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ABSTRACT Demand-side response (DSR) is a strategy that enables consumers to actively participate in
managing electricity demand. It aims to alleviate strain on the grid during high demand and promote a
more balanced and efficient use of (renewable) electricity resources. We implement DSR through discount
scheduling, which involves offering discrete price incentives to consumers to adjust their electricity con-
sumption patterns to times when their local energy mix consists of more renewable energy. Since we tailor
the discounts to individual customers’ consumption, the discount scheduling problem (DSP) becomes a
large combinatorial optimization task. Consequently, we adopt a hybrid quantum computing approach, using
D-Wave’s Leap Hybrid Cloud. We benchmark Leap against Gurobi, a classical mixed-integer optimizer,
in terms of solution quality at fixed runtime and fairness in terms of discount allocation. Furthermore, we
propose a large-scale decomposition algorithm/heuristic for the DSP, applied with either quantum or classical
computers running the subroutines, which significantly reduces the problem size while maintaining solution
quality. Using synthetic data generated from real-world data, we observe that the classical decomposition
method obtains the best overall solution quality for problem sizes up to 3200 consumers; however, the hybrid
quantum approach provides more evenly distributed discounts across consumers.

INDEX TERMS Demand-side response (DSR), problem decomposition, quadratic unconstrained binary
optimization (QUBO), quantum annealing (QA), quantum computing (QC), smart grids.

I. INTRODUCTION
The rising demand for energy resources and the growing
adoption of renewable electricity sources have prompted a
search for innovative solutions to optimize energy consump-
tion in order to reduce grid congestion and carbon emissions.
Demand-side response (DSR) [1] has emerged as a promis-
ing strategy that focuses on actively managing and adjusting
energy consumption patterns in response to grid conditions.
Various studies in literature explore DSR, detailing its impact
on smart grid technology [2], load scheduling [3], energy
economics [4], and optimal control and pricing schemes [5].

Price adjustment serves as a straightforward method to
influence consumer behavior. With the emergence of smart
devices and the electrification of heating and transportation,

the response to price incentives can be progressively auto-
mated. Typically, DSR is achieved by handing out a dynamic
price to all customers simultaneously. However, the diverse
usage patterns among consumers may favor alternative dy-
namic pricing policies. Therefore, we aim to find individual
price patterns on a per-customer basis to achieve an optimal
load shift. We call the distribution of discounts or penalties to
specific customers the discount scheduling problem (DSP).
The number of customers to be considered in such a problem,
i.e., an urban power grid, can become prohibitively large to
be solved by classical resources.
In recent years, quantum computing (QC) has garnered

significant attention as a potential game changer in various
domains, including optimization. Leveraging the principles
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of quantummechanics, quantum optimization algorithms are
hypothesized to solve complex optimization problems more
efficiently than their classical counterparts. Besides gate-
based universal QC, adiabatic quantum computing (AQC)
has emerged, which can be shown in general to be equivalent
to gate-based approaches [6]. Quantum annealing (QA) [7],
[8], a subset of AQC, has been widely adopted for solving
optimization problems [9], [10]. As the industry leader in
QA hardware, D-Wave’s quantum annealer is employed in
this work to optimize the DSP. The limited size of current
QC hardware forces us to utilize hybrid QC approaches, such
as Leap, which is a Cloud service offered by D-Wave and is
based on internal problem size reduction [11]. In this work,
we additionally develop a customized hybrid approach that
performs a problem-specific decomposition.
This article aims to investigate the applicability of QA to

DSP optimization. The core contributions of this work are: 1)
a QC suitable formulation of the DSP; 2) a problem-specific
hybrid decomposition algorithm for the DSP with quadratic
unconstrained binary optimization (QUBO) subproblems;
and 3) an extensive benchmark of the performance of hybrid
quantum–classical routines against purely classical counter-
parts. The rest of this article is organized as follows. After
giving a concise literature review in Section II, we describe
the problem formulation and mathematical modeling of the
DSP as a quadratic integer programming (QIP) problem in
Section III. Since the problem should be solvable for cus-
tomer counts in realistic scenarios, Section IV motivates and
develops the problem-specific decomposition algorithm for
problem size reduction. This decomposition routine proves
to be very effective, as the benchmarking of classical and
quantum-enhanced solvers in Section V shows. Finally, in
Section VI, we discuss the overall summary of the work and
the implications of applied QC to large-scale optimization
problems in industry, targeted to increase renewable energy
usage.

II. LITERATURE REVIEW
A. RELATED WORK
Recently, QC applications in the power and energy sec-
tor [12], [13], [14], [15] have gained attention for the
development of smart grid technology. Several important
problems are addressed using QC, for example, power flow
calculations [16], [17] or energy grid classification [18]. The
traditional planning and scheduling tasks in power systems,
such as the minimization of generation cost or the max-
imization of revenue from electricity generation, are gen-
erally formulated as combinatorial optimization problems,
which are often NP-hard. Using quantum-inspired optimiza-
tion algorithms is expected to outperform their classical
counterparts [13], [19]. A wide range of optimization prob-
lems can be converted into QUBO problems [20], which
can be efficiently solved with the quantum approximate op-
timization algorithm [21] using gate-based universal quan-
tum computers or using D-Wave quantum annealers. In the
literature, there exist multiple QC approaches toward unit

commitment [22], [23], [24], [25] and other mixed-integer
problems [26], using quantum-inspired alternating direction
method of multipliers [27] or Benders decomposition meth-
ods [28]. QA approaches are also used for community detec-
tion in electrical grids [29], peer-to-peer energy trading [30],
or coalition structure optimization [31], [32]. Several re-
search studies benchmark the performance of classical algo-
rithms versus hybrid quantum–classical algorithms, such as
Leap on large-scale instances. These include transport robot
scheduling [33], job shop scheduling [34], power network
partition [35], and SAT problems [36].
As one of this work’s main contributions is developing

a problem-specific decomposition method to solve large in-
stances of the DSP on currently available hardware, we give
a brief overview of combinatorial problem decomposition
algorithms in the context of quantum optimization here.
Divide-and-conquer approaches have been used for various
problem instances, such as the MaxClique problem [37],
[38], [39], [40], minimum vertex cover [40], [41], commu-
nity detection [42], andMaxCut [42], [43]. They all combine
the splitting of the problem into subproblems using problem-
related methods. In special cases, such as [43], quantum
optimization is further utilized in recombining the solution
because of the special Z2 symmetry of MaxCut solutions.
Quantum local search (QLS) [44] takes local subproblems of
a graph-based problem and iteratively improves a global so-
lution vector. Although applicable to any graph-based prob-
lem, QLS has been specifically tested for the maximum in-
dependent set problem. The recent emergence of distributed
QC has led to the development of decomposition algorithms
that still allow for a limited amount of quantum information
exchange between the optimization of the subproblems [45],
[46], which was successfully demonstrated for the maximum
independent set problem. Apart from problem-specific meth-
ods, general QUBO decomposition methods have been de-
vised, such as QBSolv [47]. Here, subsets of binary variables
of the full QUBO are selected as subproblems, which are
solved on a quantum annealer, while, in parallel, a classical
heuristic optimizes the original problem. During the process,
solutions to the subproblems will incrementally improve the
current solution state of the heuristic.

B. INTRODUCTION TO QA
QA is a heuristic for solving combinatorial optimization
problems, first proposed in 1998 by Kadowaki and Nishi-
mori [9]. QA utilizes the adiabatic theorem to find the un-
known ground state of an Ising Hamiltonian HIsing, whose
minimal energy state corresponds to the solution of a target
problem.
With HInit being the initial Hamiltonian, the anneal-

ing process can be described by the following dynamic
Hamiltonian:

H(s) = A(s)HInit + B(s)HIsing (1)

HInit = −
∑
i

σ i
x (2)
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HIsing = −
∑
i

hiσ
i
z −

∑
i> j

Ji jσ
i
zσ

j
z (3)

where σ
(i)
x,z are Pauli matrices operating on qubit i, and hi

and Ji, j are the qubit biases and coupling strengths, which
encode the specific problem. A(s) and B(s) are known as the
annealing schedule, with s ∈ [0, 1]. At s = 0, A(s)� B(s),
while A(s)� B(s) for s = 1. As we increase s from 0 to 1,
the system undergoes a gradual change from HInit to HIsing.
The adiabatic theorem of quantum mechanics states that
if that evolution happens slowly enough and the system is
initialized in the trivial ground state of Hinit, then the state
will remain in the ground state of the momentary Hamilto-
nian [48]. Eventually, at s = 1, the state will be in the ground
state of HIsing. Finding the ground state of the Ising model
is isomorphic to QUBO [20]; therefore, measuring the final
state will reveal the solution to an NP-hard optimization task.
In QA, this transition speed will typically be faster than

required for the adiabatic theorem, due to practical consid-
erations. Nevertheless, experimental evidence suggests that,
depending on the spin glass model, faster evolution times
still output the optimal solution with high probability [49].
Thus, measuring the output repeatedly will eventually find
the correct solution.

III. DSP FORMULATION
Given a discrete time horizon of NT steps t, a set of NC
customers c with projected consumption data dc,t , and the
local CO2 grid intensity It [g/kWh], the goal of the DSP
is to assign each customer individual discrete discounts
zc,t ∈ Z, such that the overall CO2 emissions are mini-
mized, but the overall consumption remains equal. Further-
more, grid constraints must be satisfied at any time step,
and the overall consumption deviations of a single customer
should be kept to a minimum. The discount categories Z
are defined as a symmetric set maxZ = −min Z = zmax,
where positive discounts are referred to as penalties, e.g.,
Z = {−0.5,−0.25, 0, 0.25, 0.5}.

Reducing CO2 emissions has the advantage of increas-
ing consumption during periods of abundant local renewable
energy production. However, any other linear or quadratic
function constructed from the discounts can be used as an
objective for the DSP (e.g., minimizing the operational costs
based on spot market prices).

A. PRELIMINARY CONSIDERATIONS
Since the distribution system operator (DSO) cannot yet au-
tomatically influence the consumption of the customer at a
certain time, we have to go the detour over price incentives.
We assume that customers are strictly economically moti-
vated, i.e., they alter their consumption based on price. Of
course, the convenience of having access to electricity at
all times is more important than saving on the cost, such
that, in reality, customers cannot vary their consumption ar-
bitrarily at any given time. However, with the emergence of
electric vehicles (EVs) with home charging and heat pumps,

automatically varying the load becomes possible. The given
discounts then act as a protocol that communicates to a smart
home appliance on the customer side when to use electricity
and when not, e.g., start or stop charging the EV.
The central assumption of the DSP is that a given dis-

count (or penalty) influences the customers to increase (or
decrease) their consumption proportionally. The consump-
tion changes as follows:

d̃c,t = (1− χczc,t )dc,t (4)

when given a discount zc,t . The constant χc is the (negative)
price elasticity of demand of customer c. That is, the higher
χc is, themore customer c responds to price incentives (lower
its demand if price increases and vice versa). In principle, the
price elasticity takes positive values below 1, where χc = 1
means a full reflection of the price change on the load change.
In the literature, different estimations of the electricity de-
mand price elasticity have been made, reaching values be-
tween 0.65 and 0.85 in residential U.S. customers [50] and
0.8 to 0.9 in Swiss households [51]. A metastudy [52] on
dynamic pricing reveals that the short-term price elasticity
has to be estimated lower than the long-term elasticity. Nev-
ertheless, response to dynamic pricing may be increased by
automation of the load of smart devices and other enabling
technologies [52]. In reality, price elasticity will vary be-
tween customers, so we formulate it as a customer-specific
value. The DSO can measure the response of individual cus-
tomers and adjust the elasticities for a more accurate model.
Discrete discounts allow users to change their behavior

more distinctly. For instance, providing a small discount to a
thousand customers might not necessarily have the intended
effect; then, supplying only a few customers with moderate
discounts can have. Therefore, restricting to a discrete set of
categories Z is sound.

B. MATHEMATICAL FORMULATION
Collecting the considerations, we can finally formulate the
DSP optimization problem as QIP for minimizing CO2 pro-
duction through load shifting. All terms and constraints will
be explained separately in the following sections:

minimize:

C(z) = 1

N0

∑
c,t

It (1− χczc,t )dc,t (5)

+ λ1

N1

∑
c

(
1

Dc

∑
t

dc,t zc,t

)2

(6)

+ λ2

N2

∑
c,t

(zc,t − zc,t+1)2 (7)

+ λ3

N3

∑
c,t

z2c,t (8)

such that
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TABLE 1 Normalization Constants for the Penalty Terms

∑
c,t

zc,tdc,t = 0 (9)

−�pt ≤
∑
c

χczc,tdc,t ≤ �pt ∀t ∈ {1, . . . ,NT }. (10)

Here,C(z) is the cost function to be minimized, andDc is the
total power draw of a customer Dc =

∑
t dc,t . Furthermore,

λi refers to penalty factors andNi to normalization constants
employed to keep the impact of the penalty factors indepen-
dent of problem size and data. The normalization constants
are chosen such that the effect of each penalty term is 1
if all discounts are assigned in the worst possible way (see
Table 1).
The formulation of the objective and the purpose of all

penalty terms and constraints present in the problem state-
ment (5)–(10) will be explained in the following sections.

1) CO2 EMISSION MINIMIZATION
The combined CO2 emission is proportional to the changed
consumption (4)

E(z) =
∑
c,t

It [1− χczc,t ]dc,t (11)

and serves as the main objective of the minimization for-
mulation. The normalization constant N0 is chosen to map
the range of CO2 emissions between 0 and 1. Therefore,
we utilize the trivial origin configuration P(z = 0) as the
maximal value and compute a naive lower bound for the CO2
emissions to set N0 = E(0)− Emin

Emin =
∑
c,t

[
1− χc sign(It − 〈It〉)zmax

]
dc,t (12)

which gives all customers the full discount if It is smaller than
the average and the full penalty if It is larger, respectively.
Note that this lower bound solution does not satisfy the

constraints of the formulation (9) and (10). Therefore, it is
substantially smaller than the actual best solution.

2) CONSUMPTION DEVIATION PENALTY
Customers should not change the total energy they consume
over the optimization horizon, i.e.,∑

t

dc,t zc,t ≈ 0 ∀c ∈ {1, . . . , NC}. (13)

A perfect equality can generally not be achieved because of
the discrete discounts, except for the trivial case zc,t = 0.
Therefore, it is represented by the penalty term (6) as a
quadratic soft constraint with penalty factor λ1.

3) DISCOUNT CHANGE PENALTY
As discussed in Section III-A, longer periods with similar
discounts exhibit better customer response. We, therefore,
employ a penalty function that tries to minimize consecutive
discount changes in (7). The corresponding penalty factor λ2
will be chosen small (λ2 < λ1).

4) DISCOUNT REGULARIZATION
We attempt to assign tariff discounts that affect the objec-
tive function C by a large enough amount. Suppose that a
customer consumes an equal amount at two time steps with
It1 = It2 . Assigning zc,t1 = −zc,t2 = zmax would not change
the cost compared to zc,t1 = zc,t2 = 0, but can be given any-
ways. A small L2-regularization [see (8)] ensures that dis-
counts are only given if they benefit the overall goal, with
λ3 ≤ λ2. L2-regularization is chosen over L1-regularization
since it naturally maps into QUBO.

5) GLOBAL CONSUMPTION DEVIATION CONSTRAINT
Even though the per-customer consumption deviation is soft-
constrained (6), the consumption deviation of all customers
together can be zero up to numeric precision. Globally, i.e.,
the combined view of all customers, we do not want any
change in overall consumption. Hence, it is a hard constraint
[see (9)].

6) POWER RESTRICTION CONSTRAINT
The momentary change in consumption (power restriction
constraint) of all customers combined must be bounded due
to grid voltage peaks, and therefore, the hard-constrained
(10) has been introduced. In addition, for load shifting, we
require a time window where consumption can be increased
and decreased. The values for �pt can be determined us-
ing power flow computations and can, in principle, also be
asymmetric. Of course, the presented power restriction is a
simplification, but it suffices for an initial investigation of the
problem.

C. DISCOUNT ENCODING
Discrete discounts zc,t ∈ Z offer another benefit, which is that
they can relatively easily be encoded through binary vari-
ables [20]. This makes translating the problem formulation
into QUBO easier, which is required for employing quantum
optimization techniques.
We will focus on integer encoding of the discount set

Z. Here, we discretize the range [−zmax, zmax] into NK
linearly spaced categories. Generally, the range can also
be asymmetric but is not considered in this work. There-
fore, we have Z = {−zmax + i�z | i = 0, . . . , NK − 1}, with
�z = 2zmax

NK−1 . This range can subsequently be expressed us-
ing Q = 
log2 NK + 1� binary variables xc,t,k for each dis-
count zc,t

zc,t = �z
Q−1∑
k=0

wkxc,t,k − zmax (14)
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with wk =
{
2k, if k < Q− 1

NK − 2Q−1 + 1, else.
(15)

Every bit combination xc,t,k results in a valid encoding, mak-
ing an additional penalty term for encoding obsolete [20].
This encoding is very space efficient, allowing an exponen-
tial number of categories to be represented with a linearly
growing number of qubits.
An alternative method for encoding discounts would be

one-hot encoding, where NK bits encode every item of Z by
only setting one bit to 1 and the other ones to zero. This is a
more general framework that allows any Z (not just linearly
spaced) to be encoded through binary variables. However, it
requires Nk binary variables per customer and an additional
constraint. In the context of QUBO, that constraint has to be
enforced as an additional penalty term. Preliminary experi-
ments have shown advantageous results for integer encoding
compared to one-hot encoding.

D. ON CUSTOMER SAVINGS
Given that the customers initially receive a flat tariff v0 [C =
/kWh], the discount or penalty (v0→ (1+ zc,t )v0) only af-
fects the consumption that deviates from the projected con-
sumption d̃c,t − dc,t . Consequently, the customer pays

vc,t d̃c,t = v0dc,t + (1+ zc,t )v0(d̃c,t − dc,t ) (16)

for a specific time step.
The customer’s cost change over the optimization horizon

can be computed via the sum of momentary price differences
through (16)

�vc =
∑
t

(v0 − vc,t )d̃c,t = v0
∑
t

zc,t (d̃c,t − dc,t ). (17)

Note that we have used the sum over the changed consump-
tion as the baseline for our comparison, since in any case∑

t dc,t ≈
∑

t d̃c,t , and we only want to compare the cost for
the same amount of purchased electricity.
Substituting in the altered consumption from (4), we

obtain a change in cost given by

�vc = −v0χc
∑
t

z2c,tdc,t . (18)

The absolute price change is dependent on the flat tariff and
the total consumption of the customer. We will, therefore,
look at the relative savings sc = −�vc/

∑
t v0d̃c,t ≥ 0 in

Section V.
As z2c,t ≥ 0 and χc ≥ 0, the customer’s price change is

guaranteed to be �vc ≤ 0 negative, so a customer will al-
ways save money by complying with the incentives. The
savings are exactly zero if the customer does not respond to
incentives at all, i.e., χc = 0.

E. GRID DATA
For the DSP, we require forecasted consumption data dc,t ≥
0 [kWh] for each customer and predicted grid CO2 intensity
It of the power generation in the considered region. We use

FIGURE 1. Overview of the decomposition routine. The problem is split
into subproblems. Solutions can influence the following subproblems via
sequential updating. Finally, subsolutions are gathered to a full solution
and a postprocessing step is employed that improves the solution quality
greedily while also making the power restriction constraint satisfied.

standard load profiles of residential and industrial customers,
which we modify by adding noise and shifting in time. In
addition, the load profiles get scaled to resemble various
numbers of residents. Moreover, we include photovoltaic
(PV) electricity generation by estimating the potential based
on roof data of Munich residential areas and simulating the
production from historical solar irradiance data. PV produc-
tion reduces the customers’ consumption. Grid infeed, i.e., if
more PV is generated than consumed, is not especially con-
sidered. The grid CO2 intensity is taken from the real-world
data in Munich.1 The data used throughout this text consists
of roughly 16 000 customers and 76 time steps, spanning a
19-h period with 15-min intervals. The CO2 and solar data
are from January 13, 2023.

IV. PROBLEM DECOMPOSITION
The number of integer variables needed to construct the
discount matrix is NC × NT . Given a one-day optimization
horizon with 15-min time steps, each customer requires 96
integer decision variables in the problem. However, as the
number of customers will grow quite large,2 the number of
integers grows akin. Even worse, the number of qubits in
the quantum formulation is scarce, and every integer must be
encoded withQ qubits. Thus, the move to a hybrid quantum–
classical optimization scheme seems inevitable.
In this section, we propose a hybrid approach that is based

on problem decomposition. Despite the drawback that de-
composition increases solution bias, we find that we can
manage the hard constraints of the DSP classically in a pre-
processing step. This eliminates the need for a costly refor-
mulation of inequality constraints with slack variables. Fig. 1
shows an overview of the steps taken for the decomposition.

A. MOTIVATION
1) GLOBAL SOLUTION
Shifting the perspective from the individual customer level to
a global scope, where all customers are regarded as a unified
entity, we consider the overall consumption Dt =

∑
c dc,t

and themutable consumption, i.e., the consumptionweighted
by the individual customer susceptibilities D̃t =

∑
c χcdc,t .

1The data are provided by E.ON’s App for monitoring local
CO2 intensities. [Online]. Available: https://www.bayernwerk.de/de/
fuer-zuhause/oekoheld.html

2Typically, we want to consider more than 1000 customers.
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Furthermore, we can express the weighted average of all
discounts given per customer—from now on called effective
discount—as follows:

ζt = 〈zc,t〉c = 1

D̃t

∑
c

χcdc,t zc,t ∈ [−zmax, zmax]. (19)

Utilizing the formulation of the effective discount, we can
transform the CO2 production from (11) into

E(ζ ) =
∑
t

It
(
Dt − D̃tζt

)
. (20)

The global consumption deviation constraint (9) and the
power restriction constraint (10) can be expressed solely in
terms of the effective discount. Therefore, we represent the
global version of the DSP as a linear program

minimize: E(ζ )

such that: −�pt ≤ D̃tζt ≤ �pt ∀t ∈ 1, . . . ,NT∑
t

D̃tζt = 0.

(21)

This formulation disregards any per-customer constraints
that are still part of the DSP. Nevertheless, it is a useful tool
to estimate how much CO2 reduction is maximally possible
with all the hard constraints (9) and (10) in place. In fact,
the solution ζ ∗t is guaranteed to give an optimal lower bound
E(ζ ∗)

E(ζ ∗) ≤ E(z) ∀z ∈ Z (22)

where Z = {z ∈ ZNC×NK s.t. (9), (10) hold} is the set of
feasible discount matrix configurations. The global DSP con-
sists of only NT continuous variables. Thus, it can be quickly
and efficiently solved using standard procedures such as the
Simplex method [53].
Given an optimal effective discount, ζ ∗t , we can utilize (19)

to optimize the integers zc,t for the individual customers per
time step, i.e., minz[ζt (z)− ζ ∗t ]2. In addition, we can include
the penalty terms from the DSP (6)–(8) in the subsequent
optimization. However, doing sowould yield an optimization
problem the same size as the original problem.
Nonetheless, the following section reveals that we can

achieve a satisfactory approximation of a continuous effec-
tive discount by considering only a limited number of cus-
tomers. As a result, we can divide the customers into smaller
groups or chunks and optimize each chunk separately.

2) REPRESENTATIONAL POWER
In this section, we motivate that (19) can be fulfilled for
any arbitrary ζt with sufficient accuracy given a small con-
stant number of customers. We will focus on a discount
range ζt ∈ [−1/2, 1/2] and five discrete discounts zc ∈
{−1/2,−1/4, 0, 1/4, 1/2}. From the generated consump-
tion data (see Section V), we take a random set of customers

FIGURE 2. Relative approximation error for different values of ζ

averaged over multiple time steps. The different colors show the
approximation error for an increasing number of customers averaged
over 20 time steps. The central peaks are due to absolute errors getting
amplified at small effective discounts. Because the effective discounts
ζ = ±0.25, ±0.5 are exactly realizable by giving all customers
±25%,±50% discounts, we can observe spikes there. Even though zero
error can be achieved in the ζ = ±0.25 case, Gurobi finds different
configurations with good enough error first (for larger than five customer
chunks). Effective discount ζ = 0 is not shown since the relative error is
not defined.

and compute

min
zc

r(ζ , zc) = min
zc

1

ζ

∣∣∣∣∣ 1D∑
c

dc,t zc − ζ

∣∣∣∣∣ (23)

for all available time steps. Fig. 2 shows the result with dif-
ferent numbers of customers. The average over all time steps
is plotted, and the error bands indicate a 95% confidence
interval. It is evident that even with only ten customers, the
relative error remains consistently below 1%. As more cus-
tomers are added, the error decreases significantly, reaching
a negligible level. Therefore, we contend that by maintaining
a small constant number of customers within a chunk (e.g.,
20–50 customers), it is possible to obtain a reliable approx-
imation of an effective discount while still considering the
per-customer soft constraints of the DSP.

B. FULL DECOMPOSITION ROUTINE
We now assemble the pieces into a full hybrid routine for
decomposition, as seen in Fig. 1. The process begins with
solving the global DSP (21), followed by dividing customers
into chunks. We sort the customers by total consumption
and split them intoM-sized groups, s.t. the largest customers
are arranged in the first chunk, etc. We argue that it is bet-
ter to have customers with comparable consumption in one
chunk because they can counteract each other better than,
e.g., one industrial customer and 20 single households. For
each chunk, we can define subproblems in which special ef-
fective discounts per chunk are introduced in Section IV-B1.
These subproblems are of QUBO form and aim to assign
discounts to customers such that the overall effect matches
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an effective discount while making sure that each customer
does not deviate from its total consumption by much.
Since we can solve the subproblems sequentially, we

can enhance the results by incorporating the errors from
prior optimizations into the subsequent subproblems in Sec-
tion IV-B2. Eventually, all the chunks are collected, and a
final postprocessing step shown in Section IV-B3 is applied
to ensure that no constraints are violated.

1) CHUNK PROBLEMS
The customers are partitioned into M = Nc/m mutually ex-
clusive chunks Cj, s.t.

⋃
j Cj = {1, . . . ,NC} and Ci ∩Cj =

∅∀i �= j. Note that we require and expect the chunk size to
be chosen, s.t. NC mod m = 0.
Most likely the consumption deviation per chunk∑

c∈Cj

∑
t

χcdc,tζ
∗
t �= 0 ∀ j (24)

is not zero, which, by default, introduces a bias in the con-
sumption deviation soft constraint (6). Thus, the first goal
is to define chunk effective discounts ξ

j
t with the following

properties: ∑
t

D̃ j
t ξ

j
t = 0 ∀ j (25)

1

D̃t

M∑
j=1

D̃ j
t ξ

j
t = ζ ∗t ∀t (26)

where we define an alterable consumption for one chunk
D̃ j
t =

∑
c∈Cj χcdc,t , similar to the definition of the total

mutable consumption.
We define the chunk-effective discount as follows:

ξ
j
t = ζ ∗t −

αt

D̃ j
t

∑
t ′
D̃ j
t ′ζt ′ (27)

where αt are arbitrarily chosen constants, s.t.
∑

t αt = 1.
Conditions (25) and (26) are satisfied with this definition.
The values αt are chosen constant αt = 1/NT , but we have to
make sure that ξ jt ∈ [−zmax, zmax]∀t, j. If this is not possible
for one time step t, αt has to be reduced, while the remaining
αs have to be increased.
The optimization objective is to approximate the following

equality with the chunk effective discount:

D̃ j
t ξ

j
t =

∑
c∈Cj

dc,tχczc,t ∀t ∈ {1, . . . ,NT }. (28)

The objective can be reformulated as a least squares error
problem to find an optimal z∗c,t

arg minzc,t
1

NT z2max

∑
t

⎛⎝ξt − 1

D̃ j
t

∑
c∈Cj

dc,tχczc,t

⎞⎠2

(29)

and is directly in QUBO form after the binary representation
of the discounts has been substituted into the formulation.

The previously discussed penalty terms and regulariza-
tions—consumption deviation (6), discount change penalty
(7), and discount regularization (8)—can be carried over to
this optimization problem.

2) SEQUENTIAL UPDATING
When the subproblems are solved in sequence, the error be-
tween the true achieved effective discount and the demanded
one can be carried over into the next optimization to be cor-
rected. For optimizing ξ

j
t , the procedure can be adapted as

ξ
j
t ← ξ

j
t +

1

D̃ j
t

j−1∑
i=1

⎛⎝D̃itξ it −∑
c∈Ci

z∗c,tdc,t

⎞⎠ . (30)

Doing so will significantly improve the overall accuracy of
the method. Of course, one has to ensure that the altered ξs
do not exceed the bounds [−zmax, zmax].

3) POSTPROCESSING
Finally, we describe a postprocessing scheme that refines the
result and ensures that the power restriction constraint (10) is
held. Algorithm 1 describes the greedy improvement of the
solution.
Conceptually, it is quite simple: for each time step, we

extract those customers whose discounts can be increased
or decreased while also improving the consumption devia-
tion penalty (6). Then, we try all combinations between one
increase and one decrease and investigate how the effective
discount behaves. If ζ ∗t is negative, we want the real effective
discount to be as close as possible but at least larger than ζ ∗t .
If it is positive, the other way around. Doing so always sat-
isfies constraint (10). We find the combination that matches
the requirements the best and update the respective discounts
if it achieves an improvement. Otherwise, the time step is
skipped.
Since all the possible combinations of up and down moves

have to be considered, the complexity of the algorithm scales
at worst with O(NTN2

C/4). Nevertheless, limiting the possi-
ble moves to at most r provides sufficient accuracy, empiri-
cally. This then reduces the complexity toO(NTNC + NT r2).

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
To benchmark the performance of solving the DSP, we con-
sider out-of-the-box solvers and our developed decomposi-
tion method and evaluate the results using a set of metrics
that best represent the different goals described in the DSP
formulation.
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Algorithm 1: Postprocessing Algorithm.

TABLE 2 Overview of the Investigated Solvers

1) INVESTIGATED SOLVERS
An overview of the considered solvers and settings can be
found in Table 2. As a state-of-the-art purely classical base-
line, we use Gurobi3 [54]. This is compared to D-Wave’s
LeapHybridCQM solver [11] (called just Leap in the fol-
lowing), which is a quantum–classical hybrid algorithm that
uses classical algorithms to optimize the problem while us-
ing quantum computers to solve suitable subtasks. This has
the benefit of solving larger problems than possible directly
on current quantum hardware while also supporting more
sophisticated optimization models that include hard con-
straints. Like our decomposition routine, Leap partitions the

3All experiments with Gurobi were conducted on an M1 MacBook Pro
(2020) with Gurobi Version 9.0

problem into subproblems via a proprietary algorithm. How-
ever, it follows a general ansatz compared to our problem-
specific one. Leap is accessed through D-Wave’s Cloud
service. Both Leap and Gurobi solve the optimization
problem presented in (5)–(10). These two out-of-the-box
solvers are compared against our own problem-specific de-
composition routine introduced in Section IV, subsequently
called Decomp-Gurobi, Decomp-Leap, or Decomp-
QPU, depending on the method considered for solving the
chunk problems (29). QPU refers to direct access to the D-
Wave’s QA processor Advantage 4.1 [11]. Whenever a de-
composition solver is followed by an integer, it refers to the
chunk size m. The postprocessing algorithm is used with a
cutoff value r = 500.

In preliminary experiments, we additionally investigated
D-Wave’s QBsolv hybrid decomposition algorithm [47],
but the performance was not comparable to the approaches
presented here. Furthermore, we have noticed that the solu-
tion quality did not depend on the subsolver chosen (e.g.,
D-Wave’s QPU or a simulated annealing (SA) heuristic),
indicating that the classical Tabu Search [55] is solely re-
sponsible for the optimization work done.
The hybrid Leap solver only has the time limit as a con-

trol parameter exposed to the user. The time limit is bound
from below by the minimum runtime that is heuristically
calculated from the input problem (i.e., from the number of
variables and couplings involved). Because it only depends
on the problem structure and not the solution quality found,
the minimum time limit cannot be used as the scaling metric.
Furthermore, Leap exploits the full time limit setting and
does not abort when satisfactory energy has been reached.
Thus, a time-to-solution metric is not achievable within a
single run and, therefore, also not considered in our bench-
marking.
To alleviate the issue and ensure a fair comparison, we

give each solver a heuristically increasing time limit of
0.1 s× NC. We observed that Leap tends to overrun the set
timeout, which is the reason why we first run Leap with the
linear growing timeout and then run the remaining solvers
with the timeout matching Leaps runtime. Since the decom-
position solver consists of multiple subsolver calls, we set the
timeout for each subsolver as the whole timeout divided by
the number of chunks, i.e., a timeout of 0.1 s× m.

2) METRICS
Because we consider an optimization task with multiple
goals involved, it is not sufficient to consider only the ob-
jective value of our model as a performance metric. Instead,
we simultaneously investigate multiple metrics.

1) Cost: The cost, or objective, of the optimization prob-
lem (5)–(8) is the main metric for comparing solver
performance. To ensure an easier comparison between
problem instances, we investigate the relative cost error
with respect to the global solution from (22), defined
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as follows:

|C(z)−C(ζ ∗)|
|C(ζ ∗)| (31)

with C(ζ ∗) = E(ζ ∗)/N0. This is a guaranteed lower
bound to the cost since all penalty terms are bounded
from below by zero.

2) CO2 reduction: The CO2 reduction is the central term
in the DSP objective. Hence, it is also valuable to in-
spect it separately. We, therefore, compute the relative
CO2 reduction error through (22)

E(z)− E(ζ ∗)
E(0)− E(ζ ∗) . (32)

E(0) is the CO2 emission prior to discount scheduling.
3) Consumption deviation standard deviation:We expect

the consumption deviations for each customer to be
centered around zero since the problem is constrained
to have a zero total consumption deviation. We, there-
fore, measure the standard deviation of the customer
discount deviations as follows:√√√√ 1

NC

∑
c

(
1

Dc

∑
t

dc,t zc,t

)2

. (33)

4) Average discount changes: Since we strive to reduce
the changes between two discount categories as much
as possible, we measure the average discount changes

1

NC(NT − 1)

∑
c

NT−1∑
t=1

(1− δzc,t ,zc,t+1 ) (34)

where δ refers to the Kronecker delta.
5) Average relative cost savings: Not a quantity that is

optimized for in the objective, but interesting for the
DSO, is the relative cost savings per customer, as de-
fined in Section III-D. To obtain a single indicator of
the performance, we evaluate the mean 〈sc〉c of the
relative savings.

3) PARAMETERS
Solving the DSP for a given dataset, consisting of the con-
sumption of NC customers at NT time steps, requires fixing
a set of open variables and parameters. In a real-world sce-
nario, the customer price elasticity on demand χc could be
measured from the individual customer’s behavior. However,
as it only acts as a proportionality constant, we set χc = 1 for
this investigation. Next, we use five discount categories, with
a 50% discount maximally. That, in turn, refers to the follow-
ing valid discounts: zc,t ∈ {−50%,−25%, 0%, 25%, 50%}.
As a consequence, a discount of, e.g., 50% would result in
an increase in the customer’s consumption by 50%.
The power deviation bounds�pt are set to a constant 10%

of the average total consumption (0.1× 〈Dt〉t ). For the pur-
pose of this novel problem formulation and benchmarking
regarding scalability and solution quality, this is a pragmatic

TABLE 3 Parameter Setting for the Investigated Problems

FIGURE 3. Discount matrices zc,t found by the investigated solvers for
NC = 100. Blue indicates a discount, and red corresponds to a penalty.
White means no discount given at all. Despite their effects on the overall
consumption (see Fig. 4) being the same, the discount matrices differ a
lot from each other. It is apparent that Gurobi hands out the discounts
more greedily than Leap, indicating a bigger impact of the regularization.

approach to approximation. In practice, however, those val-
ues may be derived from real-world grid constraints that can
be inferred through power flow calculations.
Finally, the remaining penalty parameters are fixed by ana-

lyzing a small-scale example withGurobi and dialing in the
strengths of the penalties, such that they have a reasonable ef-
fect for the Gurobi result. It is important to note that a com-
prehensive examination of the solver’s response to parameter
settings is beyond the scope of the current investigation.
An overview of all parameter settings is given in Table 3.

B. EXAMPLE WITH 100 CUSTOMERS
We first examine the optimization result of the different
solvers in detail for a 100-customer example qualitatively
before focusing on the previously discussed metrics. For
that, we analyze the solutions of four solvers, Gurobi,
Leap, and two m = 50 decomposition methods with the
same solvers as the subroutine. The results for the discount
matrices zc,t can be seen in Fig. 3, while their overall ef-
fect on the consumption is displayed in Fig. 4. Visually,
the individual discount matrices exhibit distinct patterns (cf.
Gurobi and Leap), but the effective result stays compa-
rable regarding the CO2 reduction. The optimal CO2 reduc-
tion is 12.45 kg, Leap differs by 0.3%, Gurobi by 0.6%,
Decomp-Leap by 1.4%, and Decomp-Gurobi by only
0.005%.
Apart from the global optimization metrics, we are also

interested in how the optimization performs per customer. In
Fig. 5, one can see how the relative consumption changes are
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FIGURE 4. Effect of the DSP solution for problem size NC = 100. The plot
shows the aggregated consumption with and without (z = 0) discounts
in place, as well as the grid CO2 intensity. Visually, the solutions of all
solvers produce a similar effective consumption change, as already
predicted in Section IV. As expected, times with high CO2 emissions
produce an effective decrease in consumption and vice versa.

FIGURE 5. Histogram of the relative consumption deviation. One can see
that both Gurobi solvers have relatively little spread and are well
centered around zero. The Leap solvers, on the other hand, possess a
large spread and are additionally shifted away from zero. The shift away
from zero reduces in larger problem instances.

FIGURE 6. Cumulative distribution plot of the relative savings of the
customers. The two chunks can be well distinguished in the Decomp
solvers. Gurobi only distributes savings to relatively few customers. On
the other hand, Leap distributes similar discounts to all customers.

distributed. Furthermore, Fig. 6 visualizes the distribution of
savings to the customers.
Finally, it remains important to note that the results for

the Leap solvers vary throughout multiple runs. Here, only
a single run has been picked, which is characteristic of the

FIGURE 7. Relative cost error for different solvers with respect to
problem size NC . Cost is the optimization objective known from (5)–(8).
The relative value is taken with respect to the bound known from C(ζ∗ ).
The inset shows the relative cost error with logarithmic scaling. The error
bands indicate the maximum and minimum of the three runs.

behavior of these solvers. Furthermore, no investigation to-
ward direct QPU access has been made since the space re-
quirements for a single customer are already 76 integer vari-
ables, i.e., 228 binary variables. The problem after gathering
multiple customers in a chunk is, hence, not embeddable in
the QPU since we are facing quite dense connectivity in the
QUBO. For a reduced problem size, we perform investiga-
tions in Section V-F.

C. SCALING ANALYSIS
To test the performance of different solvers, we created test
instances using generated data with NC ranging from 25 to
3200 customers and considering the full 76 time steps. Our
problem instances, therefore, consist of 1900 to 243 200 in-
teger variables. To account for the stochasticity of the results
from the quantum solvers, we run the quantum solvers three
times.
The results in terms of the objective function depending

on problem size are visualized in Fig. 7. It is evident that
a crossover in performance between Gurobi and Leap
happens between 100 and 200 customers. After that size,
Gurobi is not able to finish the root relaxation within the
given time bounds and falls back to a heuristic solution,
which has inferior performance. Although not a directly fair
comparison since Gurobi runs on a local machine while the
Leap hybrid solver is run on a proprietary D-Wave cloud
architecture, we argue that the pattern generalizes, i.e., the
inflection point where Gurobi does not reach satisfactory
results anymore shifts to larger instances but eventually hap-
pens. In the regime NC < 200, Gurobi’s MIP Gap roughly
coincides with the relative cost error since the lower bound
of Gurobi is almost equal to C(ζ ∗). For low problem size,
the Leap solver demonstrates high relative cost error; how-
ever, this error decreases rapidly up to low hundreds of con-
sumers. Nonetheless, the decomposition routines outperform
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FIGURE 8. Auxiliary metrics for different problem sizes and different
solvers. The plots show the CO2 reduction error and the per-customer
metrics: The standard deviation of all customer consumption deviations
(6) and the average discount changes (7), which we want both to be
small. The bottom right pane displays the average relative savings 〈sc〉.
The error bands indicate the maximum and minimum of the three runs.

the general-purpose solvers, especially the purely classical
Decomp-Gurobi approach.

Fig. 8 shows the relative CO2 reduction error and three per-
customer metrics. The relative CO2 reduction error shows
a similar pattern as the inset in Fig. 7, which is due to the
emission reduction being the main part of the optimization
objective. It is apparent that the decomposition routines in the
higher problem instances produce results with almost perfect
CO2 reduction (less than 10−5 error), which can be explained
by the fact that they have access to the best emission re-
duction bound. As a consequence, the per-customer penal-
ties [see (6)–(8)] are responsible for the cost error visible in
Fig. 7.

Investigating the per-customer constraints, we notice
that the Gurobi-based solvers outperform the quantum-
enhanced routines (NC < 200). This is likely due to Gurobi
being better at handling smaller changes in the optimization
objective. However, it is also important to note that, as ap-
parent from the discount matrices in Fig. 3, Gurobi gives
many customers not even a single discount. Hence, they do
not receive any discount changes or consumption deviations,
which reduces the average measure.
Examining the heuristic solutions of Gurobi, when solv-

ing its root relaxation aborts (NC ≥ 200), reveals that the dis-
count matrix is almost completely filled with extremal values
zc,t = ±zmax. The constraints are satisfied, but the discounts
are randomly distributed, which allows for computing the
per-customer metrics analytically, supposing zc,t = ±zmax

with equal probability. The consumption deviation metric

from (33) simplifies to zmax

√
〈D−2c

∑
t d

2
c,t〉c, which is, e.g.,

0.064 in the NC = 400 case. The average discount change
metric reduces to the probability of observing one discount

FIGURE 9. Per-customer metrics evaluated with different chunk sizes in
the decomposition. As expected, the metrics improve (get smaller) as the
chunk sizes get larger since more flexibility remains in the chunk.

change (0.5). Finally, sc = z2max = 1/4, since the customer
savings are dependent on a weighted average over z2c,t =
z2max = const. [see (18)].

To conclude this analysis, we remark that Gurobi strug-
gles at large problem sizes since its root relaxation cannot
be solved within the given time constraints, which indi-
cates a potential advantage of the quantum-enhanced solver
here. Yet, the domain-specific decomposition routine pro-
vides even better results, especially in conjunction with the
classical solver.We argue that since the decomposition-based
solvers work so well, the space of good solutions is large,
which makes this problem a fitting choice for heuristic-based
solvers more than mathematical solvers such as Gurobi.

D. CHUNK SIZE EFFECT
After we observed that the decomposition solver provides
satisfying results both with Gurobi and Leap employed as
subsolver, we are interested inwhat impact the chunk size has
on the result. For that, we only inspect Decomp-Gurobi
with different chunk sizes m = 5, 10, 25, 50 and focus on
a reduced problem size frame up until NC = 800. We have
seen that the problem complexity does not grow linearly with
the problem size. Thus, we give a more generous timeout of
0.5 s× m in this investigation in order to isolate the effects
of the decomposition routine from the solver performance.4

The global effect, i.e., how much CO2 is reduced, does not
differ between the chunk sizes (below 1% error). The con-
stant sequential updating of the objective also helps a lot
with finding the best CO2 reduction, even with five customer
chunks. Fig. 9 shows the consumption deviation and discount
changes, where a clear tendency that larger chunks result in
lower per-customer metrics can be observed, i.e., less con-
sumption deviation per customer and fewer overall discount
changes.

4Preliminary experiments have shown a performance increase for the
larger chunk sizes when increasing the timeout. This increase came to a
slowdown at around 0.5 s× m.
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FIGURE 10. Cumulative distribution plot of the relative savings of the
customers at NC = 800. As discussed earlier, Gurobi’s root relaxation
does not finish anymore, which causes savings of around 25%. Leap
produces fair discounts, similar to Fig. 6. The other two solvers produce
more complex unfair savings distributions.

E. FAIRNESS ANALYSIS
The goal of this section is to investigate how the solvers
strategically distribute the discounts to the target customers.
This is done by investigating how the relative savings sc
are distributed between individual customers. Figs. 6 and 10
show two cumulative distribution plots of the results from
100 and 800 customer problem sizes. The more vertical (zero
slope) a given cumulative line is, the fairer the discounts are
distributed among the consumers, thereby implying a better
social welfare measure for the energy consumers. Except for
Gurobi, the qualitative patterns of the solvers are similar.
Leap produces a fair savings distribution, which means that
all customers experience the same savings (10–15%).
In Fig. 6, the splitting in half of the decomposition can

be observed quite remarkably. The resolution of the 16 in-
dividual chunks in Fig. 10 is no longer possible. However,
a kink in Decomp-Leap can be observed, which means
that about 70% of the customers save a similar and relatively
large amount (22–25%), while fewer savings are distributed
to a smaller group (10–22%). Decomp-Gurboi reveals a
straight but shallow curve, which means that customers will
receive savings between 0% and 20% almost equally likely.

F. DIRECT QPU ACCESS WITH DECOMPOSITION
A QA processor, such as D-Waves Advantage 4.1, suffers
from limited connectivity between the physical qubits. How-
ever, for our QUBO subproblems (29), we can analytically
compute the number of couplings for a single qubit as
follows:

Q (NT − 1)+ Q (m− 1)+ Q− 1 (35)

where Q is the number of qubits required to encode the dis-
count, NT is the number of time steps, and m is the number
of customers per chunk. This term is derived by inspecting
the terms in the QUBO formula and observing that we either
have couplings within all customers of a chunk at a single
time step or couplings within all time steps of a single cus-
tomer. For the first case, one qubit is connected to allQ qubits
of the other m− 1 customers in the chunk and to Q− 1

FIGURE 11. Embeddable subproblem size for the D-Wave Advantage 4.1
QPU. The left-hand matrix shows how many physical qubits are needed
when a subproblem with NC customers and NT time steps are
embedded. A white field indicates that no embedding has been found.
The right-hand plot shows the maximal chain length for the found
embedding, i.e., how many qubits are maximally connected to form one
logical qubit. All embeddings were found using D-Wave’s MinorMiner
package.

qubits of the same customer. The same is for the second case,
but the Q− 1 connections within the time step have already
been covered in the first case.
The derived quantity grows with the problem size, but

the coupling per qubit of the D-Waves Pegasus graph is a
constant 15 [11]. Thus, physical qubits have to be chained
together to logical qubits in order to allow for higher connec-
tivity. Finding the best, so-called embedding, is itself an NP-
hard optimization problem, for which we utilize D-Wave’s
heuristic MinorMiner.
Fig. 11 shows the computed embeddings for the subprob-

lem QUBOs with different problem sizes. It is apparent that
we are very limited to small problem sizes. Since we do not
want too few customers in a chunk to preserve flexibility,
we settle at a reasonable middle ground of chunk size six
and 12 time steps. We interpolate the original data to 12
time steps and use various (multiples of 6) customer sizes to
compare the performance of Decomp-QPU against the other
solvers. For each subproblem, we take 100 readings from
the QPU. We cannot directly steer the timeout in this case.
Thus, we first run Decomp-QPU and then set the timeout of
the remaining solvers to exactly that time. However, Leap
has a minimum runtime of 5 s, which is the reason why we
only include Leap in the cases where the Decomp-QPU
time is more than 5 s, being the case from Nc = 480 onward.
Embedding times are not considered since the embeddings
are computed beforehand and remain constant for one time
step, chunk size (NT , m) combination, independent of grid
data.
Again, we perform the analysis for different problem sizes,

reaching from 60 to 1920 customers or 720 to 23 040 integer
variables. The subproblems comprise 72 integer variables,
resulting in 216 binary variables in the QUBO formulation.
In contrast to the previous analysis, we additionally inves-
tigate SA as a subproblem QUBO solver in this instance.
Due to the larger problem sizes of the previous subproblems,
the SA routine could not return results within the runtime
boundaries we had set. Fig. 12 displays the results of the
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FIGURE 12. All metrics for the small problem sizes, also considering
QUBO subproblems that can be solved using D-Wave’s QPU. Comparing
both Quantum routines, one can observe that Decomp-QPU returns
results with slightly lower cost than Leap. Yet, the CO2 reduction is vastly
better in the decomposed case. Notably, the difference of the Decomp
solvers in the relative cost error is mostly due to the higher consumption
deviation from the QPU results. To match the runtime of the Decomp-SA
to Decomp-QPU, we had to manually adjusted the number of samples
from the SA routine to 30. We also observe that Leap outruns the set
timeout here.

experiments. The previously discussed solvers (Gurobi,
Decomp-Gurobi, Decomp-Leap) exhibited similar pat-
terns to the investigation done for the larger problem sizes
(see Fig. 7). Therefore, we only focus on the QPU and SA-
based decomposition routines and Leap.
Decomp-SA exhibits the lowest cost error compared

to the two quantum-enhanced methods. The two Decomp
solvers (one using classical and the other using quan-
tum compute) demonstrate similar performance in terms of
CO2 reduction. Interestingly, the consumption deviation and,
therefore, also the dominating factor in the cost are measured
at a very constant level between the problem sizes. Curiously,
SA, as the subsolver, performs better (≈ 2%) concerning
consumption deviation than the QPU does (≈ 8%), leading
to a gap in the cost. Leap exhibits similar performance as
in our previous experiments. Most notably, Decomp-QPU
seems to perform better than Leap regarding the optimiza-
tion objective (1.3% error versus 1.7% error) and concern-
ing the CO2 reduction (4.5× 10−8 error versus 3.4× 10−3
error). That indicates that our developed hybrid quantum
routine does seem to outperform the general-purpose Leap
for this particular task.

VI. CONCLUSION
We explored the feasibility of current QC techniques for DSR
by developing a mathematical formulation that utilizes dis-
count scheduling to shift grid load to more appropriate times.
Our formulation involves providing discretized discounts to
multiple customers at different times to incentivize a load

shift while ensuring the total consumption stays fixed. We
chose CO2 emission reduction as the main objective for our
DSP implementation of DSR. With secondary objectives,
such as maintaining grid stability and ensuring customer
well-being, we formulated a QIP problem.
Upon close inspection of the problem, we developed

a custom decomposition algorithm that compartmentalizes
the problem into customer chunks. These subproblems in-
volve unconstrained integer optimization and can be effec-
tively addressed on quantum computers if encoded correctly.
Moreover, since the problems are solved sequentially, we
incorporated the accumulated errors into the subsequent op-
timization problems. Finally, we developed a postprocessing
algorithm that further refines the solution.
In the end, we benchmarked the performance of a clas-

sical general-purpose solver against D-Wave’s Leap hybrid
quantum–classical solver and our customized decomposition
method with various (quantum or classical) subsolvers em-
ployed. We observed that the classical solver fails to pro-
duce acceptable results after a specific problem size when
using a linearly increasing timeout for the problem size. In
contrast, the quantum-enhanced Leap continues to provide
satisfactory results. This indicates a potential advantage of
solving this particular problem using Leap over the purely
classical counterpart, Gurobi. Nonetheless, the decomposi-
tion method with the classical solver as subsolver developed
the best-achieved results over the range of problem sizes we
investigated. Furthermore, using quantum annealing or SA
for the QUBO problems has resulted in good performance.
We found that decomposition paired with QA returned
comparable energies to Leap.
We remark that the pairing of the decomposition method

with Leap with large chunk sizes might be a promising
pathway for utilizing the quantum-enhancedmethod for huge
instances of this problem. This statement requires further
experiments, but we argue that solving large subproblems
within time constraints may pose challenges for Gurobi,
whereas Leap could yield acceptable results. Further, future
work includes the response of the solvers to different prob-
lem parameter settings and making the grid constraints more
physically realistic rather than our realistic yet pragmatic
chosen constant band.
Finally, determining precise energy requirements of QC

hardware and the tradeoff between QC algorithms runtime
and used energy is an active and interesting area of re-
search [56], [57], [58]. If the community can demonstrate
practical quantum advantage (e.g., quantum runtime of sec-
onds or hours as opposed to weeks or years for classical high-
performance computing runtime) for use cases that them-
selves reduce CO2 emissions, perhaps, this may offset the
potential CO2 cost resulting from the manufacturing or oper-
ating future quantum computers.We believe that this work on
how quantum computers may solve optimization problems
related to the sustainable energy transition by embedding
sustainability notions into the use case itself is a progressive
step toward using QC for important global issues.
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TABLE 4 Symbols and Parameters in the DSP Formulation

APPENDIX
GLOSSARY
For a better overview of the used symbols and parameters
in the formulation of the DSP, we provide an overview in
Table 4.
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