16% gate
overhead and 29% depth overhead improvement over SBS
under a fair comparison for Grover’s algorithm. As for rout-
ing time, beSnake is 42% slower (rTime = 0.58) than SBS.

Looking only at the fair comparisons overall, we ob-
serve an improvement in both rGO and rDO across all al-
gorithms, with up to a 67% improvement in rGO and up to
45% improvement in rDO. On the one hand, rTime results
for Deutsch–Jozsa (up to 1000 qubits) and for Bernstein–
Vazirani (up to 50 qubits) seem relatively high for their
low-average two-qubit and Z gate values. Evidently, these
algorithms do not require a lot of routing; therefore, the
relative time increase possibly comes from beSnake’s code
initialization overhead (i.e., loading libraries, allocating
memory, initializing variables, and setting up data structures)
and not the actual routing process. On the other hand, Cuc-
caro Multiplier and quantum Fourier transform (QFT), two
highly connected circuits [1], obtained more than 50% rGO
and rDO improvement with more than 2 and 3.5 times faster
routing time.
Focusing on beSnake full columns, we see the biggest

improvement in rGO, and not in rDO, compared to beSnake

fair, and in a few algorithms, this was achieved with less
routing time. This indicates that beSnake can handle highly
parallelized circuits faster than less parallelized ones despite
imposing more demanding routing tasks, and it can always
do so with less gate overhead. This shows that, on aver-
age, holding in place qubits to satisfy two-qubit gates, as
seen in the third example in Section IV-C, does not nega-
tively impact the gate overhead. This can be attributed to
increased available space in larger topologies, which offers
more alternative shortest paths around the fixed positions.
Another contributing factor to this gate overhead benefit
is the swap replacement option. Nonetheless, beSnake full
can reduce both overheads more compared to beSnake fair
for up to 1000 qubits while taking less time in some real
algorithms.

VI. CONCLUSION
This article presents beSnake, a novel routing algorithm de-
signed explicitly for scalable spin-qubit architectures. It ad-
dresses the unique challenges posed by spin-qubit systems,
such as the incorporation of the shuttle operation over the
traditional swap gate used in other qubit technologies. We
presented beSnake’s ability to dynamically adapt to different
routing challenges and efficiently handle complex scenarios
involving multiple parallel gates. We stress-tested beSnake
in various configuration options to provide valuable perfor-
mance insights. In particular, we showed that adjusting the
heuristic of the shortest path selection can offer a significant
speed improvement with a relatively small overhead cost.
Then, beSnake was tested on its swap replacement option

VOLUME 5, 2024 3102822

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

and its capacity to handle a highly connected topology faster
than a less connected one. Furthermore, we gave an insight
into the optimal qubit density, up to 72%, that beSnake can
route in a scalable manner. In the second simulation phase,
we conducted an extensive comparison between the SBS
routing algorithm acting on random and real algorithms with
up to 1000 qubits, in which beSnake demonstrated significant
improvements, with up to 80% and 54% on average in gate
overhead and depth overhead, respectively, and up to 8.33
times faster routing time.
While performing our research, several avenues for future

work have emerged, which warrant further exploration and
investigation. Regarding the mechanisms for dealing with
blockages discussed in Section IV-D1, the list of alternative
approaches can be further expanded for such edge cases. This
should be done with scalability in mind in terms of the extra
computation time and whether it will be worth it based on
their utility on the particular topological patterns and size of
the coupling graph. One example is moving qubits for two or
more gates concurrently or allowing the operand qubits to be
pushed by other qubits. This will possibly improve the output
circuit’s overhead but also make it slower for beSnake to
find a solution. In other cases, it can increase both overheads
because of deeper BFS explorations due to path conflicts
within the different layers.
As for ways to sort parallelized Z and two-qubit

gates contained in a cycle, besides the one discussed in
Section IV-D2, more nuanced techniques will most likely
increase the algorithm’s complexity but improve both over-
heads. One possible direction is to create a heuristic upon
which the order of all the different gate types is sorted based
on their predicted routing paths. On a similar note, the short-
est path selection heuristic can be expanded by adding a third
filtration stage in cases with more than one candidate path re-
maining. More precisely, it could make a prediction of subse-
quent routing steps and select the current path, which would
result in the least overall overhead in the future. Nonetheless,
such strategies should be explored and compared in targeted
architectures that will properly utilize them.
Last but not least, as mentioned, beSnake utilizes Net-

workX [73]. However, similar libraries are known to be
more time and memory efficient, especially for large graphs
with complex structures [74], [75]. This is attributed to Net-
workX’s pure Python implementation compared to other
libraries written in C/C++. NetworkX was chosen for its
user-friendly application programming interface while offer-
ing flexibility for future adaptations. As quantum devices
increase in size beyond 1000 qubits, better performance
might be gained by using other libraries, such as igraph [76],
graph-tool [77], or rustworkx [78].

REFERENCES
[1] N. Paraskevopoulos, F. Sebastiano, C. G. Almudever, and S. Feld,

“SpinQ: Compilation strategies for scalable spin-qubit architectures,”
ACM Trans. Quantum Comput., vol. 5, no. 1, pp. 1–36, Dec. 2023,
doi: 10.1145/3624484.

[2] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington,
and R. Duncan, “t|ket >: A retargetable compiler for NISQ de-
vices,” Quantum Sci. Technol., vol. 6, no. 1, 2020, Art. no. 014003,
doi: 10.1088/2058-9565/ab8e92.

[3] J.-A. Ali et al., “Quantum computing with qiskit,” 2024,
arXiv:2405.08810, doi: 10.48550/arXiv.2405.08810.

[4] N. Khammassi et al., “OpenQL: A portable quantum programming frame-
work for quantum accelerators,” ACM J. Emerg. Technol. Comput. Syst.,
vol. 18, no. 1, pp. 1–24, 2021, doi: 10.1145/3474222.

[5] M. Salm, J. Barzen, F. Leymann, B. Weder, and K. Wild, “Automat-
ing the comparison of quantum compilers for quantum circuits,” in
Proc. Symp. Summer Sch. Serv.-Oriented Comput., 2021, pp. 64–80,
doi: 10.1007/978-3-030-87568-8_4.

[6] C. Developers, “Cirq,” Zenodo, 2023. [Online]. Avail-
able: https://zenodo.org/records/11398048

[7] R. Computing, “Pyquil documentation,” pp. 64–65, 2019. [Online]. Avail-
able: http://pyquil.readthedocs.io/en/latest

[8] A. JavadiAbhari et al., “ScaffCC: A framework for compilation and anal-
ysis of quantum computing programs,” in Proc. 11th ACM Conf. Comput.
Front., 2014, pp. 1–10, doi: 10.1145/2597917.2597939.

[9] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages
and compiler design for realistic quantum hardware,” Nature, vol. 549,
no. 7671, pp. 180–187, 2017, doi: 10.1038/nature23459.

[10] X.-C. Wu et al., “Intel quantum SDK version 1.0: Extended
C++ compiler, runtime and quantum hardware simulators for
hybrid quantum-classical applications,” in APS Mar. Meeting
Abstr., vol. 2023, pp. RR08–005, 2023. [Online]. Available:
https://meetings.aps.org/Meeting/MAR23/Session/RR08.5.

[11] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, 2018, Art. no. 79, doi: 10.22331/q-2018-08-06-79.

[12] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A
case for variability-aware policies for NISQ-era quantum computers,” in
Proc. 24th Int. Conf. Archit. Support Program. Lang. Oper. Syst., 2019,
pp. 987–999, doi: 10.1145/3297858.3304007.

[13] G. Li, Y. Ding, andY.Xie, “Tackling the qubit mapping problem for NISQ-
era quantum devices,” in Proc. 24th Int. Conf. Archit. Support Program.
Lang. Oper. Syst., 2019, pp. 1001–1014, doi: 10.1145/3297858.3304023.

[14] A. A. Saki, M. Alam, J. Li, and S. Ghosh, “Error-tolerant mapping for
quantum computing,” in Emerging Computing: From Devices to Sys-
tems: Looking Beyond Moore and Von Neumann. Singapore: Springer,
pp. 371–403, 2022, doi: 10.1007/978-981-16-7487-7_12.

[15] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quantum
computers,” in Proc. 24th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2019, pp. 1015–1029, doi: 10.1145/3297858.3304075.

[16] S. Niu, A. Suau, G. Staffelbach, and A. Todri-Sanial, “A hardware-
aware heuristic for the qubit mapping problem in the NISQ era,”
IEEE Trans. Quantum Eng., vol. 1, 2020, Art. no. 3101614, doi:
10.1109/TQE.2020.3026544.

[17] A. Sinha, U. Azad, and H. Singh, “Qubit routing using graph neural
network aided Monte Carlo tree search,” in Proc. AAAI Conf. Artif. Intell.,
2022, vol. 36, no. 9, pp. 9935–9943, doi: 10.1609/aaai.v36i9.21231.

[18] J. Liu, E. Younis, M. Weiden, P. Hovland, J. Kubiatowicz, and C. Iancu,
“Tackling the qubit mapping problem with permutation-aware synthe-
sis,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2023, vol. 1,
pp. 745–756, doi: 10.1109/QCE57702.2023.00090.

[19] L. Lao, H. van Someren, I. Ashraf, and C. G. Almudever, “Timing and
resource-aware mapping of quantum circuits to superconducting proces-
sors,” IEEETrans. Comput.-AidedDes. Integr. Circuits Syst., vol. 41, no. 2,
pp. 359–371, Feb. 2021, doi: 10.1109/TCAD.2021.3057583.

[20] R. Li et al., “A crossbar network for silicon quantum dot qubits,” Sci. Adv.,
vol. 4, no. 7, 2018, Art. no. eaar3960, doi: 10.1126/sciadv.aar3960.

[21] J. Yoneda et al., “A quantum-dot spin qubit with coherence limited
by charge noise and fidelity higher than 99.9%,” Nature Nanotechnol.,
vol. 13, no. 2, pp. 102–106, 2018, doi: 10.1038/s41565-017-0014-x.

[22] L. C. Camenzind, S. Geyer, A. Fuhrer, R. J. Warburton, D. M. Zumbühl,
and A. V. Kuhlmann, “A hole spin qubit in a fin field-effect transis-
tor above 4 kelvin,” Nature Electron., vol. 5, no. 3, pp. 178–183, 2022,
doi: 10.1038/s41928-022-00722-0.

[23] N. W. Hendrickx et al., “A four-qubit germanium quantum
processor,” Nature, vol. 591, no. 7851, pp. 580–585, 2021,
doi: 10.1038/s41586-021-03332-6.

3102822 VOLUME 5, 2024

https://dx.doi.org/10.1145/3624484
https://dx.doi.org/10.1088/2058-9565/ab8e92
https://dx.doi.org/10.48550/arXiv.2405.08810
https://dx.doi.org/10.1145/3474222
https://dx.doi.org/10.1007/978-3-030-87568-8_4
https://zenodo.org/records/11398048
http://pyquil.readthedocs.io/en/latest
https://dx.doi.org/10.1145/2597917.2597939
https://dx.doi.org/10.1038/nature23459
https://meetings.aps.org/Meeting/MAR23/Session/RR08.5
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1145/3297858.3304007
https://dx.doi.org/10.1145/3297858.3304023
https://dx.doi.org/10.1007/978-981-16-7487-7_12
https://dx.doi.org/10.1145/3297858.3304075
https://dx.doi.org/10.1109/TQE.2020.3026544
https://dx.doi.org/10.1609/aaai.v36i9.21231
https://dx.doi.org/10.1109/QCE57702.2023.00090
https://dx.doi.org/10.1109/TCAD.2021.3057583
https://dx.doi.org/10.1126/sciadv.aar3960
https://dx.doi.org/10.1038/s41565-017-0014-x
https://dx.doi.org/10.1038/s41928-022-00722-0
https://dx.doi.org/10.1038/s41586-021-03332-6

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES Engineeringuantum
Transactions onIEEE

[24] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon,
and F. Kuemmeth, “Semiconductor qubits in practice,” Nature Rev. Phys.,
vol. 3, no. 3, pp. 157–177, 2021, doi: 10.1038/s42254-021-00283-9.

[25] F. A. Zwanenburg et al., “Silicon quantum electronics,” Rev. Mod. Phys.,
vol. 85, pp. 961–1019, Jul. 2013, doi: 10.1103/RevModPhys.85.961.

[26] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum
dots,” Phys. Rev. A, vol. 57, pp. 120–126, Jan. 1998, doi: 10.1103/Phys-
RevA.57.120.

[27] L. Vandersypen et al., “Interfacing spin qubits in quantum dots and
donors—Hot, dense, and coherent,” npj Quantum Inf., vol. 3, no. 1,
pp. 1–10, 2017, doi: 10.1038/s41534-017-0038-y.

[28] M. Veldhorst et al., “A two-qubit logic gate in silicon,” Nature, vol. 526,
no. 7573, pp. 410–414, 2015, doi: 10.1038/nature15263.

[29] D. Zajac, T. Hazard, X. Mi, K. Wang, and J. R. Petta, “A reconfigurable
gate architecture for Si/SiGe quantum dots,” Appl. Phys. Lett., vol. 106,
no. 22, 2015, Art. no. 223507, doi: 10.1063/1.4922249.

[30] T. Watson et al., “A programmable two-qubit quantum processor in sil-
icon,” Nature, vol. 555, no. 7698, pp. 633–637, 2018, doi: 10.1038/na-
ture25766.

[31] S. G. Philips et al., “Universal control of a six-qubit quantum pro-
cessor in silicon,” Nature, vol. 609, no. 7929, pp. 919–924, 2022,
doi: 10.1038/s41586-022-05117-x.

[32] X. Xue et al., “Quantum logic with spin qubits crossing the sur-
face code threshold,” Nature, vol. 601, no. 7893, pp. 343–347, 2022,
doi: 10.1038/s41586-021-04273-w.

[33] A. Noiri et al., “Fast universal quantum gate above the fault-tolerance
threshold in silicon,” Nature, vol. 601, no. 7893, pp. 338–342, 2022,
doi: 10.1038/s41586-021-04182-y.

[34] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. Vander-
sypen, “Spins in few-electron quantum dots,” Rev. Modern Phys., vol. 79,
no. 4, 2007, Art. no. 1217, doi: 10.1103/RevModPhys.79.1217.

[35] F. Borsoi et al., “Shared control of a 16 semiconductor quantum dot
crossbar array,” Nature Nanotechnol., vol. 19, no. 1, pp. 21–27, 2024,
doi: 10.1038/s41565-023-01491-3.

[36] M. Y. Siraichi, V. F. dos Santos, C. Collange, and F. M. Q. Pereira, “Qubit
allocation,” in Proc. Int. Symp. Code Gener. Optim., 2018, pp. 113–125,
doi: 10.1145/3168822.

[37] A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of quan-
tum circuit compilation,” in Proc. Int. Symp. Combinatorial Search, 2018,
vol. 9, no. 1, pp. 138–142, doi: 10.1609/socs.v9i1.18463.

[38] J. Helsen, M. Steudtner, M. Veldhorst, and S. Wehner, “Quantum error
correction in crossbar architectures,” Quantum Sci. Technol., vol. 3, no. 3,
2018, Art. no. 035005, doi: 10.1088/2058-9565/aab8b0.

[39] A. M. Tejerina, “Mapping quantum algorithms in a crossbar archi-
tecture,” Master’s thesis, Dept. Quantum Comput. Eng., Delft Univ.
Technol., The Netherlands, 2019. [Online]. Available: https://repository.
tudelft.nl/record/uuid:cb7194fb-7b99-4ea9-a5ad-8e3617d1f9f5.

[40] I. Dirgová Luptáková and J. Pospíchal, “Transition graph analysis of slid-
ing tile puzzle heuristics,” in Recent Advances in Soft Computing and
Cybernetics. Cham, Switzerland: Springer, 2021, pp. 149–156.

[41] R. E. Korf and A. Felner, “Disjoint pattern database heuris-
tics,” Artif. Intell., vol. 134, nos. 1/2, pp. 9–22, 2002, doi:
10.1016/S0004-3702(01)00165-5.

[42] A. Felner, R. E. Korf, and S. Hanan, “Additive pattern database heuristics,”
J. Artif. Intell. Res., vol. 22, pp. 279–318, 2004, doi: 10.1613/jair.1480.

[43] L. Orseau, M. Hutter, and L. H. Leli, “Levin tree search with context
models,” 2023, arXiv:2305.16945, doi: 10.48550/arXiv.2305.16945.

[44] M. Gozon and J. Yu, “On computing makespan-optimal solutions
for generalized sliding-tile puzzles,” 2023, arXiv:2312.10887, doi:
10.48550/arXiv.2312.10887.

[45] J. Gao, Y. Li, X. Li, K. Yan, K. Lin, and X. Wu, “A review of
graph-based multi-agent pathfinding solvers: From classical to be-
yond classical,” Knowl.-Based Syst., vol. 283, 2023, Art. no. 111121,
doi: 10.1016/j.knosys.2023.111121.

[46] P. Raja and S. Pugazhenthi, “Optimal path planning of mobile robots:
A review,” Int. J. Phys. Sci., vol. 7, no. 9, pp. 1314–1320, 2012,
doi: 10.5897/IJPS11.1745.

[47] H. Ma, “Graph-based multi-robot path finding and planning,”Curr. Robot.
Rep., vol. 3, no. 3, pp. 77–84, 2022, doi: 10.1007/s43154-022-00083-8.

[48] S. Tjiharjadi, S. Razali, and H. A. Sulaiman, “A systematic literature
review of multi-agent pathfinding for maze research,” J. Adv. Inf. Technol.,
vol. 13, no. 4, pp. 358–367, 2022, doi: 10.12720/jait.13.4.358-367.

[49] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,”Appl. Phys. Rev., vol. 6,
no. 2, 2019, Art. no. 021314, doi: 10.1063/1.5088164.

[50] P. Murali, D. M. Debroy, K. R. Brown, and M. Martonosi, “Architect-
ing noisy intermediate-scale trapped ion quantum computers,” in Proc.
ACM/IEEE 47th Annu. Int. Symp. Comput. Archit., 2020, pp. 529–542,
doi: 10.1109/ISCA45697.2020.00051.

[51] A. A. Saki, R. O. Topaloglu, and S. Ghosh, “Muzzle the shuttle: Ef-
ficient compilation for multi-trap trapped-ion quantum computers,” in
Proc. IEEE Des., Autom. Test Eur. Conf. Exhib., 2022, pp. 322–327,
doi: 10.23919/DATE54114.2022.9774619.

[52] D. Schoenberger, S. Hillmich, M. Brandl, and R. Wille, “Using Boolean
satisfiability for exact shuttling in trapped-ion quantum computers,” 2023,
arXiv:2311.03454, doi: 10.48550/arXiv.2311.03454.

[53] L. Schmid et al., “Computational capabilities and compiler develop-
ment for neutral atom quantum processors—Connecting tool develop-
ers and hardware experts,” Quantum Sci. Technol., vol. 9, no. 3, 2024,
Art. no. 0033001, doi: 10.1088/2058-9565/ad33ac.

[54] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps
for neutral atoms,” Adv. Atomic Mol. Opt. Phys., vol. 42, pp. 95–170,
doi: 10.1016/S1049-250X(08)60186-X.

[55] P. Jessen and I. Deutsch, “Optical lattices,” Adv. Atomic, Molecular, Opt.
Phys., vol. 37, pp. 95–138, 1996, doi: 10.1016/S1049-250X(08)60099-3.

[56] A. M. Kaufman and K.-K. Ni, “Quantum science with optical Tweezer
arrays of ultracold atoms and molecules,” Nature Phys., vol. 17, no. 12,
pp. 1324–1333, 2021, doi: 10.1038/s41567-021-01357-2.

[57] M. Saffman, “Quantum computing with atomic qubits and
Rydberg interactions: Progress and challenges,” J. Phys. B:
Atomic, Mol. Opt. Phys., vol. 49, no. 20, 2016, Art. no. 202001,
doi: 10.1088/0953-4075/49/20/202001.

[58] H. Wang et al., “Q-pilot: Field programmable qubit array compilation
with flying ancillas,” in Proc. 61st ACM/IEEE Des. Autom. Conf., 2024,
pp. 1–6.

[59] Y. Stade, L. Schmid, L. Burgholzer, and R. Wille, “An abstract model
and efficient routing for logical entangling gates on zoned neutral
atom architectures,” 2024, arXiv:2405.08068, doi: 10.48550/arXiv.2405.
08068.

[60] D. B. Tan, D. Bluvstein, M. D. Lukin, and J. Cong, “Com-
piling quantum circuits for dynamically field-programmable neutral
atoms array processors,” Quantum, vol. 8, 2024, Art. no. 1281, doi:
10.22331/q-2024-03-14-1281.

[61] N. Nottingham, M. A. Perlin, R. White, H. Bernien, F. T. Chong,
and J. M. Baker, “Decomposing and routing quantum circuits under
constraints for neutral atom architectures,” 2023, arXiv:2307.14996,
doi: 10.48550/arXiv.2307.14996.

[62] S. Brandhofer, I. Polian, and H. P. Büchler, “Optimal mapping for near-
term quantum architectures based on Rydberg atoms,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Des., 2021, pp. 1–7, doi: 10.1109/IC-
CAD51958.2021.9643490.

[63] L. Schmid, S. Park, S. Kang, and R. Wille, “Hybrid circuit
mapping: Leveraging the full spectrum of computational capabilities
of neutral atom quantum computers,” 2023, arXiv:2311.14164,
doi: 10.48550/arXiv.2311.14164.

[64] T. Schmale et al., “Backend compiler phases for trapped-ion quantum
computers,” 2022, arXiv:2206.00544, doi: 10.48550/arXiv.2206.00544.

[65] M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins, “Us-
ing reinforcement learning to perform qubit routing in quantum com-
pilers,” ACM Trans. Quantum Comput., vol. 3, no. 2, pp. 1–25, 2022,
doi: 10.1145/3520434.

[66] M. Steinberg, M. Bandic, S. Szkudlarek, C. G. Almudever, A.
Sarkar, and S. Feld, “Resource bounds for quantum circuit map-
ping via quantum circuit complexity,” 2024, arXiv:2402.00478, doi:
10.48550/arXiv.2402.00478.

[67] P. Escofet et al., “Revisiting the mapping of quantum circuits: Entering
the multi-core era,” ACM Trans. Quantum Comput., early access, 2024,
doi: 10.1145/3655029.

[68] C.-A. Wang et al., “Operating semiconductor quantum
processors with hopping spins,” 2024, arXiv:2402.18382,
doi: 10.48550/arXiv.2402.18382.

[69] C.-C. Lin, A. Chakrabarti, and N. K. Jha, “QLib: Quantum module li-
brary,” ACM J. Emerg. Technol. Comput. Syst., vol. 11, no. 1, pp. 1–20,
2014, doi: 10.1145/2629430.

VOLUME 5, 2024 3102822

https://dx.doi.org/10.1038/s42254-021-00283-9
https://dx.doi.org/10.1103/RevModPhys.85.961
https://dx.doi.org/10.1103/PhysRevA.57.120
https://dx.doi.org/10.1103/PhysRevA.57.120
https://dx.doi.org/10.1038/s41534-017-0038-y
https://dx.doi.org/10.1038/nature15263
https://dx.doi.org/10.1063/1.4922249
https://dx.doi.org/10.1038/nature25766
https://dx.doi.org/10.1038/nature25766
https://dx.doi.org/10.1038/s41586-022-05117-x
https://dx.doi.org/10.1038/s41586-021-04273-w
https://dx.doi.org/10.1038/s41586-021-04182-y
https://dx.doi.org/10.1103/RevModPhys.79.1217
https://dx.doi.org/10.1038/s41565-023-01491-3
https://dx.doi.org/10.1145/3168822
https://dx.doi.org/10.1609/socs.v9i1.18463
https://dx.doi.org/10.1088/2058-9565/aab8b0
https://repository.penalty -@M tudelft.nl/record/uuid:cb7194fb-7b99-4ea9-a5ad-8e3617d1f9f5
https://repository.penalty -@M tudelft.nl/record/uuid:cb7194fb-7b99-4ea9-a5ad-8e3617d1f9f5
https://dx.doi.org/10.1016/S0004-3702(01)00165-5
https://dx.doi.org/10.1613/jair.1480
https://dx.doi.org/10.48550/arXiv.2305.16945
https://dx.doi.org/10.48550/arXiv.2312.10887
https://dx.doi.org/10.1016/j.knosys.2023.111121
https://dx.doi.org/10.5897/IJPS11.1745
https://dx.doi.org/10.1007/s43154-022-00083-8
https://dx.doi.org/10.12720/jait.13.4.358-367
https://dx.doi.org/10.1063/1.5088164
https://dx.doi.org/10.1109/ISCA45697.2020.00051
https://dx.doi.org/10.23919/DATE54114.2022.9774619
https://dx.doi.org/10.48550/arXiv.2311.03454
https://dx.doi.org/10.1088/2058-9565/ad33ac
https://dx.doi.org/10.1016/S1049-250X(08)60186-X
https://dx.doi.org/10.1016/S1049-250X(08)60099-3
https://dx.doi.org/10.1038/s41567-021-01357-2
https://dx.doi.org/10.1088/0953-4075/49/20/202001
https://dx.doi.org/10.48550/arXiv.2405.penalty -@M 08068
https://dx.doi.org/10.48550/arXiv.2405.penalty -@M 08068
https://dx.doi.org/10.22331/q-2024-03-14-1281
https://dx.doi.org/10.48550/arXiv.2307.14996
https://dx.doi.org/10.1109/ICCAD51958.2021.9643490
https://dx.doi.org/10.1109/ICCAD51958.2021.9643490
https://dx.doi.org/10.48550/arXiv.2311.14164
https://dx.doi.org/10.48550/arXiv.2206.00544
https://dx.doi.org/10.1145/3520434
https://dx.doi.org/10.48550/arXiv.2402.00478
https://dx.doi.org/10.1145/3655029
https://dx.doi.org/10.48550/arXiv.2402.18382
https://dx.doi.org/10.1145/2629430

Engineeringuantum
Transactions onIEEE

Paraskevopoulos et al.: BESNAKE: A ROUTING ALGORITHM FOR SCALABLE SPIN-QUBIT ARCHITECTURES

[70] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,” in
Proc. IEEE 38th Int. Symp. Mult. Valued Log., 2008, pp. 220–225,
doi: 10.1109/ISMVL.2008.43.

[71] N. Quetschlich, L. Burgholzer, and R.Wille, “MQT bench: Benchmarking
software and design automation tools for quantum computing,” Quantum,
vol. 7, 2023, Art. no. 1062, doi: 10.22331/q-2023-07-20-1062.

[72] M. Bandic, C. G. Almudever, and S. Feld, “Interaction graph-based char-
acterization of quantum benchmarks for improving quantum circuit map-
ping techniques,” Quantum Mach. Intell., vol. 5, no. 2, 2023, Art. no. 40,
doi: 10.1007/s42484-023-00124-1 .

[73] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using networkX,” in Proc. 7th Python Sci. Conf.,
2008, pp. 11–15, doi: https://www.osti.gov/biblio/960616.

[74] J. Leskovec and R. Sosič, “SNAP: A general-purpose network analysis
and graph-mining library,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 1,
pp. 1–20, 2016, doi: 10.1145/2898361.

[75] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: A tool
suite for large-scale complex network analysis,” Netw. Sci., vol. 4, no. 4,
pp. 508–530, 2016, doi: 10.1017/nws.2016.20 .

[76] G. Csardi and T. Nepusz, “The igraph software,”Complex Syst., vol. 1695,
pp. 1–9, 2006, doi: 10.3389/fimmu.2022.862049.

[77] T. P. Peixoto, “The graph-tool Python library,” figshare, 2014. [Online].
Available: http://figshare.com/articles/graph_tool/1164194

[78] M. Treinish, I. Carvalho, G. Tsilimigkounakis, and N. Sá, “rustworkx:
A high-performance graph library for Python,” 2021, arXiv:2110.15221,
doi: 10.48550/arXiv.2110.15221.

3102822 VOLUME 5, 2024

https://dx.doi.org/10.1109/ISMVL.2008.43
https://dx.doi.org/10.22331/q-2023-07-20-1062
https://dx.doi.org/10.1007/s42484-023-00124-1
https://dx.doi.org/https://www.osti.gov/biblio/960616
https://dx.doi.org/10.1145/2898361
https://dx.doi.org/10.1017/nws.2016.20
https://dx.doi.org/10.3389/fimmu.2022.862049
http://figshare.com/articles/graph_tool/1164194
https://dx.doi.org/10.48550/arXiv.2110.15221

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

