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ABSTRACT To perform reliable information processing in quantum computers, quantum error correction
(QEC) codes are essential for the detection and correction of errors in the qubits. Among QEC codes, topo-
logical QEC codes are designed to interact between the neighboring qubits, which is a promising property for
easing the implementation requirements. In addition, the locality to the qubits provides unusual tolerance
to local errors. Recently, various decoding algorithms based on machine learning have been proposed to
improve the decoding performance and latency of QEC codes. In this work, we propose a new decoding
algorithm for surface codes, i.e., a type of topological codes, by using convolutional neural networks (CNNs)
tailored for the topological lattice structure of the surface codes. In particular, the proposed algorithm takes
advantage of the syndrome pattern, which is represented as a part of a rectangular lattice given to the CNN as
its input. The remaining part of the rectangular lattice is filled with a carefully selected incoherent value for
better logical error rate performance. In addition, we introduce how to optimize the hyperparameters in the
CNN, according to the lattice structure of a given surface code. This reduces the overall decoding complexity
andmakes the CNN-based decoder computationally more suitable for implementation. The numerical results
show that the proposed decoding algorithm effectively improves the decoding performance in terms of logical
error rate as compared to the existing algorithms on various quantum error models.

INDEX TERMS Convolutional neural network (CNN), decoding algorithm, lattice structure, surface codes,
topological quantum error correction codes.

I. INTRODUCTION
Qubit is the basic unit of information storage in quan-
tum computers, and it is vulnerable to noise, even when a
quantum computational process is halted or not applied [1].
Due to the unreliable characteristic associated with the
qubits, quantum error correction (QEC) codes are essential
in quantum processing to protect the information contained
in the corresponding qubits. In quantum computers, perfect
fidelity in quantum processing is required to achieve scala-
bility. Therefore, designing good QEC codes for protecting
quantum information is an important and challenging task
for building an efficient and universal quantum computer [1],
[2], [3], [4]. Topological QEC codes, such as surface codes
and color codes, are designed according to the interaction
between the qubits physically close to each other. Since the
locality of topological codes is especially useful for easing

implementation and improving fault tolerance, these codes
have recently attracted a great deal of attention [4], [5], [6],
[7], [8], [9], [10], [11].

In the decoding process of QEC codes, errors are detected
and corrected based on syndromes, which are calculated and
measured from the stabilizer. Since the errors continue to
accumulate in quantum processing, it is important to keep
the latency of the decoding algorithm low, with good logi-
cal error rate performance. In [12] and [13], the minimum
weight perfect matching (MWPM) algorithm for decoding
the surface codes is presented. A real-space renormalization
group (RG) algorithm is proposed in [14] to reduce the com-
plexity of MWPM. The RG algorithm combines the real-
space renormalization methods and the belief propagation
algorithm (by using mean-field equations). By taking into
account the correlations between bit- and phase-flip errors
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in the qubits, a Markov chain Monte Carlo algorithm is pro-
posed in [15] to achieve lower logical error rates than those
of MWPM.

A. PREVIOUS MACHINE-LEARNING-BASED DECODERS
Recently, machine-learning-based decoding algorithms us-
ing restricted Boltzmann machines (RBMs), feedforward
neural networks (FFNNs), and convolutional neural net-
works (CNNs) are proposed in [16], [17], [18], and [19].
These algorithms take the syndromes as their input and pro-
duce the recovery operators as their output. Both the decod-
ing algorithms showed a lower logical error rate than that
of the MWPM. However, there are two major disadvantages
of these algorithms: 1) the decoding latency is not constant
since the decoding process is repeated until the recovery
operator corresponding to the syndromes is found and 2) the
number of nodes in the output layer is often excessively large,
whichmakes the neural network dense and, thus, highly com-
plex. In [20], [21], and [22], these disadvantages are solved
by using the concept of pure error of the surface codes. The
decoding problem can be reduced to a classification prob-
lem by using a neural network. All the error operators are
classified into several categories by adopting pure errors, and
the output of the neural network is replaced with the value
of the error operator in the corresponding category. In [20],
an FFNN is used to train and classify error operators in
the decoding algorithm, whereas recurrent neural networks
(RNNs) and the CNN are used in [21] and [22], respectively.
Nonetheless, all these machine-learning-based decoding al-
gorithms are proposed without considering the topological
lattice structure of the surface codes.

B. MAIN CONTRIBUTIONS
In this work, we propose a new decoding algorithm based
on the CNN that is designed to take the topological lattice
structure of the surface codes into the decoding. In particular,
the existing decoding algorithms ignore the 2-D structure of
syndrome pattern and simply transform the syndromes into
a 1-D or 2-D bit string for the input to the neural network.
Unlike the existing algorithms, we maintain the structure of
the syndrome pattern in such a way that the syndrome pattern
is first placed into a rectangular lattice without disturbing the
structure of pattern. Then, the missing pieces in the lattice
are filled with an incoherent symbol.
Moreover, no method is presented in the existing decoding

algorithms for determining various hyperparameters used in
the neural network. They simply use Bayesian optimization
for determining the hyperparameters instead of analyzing
possible syndrome patterns. In the proposed decoding al-
gorithm, we determine the hyperparameter values according
to the structural features of syndrome patterns. By carefully
selecting these hyperparameter values, the overall decoding
complexity is minimized without compromising the error
rate performance. Through numerical simulations, we show
that the logical error rate performance of the proposed de-
coding algorithm is better than that of the existing decoding

algorithms in the depolarizing error model, depolarizing with
the measurement error model, and the circuit noise error
model.
The rest of this article is organized as follows. In Sec-

tion II, a brief description of the stabilizer and surface codes
is given. A preview of the decoding algorithms of these codes
and the introduction of the CNN are also presented in this
section. The existingmachine-learning-based decoding algo-
rithms of QEC codes are described in Section III. We present
the proposed CNN-based decoding algorithm that utilizes the
features of syndrome pattern induced by the structure of sur-
face codes in Section IV.We then introduce how to determine
the hyperparameters and explain the method of selecting the
training samples. In SectionV, we present the numerical sim-
ulation results and analyze the performance of the proposed
and existing decoding algorithms in the depolarizing error
model, depolarizing with the measurement error model, and
the circuit noise error model. Finally, Section VI concludes
this article.

II. BACKGROUND
A. STABILIZER CODES
In an �n, k, d� QEC code, k logical qubits with quantum in-
formation/states are encoded into a QEC codeword of length
n to protect them from errors during quantum processing, and
d is the code distance, which will be defined shortly. The
logical and physical qubits are also called message and data
qubits, respectively. The stabilizer codes are a class of QEC
codes that has recently attracted the most attention for the
reliable processing of quantum information/states [3], [4],
[5], [6], [7], [8], [9], [10], [11].

An �n, k, d� stabilizer code is defined over a stabilizer
group S , which is the Abelian subgroup of Pauli group P⊗n
and does not include −I⊗n as a group element (here, I is the
2 × 2 identity matrix in P). The code space C of a stabilizer
code is defined as follows:

C = {|ψ〉 | S|ψ〉 = |ψ〉 ∀ S ∈ S} .
The stabilizer group S consists of n− k independent
generators Si, i = 1, . . ., n− k. The elements in S =
〈S1, S2, . . . , Sn−k〉 are called stabilizers and have the same
effect on data qubits, even though each of them is a different
operator (strictly speaking, the stabilizers do not change the
states of the data qubits).
The logical operators are defined as Pauli operators, which

commute with all the elements inS . We define the centralizer
C(S ) of the stabilizer group S as follows:

C(S ) = {L | LS = SL∀ S ∈ S}
where L is a logical operator, and we can note that any
nontrivial logical operator is an element in C(S )\S and vice
versa.1 Since the stabilizers do not affect the data qubits,
any two logical operators La and Lb are called equivalent if

1In general, stabilizers can be viewed as trivial logical operators.
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LaLb ∈ S . We define the logical state group as follows:

L = 〈L1,L2, . . . ,L2k〉
where Li, i = 1, 2, . . . , 2k, are logical operators that are in-
dependent and not equivalent to each other. To find the log-
ical state group, we consider the quotient group C(S )/S as
follows:

C(S )/S = 〈Q1,Q2, . . . ,Q2k〉
where Qi, i = 1, 2, . . . , 2k, are independent cosets. Since all
the elements in each coset are equivalent to each other, Li can
be any element in coset Qi. In general, Li, i = 1, 2, . . . , 2k,
are represented by X̄1, X̄2, . . . , X̄k, Z̄1, Z̄2, . . . , Z̄k, where X̄ j
anticommutes with Z̄ j. The code distance d is defined as the
minimumweight of all the logical operators (here, the weight
is defined as the number of qubits on which the operator
causes information loss).
Let Ti be the pure error element in T = 〈T1,T2, . . . ,Tn−k〉.

Ti anticommutes with the stabilizer element Si, and it is an
operator that commutes with other stabilizer elements S j :
∀ j �= i. The n− k pure error elements in T commute with
each other and all the logical operators. By using an �n, k, d�
stabilizer code, we can successfully correct errors on qubits
when the number of errors is less than or equal to

⌊ d−1
2

⌋
.

B. SURFACE CODES
The surface codes are a type of topological stabilizer codes,
which are designed to measure all the stabilizer generators
by using only local interactions between the neighboring
qubits. Different types of surface codes can be defined by the
topology of the lattice on the surface, such as toric codes [8],
planar codes [9], and rotated surface codes [20], [21], [22],
[23]. In this work, we focus only on the rotated surface codes,
which require the least physical qubits per logical qubit. For
brevity, we refer to rotated surface codes as surface codes
throughout this article.
The basic structure of the �n = d2, k = 1, d� surface codes

is shown in Fig. 1, where the code distance d amounts to
√
n.

The data qubits are placed on the vertex v of the lattice struc-
ture, and the ancilla qubits are placed on the faces f of the
squares/semicircles in the lattice. The stabilizer generators of
surface codes are defined as follows:

Xfr :=
∏

v∈ fr
Xv Z fb :=

∏

v∈ fb
Zv (1)

where fr and fb represent the red and blue planes, respec-
tively. Moreover, Xv (respectively, Zv) performs the X (re-
spectively, Z) operation on the qubits placed on the vertex
v. Note that the qubits placed on the vertex v are called the
support of stabilizer. There are n− 1 independent generators
in the surface codes. The logical state group of the surface
codes is given by L = {Ī, X̄1, Ȳ1, Z̄1}, where Ȳ1 = X̄1Z̄1 and
Ī ∈ S . Each element of C(S ) uniquely corresponds to an
element in L.

FIGURE 1. Basic structure of the surface codes. The black circles
represent the data qubits, and the white circles represent the ancilla
qubits.

C. DECODING PROCESS AND ALGORITHMS OF SURFACE
CODES
The decoding process of the �n, k, d� surface codes involves
three steps: 1) detect the errors in qubits; 2) determine the
errors; and 3) correct the errors. To detect errors in qubits,
we need to measure the quantum states in the qubits. If we
apply a direct measurement on a data qubit, the quantum
information is lost. Therefore, we need a quantum circuit
and apply measurements using an ancilla qubit to detect
errors without losing the quantum information in the data
qubit. The quantum circuit is also called the syndrome ex-
traction circuit, and the measured values from these circuits
are called the syndromes, which are represented in a vector
form, �s = {s1, s2, . . . , sn−k}. Let E /∈ C(S ) be an error oper-
ator that does not commute for at least one stabilizer element.
If E is not a commute for the ith stabilizer generator Si ∈ S ,
then the ith syndrome si is 1, and it is 0 otherwise. The ith
syndrome is measured by the syndrome extraction circuit
corresponding to the ith stabilizer generator. The syndrome
extraction circuits used by the surface codes are shown in
Fig. 2, where there are two types of syndrome extraction
circuits. The circuits in Fig. 2(a) and (b) are devised to detect
Z and X errors, respectively. Note that in Fig. 2, we measure
only the ancilla qubits for extracting the syndrome with a
predetermined observable represented by X and Z, and thus,
the states of data qubits remain intact.2 Next, the decoding
algorithm determines the errors on �s and computes the re-
covery operator R to be used for error correction. The max-
imum likelihood estimation (MLE) algorithm is the optimal
decoding algorithm for decoding QEC codes. It calculates
the likelihood of a syndrome occurring and finds an operator
that maximizes it. The recovery operator determined byMLE

2Hermitian operator is used as an observable to specify the measure-
ments. See details in [24, Ch. 4].
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FIGURE 2. Syndrome extraction circuits. (a) Z error detection circuit.
(b) X error detection circuit.

is defined as follows:

RMLE = A · arg maxL∈L
∑

S∈S
Pr(ALS)

where A is an arbitrary operator corresponding to the syn-
dromes, and the sum of probabilities, i.e.,

∑
S∈S Pr(ALS),

is equivalent to the likelihood of a syndrome occurring. Al-
though MLE is an optimal decoding algorithm, its com-
putational complexity is often prohibitively expensive for
practical consideration. The errors accumulate in data qubits
even during the decoding is in progress. Therefore, both
the computation and time complexities must be minimized
when selecting a decoding algorithm. As a lower complexity
solution, one can consider the MWPM whose complexity is
known to beO(m · d4 log d) for code distance d and constant
m [25]. TheMWPM is, however, suboptimal in terms of error
rate performance, since it does not take into account all the
possible operators. In addition, the MWPM independently
deals with X and Z errors and, thus, is susceptible toY errors.

III. MACHINE-LEARNING-BASED DECODING
ALGORITHMS
The machine-learning-based decoding algorithms are classi-
fied into two classes, and the block diagrams of these two
classes are shown in Fig. 3(a) and (b), respectively. To test
whether an error E occurs in the data qubits, the syndrome
vector �s is extracted utilizing the extraction circuit. Then,
when the syndrome vector �s is nonzero, the decoding pro-
cess is performed using a neural network that takes �s as its
input. The errors in the data qubits are corrected with the
corresponding recovery operator. At this stage, as shown in

Fig. 3(a) and (b), the machine-learning-based decoding al-
gorithms are divided into two classes according to the output
of the neural network. We refer the ones in Fig. 3(a) and (b)
to as low- and high-level decoding algorithms, respectively,
depending on the type of output of the neural network. The
low-level decoding algorithm uses the output of the neural
network (i.e., an array of bits) as the recovery operator to the
data qubits, whereas, in the high-level decoding algorithm,
the neural network finds the logical state of the recovery oper-
ator to the data qubits. The details of the low- and high-level
algorithms will be given in the subsequent sections.

A. LOW-LEVEL DECODING ALGORITHM
In the low-level decoding algorithm, the output of the neural
network is a bit array representing the recovery operator. The
bit array of the recovery operator is divided into two strings of
bits that representX and Z errors. In case of an error, the value
of the bit is 1 and is 0 otherwise. TheY error occurs when the
X and Z errors occur at the same time. Therefore, both the bits
are 1 when a Y error occurs. The total number of bits used to
express the recovery operator is equal to the number of data
qubits multiply by two. We illustrate the recovery operator
with the following example:

OperatorX1I2Y3Z4 ↔ BitArray(1, 0, 1, 0︸ ︷︷ ︸
X error

,

Z error︷ ︸︸ ︷
0, 0, 1, 1).

The RBM and FFNN-based low-level decoding algorithms
are proposed in [16] and [17], respectively. However, the
low-level decoding algorithm has two disadvantages. First,
as the code length increases, the number of nodes in the
output layer increases, and as a result, the structure of the
neural network becomes complex. Moreover, the decoding
latency becomes unpredictable. If the syndrome vector �sr that
corresponds to the recovery operator is not equal to initial
syndrome vector �s, we resample the recovery operator. We
define M = {m|�sr(m) �= sm} as the set of indices, where �sr
and �s do not equal. The operators for the supports of the
mth stabilizer generator are changed to correspond with sm.
Until the recovery operator corresponds to �s, the resampling
is recursively repeated.

B. HIGH-LEVEL DECODING ALGORITHM
The error E that occurs in the surface codes can be decom-
posed as follows:

E = S · T · L (2)

where S ∈ S, L ∈ L, and T is the product of elements in T .
For the syndromes in �s = {s1, s2, . . . , sn−k} corresponding
to the error E, T is uniquely determined as follows:

T =
n−k∏

i=1

Tsii

where T 0
i = I⊗n and T 1

i = Ti for i = 1, 2, . . . , n− k. Since
there are n− k pure errors in T , we can easily arrange them

3102513 VOLUME 5, 2024
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FIGURE 3. Block diagram of (a) low-level decoding algorithm and (b) high-level decoding algorithm.

in a lookup table. For a given T , the stabilizer S and the logi-
cal state L satisfying the equality in (2) can also be uniquely
determined. That is, the error E uniquely corresponds to one
of the |L| logical states, which is a classification problem for
the errors to the corresponding logical states.
However, in the decoding problem, the error E is not avail-

able, and thus, the classification must be carried out with the
syndrome vector �s. It has been reported that the classifica-
tion can be effectively performed with a neural network, and
thus, the high-level decoding algorithm employs the neural
network for finding the logical state L corresponding to the
syndrome vector �s. Note that the mapping from the error E
to the syndrome vector �s is surjective, due to which the clas-
sifications with E and �smay result in different logical states.
When errors corresponding to different logical states have
the same syndrome vector, the neural network is trained to
map the syndrome vector to the logical state for the majority
of errors.
Based on given syndromes, the high-level decoding algo-

rithm determines T and L by the lookup table and the neural
network, respectively, as shown in Fig. 3(b). We determine
the recovery operator as R = T · L. Although it is an error
different from the actual error (i.e., E = S · T · L), the stabi-
lizer S does not affect the states of the data qubits. Note that
the high-level decoding algorithm solves the shortcomings
of the low-level decoding algorithm. That is, we determine
the elements of L from the output of the neural network, so
the number of nodes in the output of the neural network is
fixed to |L| regardless of the code length. Therefore, even if
the code length increases, the structure of the neural network
does not become dense or complicated. Moreover, since the
recovery operator always corresponds to the syndrome vector
�s, the decoding latency is constant. FFNN-, RNN-, and CNN-
based high-level decoding algorithms are proposed in [20],
[21], and [22], respectively.

IV. PROPOSED CONVOLUTIONAL NEURAL DECODER
Since the surface codes are characterized as topological QEC
codes, the syndromes adjacent to each other are highly cor-
related. The existing decoding algorithms based on machine
learning techniques do not take the lattice structure of the
surface codes into consideration. Moreover, in the existing
CNN-based decoders for QEC codes in [18], [19], and [22],
the inputs are modified to separately employ X and Z syn-
dromes. In addition, the input of the CNN-based decoder
in [18] is transformed to include data qubits, thereby increas-
ing its complexity. In this section, we propose a high-level
CNN-based decoding algorithm, which considers the lattice
structure of surface codes for improving the decoding perfor-
mance and reducing the complexity. We introduce a method
for transforming the syndromes into a rectangular structure
to be used as an input to the CNN. We also optimize the hy-
perparameters used in the CNN (i.e., the size and number of
filters) considering the lattice structure of the surface codes.
Furthermore, a method for the selection of training samples
used to train the CNN is introduced.

A. INPUT TRANSFORMATION OF THE CNN-BASED
DECODER
In the syndrome extraction process, the initial syndromes
are stacked in a 2-D structure to form a pattern, as shown
in Fig. 4(a). The initial syndrome patterns form irregular
structures, and we do not use them directly as an input to the
CNN.We transform these syndrome patterns into rectangular
structures without disturbing the initial placement of the syn-
dromes in the 2-D structure. In Fig. 4(b), an incoherent new
value (displayed by white boxes) is assigned to the edge of
the syndromes to form a rectangular structure. For the surface
codes with code distance d, the input size is the same both
horizontally and vertically (i.e., the incoherent value intro-
duced in the 2-D structure transforms it into a square). For the

VOLUME 5, 2024 3102513
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FIGURE 4. Input images of the CNN-based decoder. Black and gray
boxes represent the syndromes of value 0 and 1, respectively. The white
boxes represent an incoherent value.

FIGURE 5. Comparison of training accuracy for different values of m
used in a surface code with code distance d = 5.

surface codes, we propose two conditions for the selection of
the incoherent value (denoted by m ∈ R) as follows.

1) m < 0: Negative numbers are ignored in the calcula-
tion process since the CNN uses the rectified linear unit
(ReLu) as the activation function.

2) |m| < 1: The input normalization is known in [26] to
train the neural network more accurately and faster.
Thus, |m| is set to a value between the two syndrome
values, i.e., zero and one.

In Fig. 5, we compare the training accuracy of CNNs by
using inputs with different values of m. We can observe that

FIGURE 6. Size of the filter. The black circle represents the data qubits.
(a) (2,2) filter for four correlated syndromes. (b) (3,3) filter for nine
correlated syndromes.

the value ofm satisfying the proposed conditions exhibits the
best accuracy and has fast convergence. Although we can se-
lect any arbitrary value ofm that satisfies the aforementioned
conditions, our selection ofm is based on the training and test
accuracy of numerical simulations. We adopt m = −0.5 as
the incoherent value in our proposed decoder, since it exhibits
the best training and test accuracy.
For an error model using an ideal syndrome extraction

circuit (i.e., with no error occurring during syndrome extrac-
tion), one measurement value is used as the input to the de-
coder, whereas multiple measurement values are used as the
input to the decoder when errors occur during the syndrome
extraction process, e.g., the depolarizationwithmeasurement
error and the circuit noise error models in Section V. In
Fig. 4(c), several measurements are stacked in the z-direction
and are used as the input to the decoder with depth d + 1.
Then, the syndromes in the input not only correlated in the
x- and y-directions but also the z-direction.

B. OPTIMIZATION OF HYPERPARAMETERS
1) SIZE OF THE FILTER (wi,hi)
The data are processed locally depending on the size of the
filters used in a CNN, and therefore, the selection of an ap-
propriate filter size is important to process highly correlated
syndromes. We decide the size of the filters by observing
the correlation of neighboring syndromes. In other words,
we analyze how the effects of errors on the syndromes are
localized, which allows us to determine the size of the filters.
For example, in Fig. 6(a), it is shown that an error in one qubit
affects only four adjacent syndromes due to the topological
lattice structure of the surface codes.Meanwhile, in Fig. 6(b),
the syndrome labeled with a red star is only affected by the
errors in adjacent four data qubits, which affect nearby eight
syndromes in the red box. Consequently, local errors only
affect adjacent syndromes, and we select filters that extract
local features (i.e., syndrome patterns) inside the red boxes,
shown in Fig. 6. In this article, we use two filter sizes that fit
the scenarios, i.e., (2,2) filter for four correlated syndromes
and (3,3) filter for nine correlated syndromes in Fig. 6(a) and
(b), respectively.

3102513 VOLUME 5, 2024
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FIGURE 7. Comparison of decoding performances for different number
of filters Nf and code distance. (a) d = 5 and (b) d = 7.

2) NUMBER OF FILTERS Nf

For a low-complexity CNN-based decoder, the selection of
the number of filters Nf in the CNN plays a key role in
determining the tradeoff between the decoding performance
and the computational complexity. Each filter identifies a
specific input pattern. It is important to determine the number
of filters sufficient to identify all the patterns since using
too many filters will complicate the neural network. For sur-
face codes with code distance d, the number of all possible
patterns of the syndromes is 2d

2−1. If d2 − 1 independent
patterns are identified by a CNN, then all other patterns can
be identified by it. Thus, the minimum number of filters is
fixed to d2 − 1, and we propose a constraint to optimize the
number of filters Nf used in the CNN as follows:

Nf = 2u subject to 2u−1 < d2 − 1 ≤ 2u (3)

where u ∈ N is an arbitrary positive integer. In Fig. 7(a) and
7(b), the error rate performances of surface codes decoded

using the proposed CNN-based decoder with different Nf

and d are shown. In Fig. 7(a), the error rate is evaluated for
d = 5, and thus, the constraint defined in (3) is satisfied when
Nf = 32. It is noticed that the error rate performance gets
improved as the number of filters Nf is increased from 8 to
32. Meanwhile, when we further increase the filter size, the
performance improvement becomes diminished. Thus, the
results in Fig. 7(a) confirm the proposed way to selected the
number of filters in (3). In Fig. 7(b), a similar trend in error
rate performance is observed.

C. SELECTION OF TRAINING SAMPLES
After determining the basic structure of the CNN-based de-
coder and finding the associated values of hyperparameters,
we create training samples for training the CNN. We ran-
domly generate error operators and determine syndrome vec-
tors �s and logical states corresponding to the errors. Then, the
training samples consist of pairs of syndrome vectors and
corresponding logical states, which are used as inputs and
outputs, respectively, during the training of the CNN-based
decoder. In the training of the existing neural-network-based
decoders, the aforementioned training process should be re-
peated for a different physical error rate. For the error models
changing over time, it is difficult to select a neural network
among various trained neural networks.
In other work [22], the neural network is trained by the

training samples at a single physical error rate and is tested
against a large variety of physical error rates. However, this
approach had a higher logical error rate than the former
approach, i.e., the one with multiple trained networks. Let
D be the set of error operators at a specific physical error
rate for a given error model. Then, we define a subset D�s of
D whose elements are the all error operators corresponding
to the syndrome vector �s. All the error operators in D�s are
classified into four subclasses, each of which corresponds to
one of four logical states. The neural network determines the
logical state with the highest set probability for the input �s
as its output, where set probability is the sum of the prob-
abilities of all the elements of a set. The joint probability
distribution of the syndrome vector and the corresponding
logical state varies at different physical error rates. Thus, the
outputs from the neural networks trained at different physical
error rates may not be the same, which deteriorates the error
rate performance of the decoding scheme in [22], i.e., the one
trained at only one physical error rate.
In this work, we train a single neural network by taking and

mixing training samples from various physical error rates of
interest. Then, the joint probability distribution of the syn-
drome vector and the logical state for mixed training samples
is now turned out to be the average of joint distributions
at the physical error rates. By performing the training, the
trained network is not biased to the statistical characteristic
of the syndrome vector and the logical state pairs at a specific
physical error rate. The way to mix the training samples
obtained at different physical error rates is also discussed
in [27] and [28].

VOLUME 5, 2024 3102513



Engineeringuantum
Transactions onIEEE

Jung et al.: CONVOLUTIONAL NEURAL DECODER FOR SURFACE CODES

FIGURE 8. Structure of the CNN. (w1, h1) and (w1, h1) are filter size, and nf is the number of filters.

TABLE 1. Numbers of Nodes in the Hidden Layer for the FFNN

V. NUMERICAL RESULTS
In this section, we present performance evaluations of
the proposed CNN-based decoding algorithm and compare
them with those of competing algorithms, i.e., MWPM,
FFNN [20], and an existing CNN-based decoding algo-
rithm [22], over three different quantum error models.

1) Depolarizing error model: X , Y , and Z errors occur
with equal probability p/3 on the data qubits.

2) Depolarizing with the measurement error model: The
measurement error in syndrome extraction circuits oc-
curs with probability p in addition to the depolarizing
errors on data qubits.

3) Circuit noise error model: The data qubits along with
gates are noisy, whereas preparation and measurement
errors also occur. The data qubits are affected by the
depolarizing error model. At each single-qubit gate, X ,
Y , and Z errors occur with equal probability p/3, and at
each two-qubit gate, E ∈ P⊗2\I⊗2 errors occur with
equal probability p/15. Each of the preparation and
measurement encounters an error with probability p.

The FFNN uses a one hidden layer, and the numbers of
nodes in the hidden layer for different combinations of the
code distance and the channel model are given in Table 1,
where the values designated with the symbol † are taken
from [20]. On the other hand, the remaining four values
are chosen as the ones with the best error rate performance,
i.e., logical error rate, by performing error rate evaluations
within the range of 50–1000 by a step of 50. In this work, we
assume that all the CNN-based decoding algorithms have the
structure in Fig. 8, where there are two convolutional layers
with the ReLu activation function. In particular, two types of
filters in the proposed CNN-based decoding algorithm are of
sizes (w1, h1) = (3, 3) and (w2, h2) = (2, 2). The numbers
of filters of two types are set equal, i.e., n f in Fig. 8, which

depends on the code distance d according to (3). That is, n f
is determined as 8, 32, and 64 for a surface code with d = 3,
5, and 7, respectively. The numbers of nodes in the dense
and output layers are fixed to 50 and 4, respectively. The
number of nodes in the output layer amounts to the number
of logical state group |L|. Meanwhile, a good choice of the
number of nodes in the dense layer depends on the code
distance and/or error model. We find out that the choice of 50
provides reasonable performances for various combinations
of the code distance and the error model.
The existing CNN-based decoding algorithm in [22] re-

quires two CNNs in Fig. 8 to decode the X and Z errors
in parallel, and the outputs from the two CNNs are later
merged. Note that the proposed algorithm needs only one
CNN without the merging process. The sizes of two filters
are set to (w1, h1) = (3, 3) and (w2, h2) = (4, 4), which are
from [22]. Meanwhile, the numbers of nodes in the dense and
output layers are determined as 50 and 2, respectively. Note
that the existing CNN-based decoding algorithm separately
deals with X and Z errors, and thus, the output layer has
two nodes. The numbers of filters are decided in the same
way for the proposed algorithm. All the neural networks
are trained with more than NT = 106 training samples in
0.1 validation split by using the stochastic gradient descent
optimizer, cross-entropy loss function, and adaptive learning
rate from 10−2 to 10−5.

We further evaluate the performance of our proposed
CNN-based decoding algorithm in a more realistic setup us-
ing the experimental data from the recent experiments con-
ducted by Google Quantum AI [29]. We train our neural
networks using the Pauli error model, which is based on
the measured error rates of each operation detailed in [29].
The performance evaluations are also compared with various
decoding algorithms: MWPM, correlated modification of
MWPM [30], belief matching [31], and tensor network [32],
which approximates maximum likelihood decoding
In this article, we evaluate and compare the existing and

proposed decoding algorithms in terms of logical error rates
and pseudothreshold. The pseudothreshold will be shortly
defined in Section V-B. Additional comparisons are per-
formed for the proposed and the existing CNN-based de-
coding algorithms in terms of computational complexity and
decoding latency. Complexity and latency are measured by
counting the total number of operations and steps required by
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the algorithms, respectively, assuming that a parallel decod-
ing architecture is employed in the decoders. In Section V-D,
we discuss the scalability of the proposed CNN-based
decoding algorithms.

A. LOGICAL ERROR RATE
Error rate performances of the competing algorithms for
the depolarizing, depolarizing with measurement, and circuit
noise error models are presented in Figs. 9–11, respectively.
For all the error models, the error rate performances are
evaluated over a range of physical error rates, which include
the pseudothresholds.
In Fig. 9(a), we compare error rate performances of the

algorithms with a surface code of d = 3. The total number
of syndromes is given by 2n−k = 2d

2−1 = 28, which is much
smaller than the size of training set (i.e., 106). Thus, most
of the syndrome patterns are included in the training set,
which makes the proposed CNN-based decoding algorithm
and FFNN have the same logical error rate performance.
However, MWPM has a relatively poorer logical error rate
performance since it is more vulnerable to Y errors as com-
pared to the machine-learning-based decoding algorithms.
Note that the comparison in Fig. 9(a) does not include the
existing CNN-based decoding algorithm since the existing
algorithm is not applicable to the surface code of d = 3.

In Fig. 9(b), the performance comparison is also conducted
with a surface code of d = 5, for which the total number
of syndromes amounts to 2d

2−1 = 224 and is more than the
number of training samples (i.e., 106). It is observed that the
proposed algorithm achieves the best performance. It should
be noticed that on the contrary to the comparison in Fig. 9(a),
the proposed algorithm has better error rate performance as
compared to that of the FFNN when the number of train-
ing samples is limited. It is observed that both the existing
CNN-based decoding algorithm and MWPM have similar
error rate performances, which is due to the fact that both
the algorithms separately deal with X and Z and thus are
vulnerable to Y errors.
In Fig. 9(c), a surface code of d = 7 is considered for

comparing performances of the decoding algorithms. The
proposedCNN-based decoding algorithm has the best logical
error rate, followed by the FFNN-based decoding algorithm.
However, it is observed that the logical error rate of the ex-
isting CNN-based decoding algorithm becomes poorer than
that of the MWPM. The total number of possible syndromes
is 2d

2−1 = 248, which is now much larger than the number
of training samples. Due to the limited number of training
samples, it is difficult to classify diverse errors.
Figs. 10 and 11 compare the decoding performances of

different algorithms for the depolarizing with the measure-
ment error model and the circuit noise error model, respec-
tively. Simulation results in both the error models show
similar trends. In particular, for the code distance of d = 3
in Figs. 10(a) and 11(a), all the algorithms have almost the
same error rate performance.Meanwhile, in the case of d = 5

FIGURE 9. Simulation results of decoding performances over the
depolarizing error model. (a) d = 3. (b) d = 5. (c) d = 7.
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FIGURE 10. Simulation results of decoding performances over
depolarizing with measurement error model. (a) d = 3. (b) d = 5. (c)
d = 7.

FIGURE 11. Simulation results of decoding performances over the circuit
noise error model. (a) d = 3. (b) d = 5. (c) d = 7.
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TABLE 2. Comparisons of Pseudothresholds for Different Combinations of Surface Codes and Decoding Algorithms

FIGURE 12. Simulation results of decoding performances based on the
experimental data in [29].

in Fig. 10(b) and 11(b), the proposed CNN-based decoding
algorithm achieves the lowest logical error rate, which is also
witnessed for the case of d = 7 in Figs. 10(c) and 11(c).
Note that the proposed CNN-based decoding algorithm ad-
dresses errors occurred during the syndrome extraction pro-
cess by judiciously stackingmultiple measurements at differ-
ent times as its input, as shown in Fig. 4(c). The stacked input
has a 3-D correlation, which leads to the improved error rate
performance observed in Figs. 10 and 11.
In Fig. 12, we further compare error rate performance

of the various algorithms for code distance d = 3 based on
the experimental data in [29]. The comparisons demonstrate
that the proposed algorithm outperforms all the competing
decoding algorithms in the realistic evaluation setup, while
the tensor network decoding has similar performance.

B. PSEUDOTHRESHOLDS
The pseudothreshold is defined as the physical error rate at
which the logical error rate of a QEC scheme, i.e., a combi-
nation of QEC code and decoding algorithm, is the same as
the physical error rate. Thus, at a physical error rate higher
than the pseudothreshold of a QEC scheme, qubits protected
by the QEC scheme have a higher logical error rate than the
qubits without the QEC scheme. Table 2 shows the pseu-
dothresholds for various combinations of surface codes of
different code distances and decoding algorithms. In the case
of d = 3, the pseudothresholds of the proposed CNN-based
and FFNN decoding algorithms for the depolarizing error

model are 0.0980 and 0.0977, respectively which are much
larger than that of theMWPM, 0.0828.Meanwhile, for d = 5
and d = 7, the proposed CNN-based decoding algorithm has
the highest pseudothresholds for all the error models.

C. COMPLEXITY/LATENCY
In this section, we compare the computational complexity
and latency of the proposed CNN-based decoding algorithm
and the existing decoding algorithms. The complexity is de-
termined by the number of operations, i.e., addition, multipli-
cation, and evaluation functions, whereas the latency is deter-
mined by the number of steps, assuming parallel executions
of operations. The complexities and latencies of the decoding
algorithms are summarized in Table 3, where the latencies are
denoted by the number in the parenthesis. The comparison
in Table 3 tells that the complexities of the proposed CNN-
based decoding algorithm for the depolarizing error model
and the circuit noise error model are reduced by five times
as compared to those of the existing CNN-based decoding
algorithm when the latencies of the decoding algorithms are
fixed.

D. SCALABILITY
In this section, we consider the scalability of our proposed
CNN-based decoding algorithm. The complexity of the pro-
posed decoding scheme depends on the size of the lookup
table and the four parameters of the CNNnetwork: 1) number
of convolutional layers; 2) number of input nodes; 3) number
of output nodes; and 4) number of filters.Wewill discuss that
the complexity scales as d4, where d is the code distance as
follows.

1) The lookup table contains all pure errors and thus con-
sist of a total count of d2 − 1. That is, the size of the
lookup table grows in the order of d2.

2) There has not been an explicit relation between the
input size and the number of convolutional layers.
However, many successful CNN architectures, such
as VGG [33], ResNet [34], and MobileNet [35], have
achieved competitive performance for a wide range
of input sizes with a fixed number of convolutional
layers. For instance, the VGG network in [33], which
has 16 convolutional layers, performs reasonably well
for a wide range of input sizes up to 512 × 512. Since
the convolutional layers in the proposed decoding al-
gorithm play a similar role to those in the CNN net-
works in [33], [34], and [35], the results in the open
literature [33], [34], [35] imply that a fixed number of
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TABLE 3. Comparisons of Complexity and Latency for Different Combinations of Surface Codes and Decoding Algorithms

convolutional layers, say nc, effectively address most
of the code distances of interest.

3) In this work, we propose a high-level decoding algo-
rithm in which the output of the neural decoder repre-
sents the logical states of the errors. Given that there
are only four logical states, the output remains fixed at
four, regardless of the increase in code distance d.

4) The input size of the proposed CNN-based decoding
algorithm is given by d2 for the 2-D.

5) As discussed in this article, for surface codes with
code distance d, the number of all possible patterns
of syndromes is 2d

2−1. If d2 − 1 independent patterns
are identified by a CNN, then all other patterns can
be identified by it. Thus, the minimum number of fil-
ters is fixed to d2 − 1 and grows in the order of d2.
To further support our proposed method, we include
numerical results for code distance d = 9 in Fig. 13.
The numerical experiments have been performed on
the depolarizing error model and the circuit noise er-
ror model, and the results are presented in Figs. 13(a)
and (b), respectively. The performance comparisons in
Fig. 13 confirm that the proposed decoding scheme
designed based on the theory about scaling of filters
still outperforms MWPM in the case of code distance
d = 9.

In conclusion, with the increasing code distance d,
the computations in the filters dominate the decoding
complexity. Since the complexity required by one filter is
expressed as O(d2), the overall complexity for the pro-
posed CNN-based decoding algorithms is given by O(nc ·
d2 · d2) = O(nc · d4), which is lower than that of MWPM,
i.e., O(m · d4 log d).

VI. CONCLUSION
Considering the unreliable characteristic of qubits, QEC
codes are an essential part of quantum computing. The topo-
logical QEC codes, such as surface codes, are a class of
QEC codes that are designed according to the interaction
of qubits physically close to each other. In this article, we
propose a machine-learning-based decoding algorithm that
is designed considering the topological lattice structure of
the surface codes. First, we select a CNN that efficiently
solves the classification problem of pictures. To retain the

FIGURE 13. Simulation results of decoding performances for a code
distance d = 9. (a) Depolarizing error model. (b) Circuit noise error
model.

topological structure of the syndromes in the surface codes,
we use incoherent new values, and these syndromes are then
made input to the CNN. In addition, the values of the hyper-
parameters (i.e., number of filters, size of filters, etc.) used in
the CNN are optimized according to the lattice structure of
the surface codes. We confirm the efficacy of the proposed
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CNN-based decoding algorithm from numerical simulation
results and show that it has better performance than the ex-
isting decoding algorithms in various quantum error models.
Furthermore, if the decoding process is slow (i.e., complexity
and latency are high), then errors accumulate in data qubits,
while the decoding algorithm is in progress. The proposed
CNN-based decoding algorithm has low complexity and
latency than the existing CNN-based decoding algorithm.
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