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Abstract— In this paper we propose a novel approximate
floating-point divider based on bidimensional linear approx-
imation. In our approach, the mantissa quotient is seen as
a function of the two input mantissas of the divider. The
domain of this two-variable function is partitioned into nx × ny
subregions, named tiles, where nx, ny are chosen as powers of
two. In each tile the quotient is approximated with a linear
combination of the input mantissas. To achieve fine accuracy,
an optimization problem is formulated within each tile to
determine the optimal coefficients for the linear combination,
which minimize the Mean Relative Error Distance (MRED) of the
divider. Furthermore, to make hardware implementation more
effective, the minimization problem is appropriately modified to
search for optimal quantized coefficients. The hardware structure
of the divider only requires a small look-up table to store
the linear approximation coefficients, and a carry save adder
tree. The proposed architecture is highly tunable at design-time
over a wide range of accuracy, depending on the number of
tiles chosen for the approximation. The obtained results demon-
strate error performance and hardware features superior to the
state-of-the-art. The proposed dividers define the Pareto front,
considering the trade-off between power-delay-product vs. MRED
and area-delay-product vs. MRED, for MRED in the range of
4 × 10−3 − 2 × 10−2. Application results for JPEG compression
and tone mapping further highlight the strength of our proposal,
which exhibits Structural Similarity Index (SSIM) very close to
1 in all cases and Peak Signal-to-Noise Ratio (PSNR) up to 45 dB.

Index Terms— Floating-point divider, approximate computing,
error correction, low-power.

I. INTRODUCTION

ARITHMETIC circuits are widely employed for the design
of Digital Signal Processing (DSP) algorithms, typically

being the key elements to achieve the highest performances.
The demand for suitable hardware features in terms of area
occupation and power consumption is of pivotal importance
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to ensure the feasible integration of these circuits in elec-
tronic systems and makes their implementation challenging.
Among applications requiring careful design of arithmetic
circuits, environmental sensing and healthcare monitoring
occupy an interesting position, involving the realization of
complex networks of devices where data are acquired, pro-
cessed, and transmitted according to the paradigm of the
Internet of Things [1]. In this context, signal elaboration,
leveraging addition, multiplication and division, is responsible
for large energy consumption, thus calling for the development
of suitable low-power techniques. Likewise, tasks as image
classification or speech enhancement demand for the design
of neural networks, exploiting additions and multiplications
extensively [2]. Also in this case, power and area constitute
critical design parameters that make the practical realiza-
tion of the algorithms challenging. As further example, also
in telecommunication systems circuits for adaptive filtering,
channel equalization, Fast Fourier Transform (FFT) or Inverse
Fast Fourier Transform (IFFT) [3], [4], [5] require an intensive
usage of arithmetic blocks to realize noise suppression and
signal coding. Again, the research of methos able to allow an
effective integration of such systems is crucial for their prac-
tical realization, and, as consequence, the adoption of proper
strategies for arithmetic circuits design becomes relevant to
meet the desired power/area requirements.

A. General Background

In the field of DSP, floating-point arithmetic constitutes
a valuable mean to perform calculations with fine accuracy
in a wide range of representable values. At the same time,
the practical realization of floating-point arithmetic circuits
poses important issues from a hardware perspective, thus
demanding for proper implementation strategies. In particular,
the computation of the output mantissa, generally expressed on
a large number of bits, implies intensive calculations that lead
to high power consumption and area. In the context of signal
processing, Approximate Computing constitutes a meaningful
solution to reduce the complexity of the circuits, providing to
intentionally sacrifice accuracy of calculation to save hardware
performance [6], [7].

In literature, several approximate techniques have been
shown for the design of efficient floating-point arithmetic
circuits. In the case of multipliers, proposed approaches range
from linear approximation [8], [9] to static segmentation [10]
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and tunable accuracy implementations [11], [12]. In [13], and
[14], mantissa product is also skipped under proper error
conditions. Likewise, important efforts have been made also to
reduce the complexity of floating-point adders exploiting tech-
niques like lower-OR addition (LOA) and speculation [15],
[16], [17].

The floating-point divider, necessary in a wide range of
applications such as domain transformation, JPEG compres-
sion, tone mapping, and motion detection, is a notorious
complex, slow and power-hungry circuit. Many recent research
efforts have been dedicated to the design of hardware efficient
floating-point dividers. Iterative algorithms like Sweeney-
Robertson-Tocher (SRT) and Newton-Raphson are often
employed to realize a division [18], [19], [20]. While in the
SRT method each iteration allows to find a bit of the result
exploiting subtraction, in the Newton-Raphson approach the
algorithm starts from an initial estimate of the quotient and
uses multiplications to achieve the desired value. Despite the
precision of these techniques, iterative implementations suffer
from high latency, and require significant hardware resources
to store the partial results. On the contrary, works like [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], and [31]
introduce suitable approximate techniques which allow to
realize the division with optimal latency and throughput. For
instance, in [21], [22], and [23] the authors revisit the division
as a subtraction by computing the result in the logarithmic
number system. The papers [24], [25], [26] find the reciprocal
of the divisor performing a multiplication instead of a division,
while [27], [28], and [29] introduce error correction techniques
based on variable compensation terms. The works [30], [31]
present solutions based on signal inversion and truncation,
which are applicable to the mantissa divider for a hardware
efficient computation.

B. Contribution

In this paper, we propose a novel approximate floating-point
divider based on a bidimensional linear approximation. In our
implementation, the mantissa division is revisited as function
of the two input mantissas. The domain of this two-variable
function is divided in rectangular regions, named tiles in the
following, and in each tile the quotient is expressed as a
piecewise-linear combination of the mantissas. The coeffi-
cients for the linear combination are obtained in each tile
by solving an optimization problem aimed at minimizing the
Mean Relative Error Distance (MRED) between the exact
division and the proposed approximation. In a subsequent
step, to make hardware implementation more effective, the
optimization problem is properly modified to find a set of
quantized coefficients able to minimize MRED while being
represented with a reduced number of bits. The hardware
implementation of the proposed circuit only requires a small
look-up table (LUT), used to store the optimal coefficients,
and a simple multi-operand adder.

Simulation results reveal error metrics comparable to or
superior to the state-of-the-art, with accuracy tunable at
design-time over a wide range depending on the number of
tiles chosen for the approximation. In addition, post-synthesis

results in TSMC 28nm CMOS technology reveal remarkable
hardware performance, assessed in terms of power-delay-
product (PDP) and area-delay-product (ADP), making the
proposed design pareto optimal. Finally, analyses of appli-
cations as JPEG compression and tone mapping [32] of
high dynamic range (HDR) images are presented to test the
proposed design in concrete scenarios. Again, our approach
demonstrates superior performance, offering results very close
to the exact case.

The paper is organized as follows: section II offers an
overview of the state-of-the-art and introduces the division in
floating-point arithmetic; section III describes the theoretical
approach adopted to compute the quotient with the bidimen-
sional linear approximation, whereas section IV describes the
hardware structure of the proposed mantissa divider. Error
metrics and hardware performance are shown in section V,
whereas image processing results are discussed in section VI.
Conclusions are in section VII.

II. FLOATING-POINT DIVISION BACKGROUND

A. Related Works

In the following we present an overview of the state-
of-the-art for approximate, non-iterative dividers. A shown
in [21], mantissa division can be computed by performing a
subtraction in the logarithmic number system. This approach
approximates the logarithm of the input mantissas and the final
antilogarithm operation, introducing a rather large error on the
result. In addition, some least significant bits (LSBs) of the
mantissas can be truncated to further reduce the hardware cost.
The authors of [22] exploit mantissa subtraction, as in [21],
and introduce a constant compensation term to achieve zero
mean error, while [23] presents a pipelined structure for field
programmable gate arrays applications. In [24], a two steps
approximation process is exploited: in the first step different
approximation levels, which depend on the most significant
bits of the divisor, are used to compute the reciprocal of the
divisor, while in the second step the reciprocal of the divisor
is multiplied by the dividend using shift-and-add operations.
The number of approximation levels and the number of
adders used for the shift-and-add operations define both the
accuracy and the circuital complexity of the divider. As in [24],
an approximate version of the reciprocal of the divisor is
computed also in [25], which exploits a variant of the Taylor
expansion, and a variable correction term, stored in a LUT,
is added to recover precision. In [26] the authors propose an
approximate division scheme based on logarithmic conversion
and piecewise constant approximation for the reciprocal of
the divisor. In this case, different from [24] an inner truncated
multiplier is implemented to compute the quotient, achieving
higher accuracy at the cost of a superior hardware complexity.
The work [27] is also based on logarithmic numbers but intro-
duces a variable correction technique for accuracy recovery
as in [25]. Here, N MSBs of the input mantissas allow to
identify 22·N regions, and, for each region, a coefficient is
defined to reduce the approximation error. Paper [28] also
exploits a similar approach, with the mantissa plane divided in
both rectangular and triangular regions. Accordingly, suitable
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Fig. 1. (a) Floating-point representation of the real number x in single
precision format, and (b) block diagram of the floating-point divider.

coefficients that best fit the division with a linear function of
the mantissas are found. In [29], the quotient is expressed as
a linear function of the dividend, with coefficients that depend
on the divisor. Some LSBs of the operands are truncated to
reduce the hardware burden. In the case of [27], [28], [29],
the kind of partition scheme and the number of truncated bits
are design parameters used to trade accuracy of calculations
for hardware complexity. The work [30] approximates the
reciprocal of the divisor with a linear function. Then, following
an approach similar to [24], revisits the computed expression
as a shift-and-add operation to reduce the hardware complex-
ity. In [31] the reciprocal of the divisor is approximated by
means of bit-inversion and a right shift, and some LSBs of the
inverted signal are also truncated for further simplification.

B. Floating-Point Division

In floating-point arithmetic, a real number x is expressed in
terms of sign Sx, exponent Ex, and mantissa Mx as:

x = (−1)Sx
· 2Ex−bias

· (1 + Mx) (1)

with bias that depends on the selected format. The mantissa
Mx is in the range [0, 1) and, as consequence, the quantity
(1 + Mx) lays in the interval [1, 2).

With reference to the single precision IEEE floating-point
representation [33], considered in the rest of the paper, the
number x is on 32 bits as shown in Fig. 1a. The MSB is the
sign of x , the following nE = 8 bits represent its exponent,
and the remaining nM = 23 LSBs are the mantissa. The bias
is 127.

Let us consider the division z = x /y, where Sy, Ey, My and
Sz, Ez, Mz that are signs, exponents, and mantissas of the real
numbers y and z, respectively, and z is expressed as in (1).
As shown in Fig. 1b, the sign Sz is computed by XOR-ing Sx
and Sy, while the output exponent Ez is substantially computed
by subtracting the exponents of the inputs and the bias.

The block mantissa divider, highlighted in red, implements:

P =
1 + Mx
1 + My

(2)

Let us observe that P is in [0.5, 1) when Mx < My, while
P is already in [1, 2) when Mx ≥ My. Therefore, the integer
part of P comprises only its MSB (named MSBP in Fig. 1b)
with MSBp = 0 if P is in [0.5, 1), and MSBp = 1 if P is
in [1, 2).

In order to extract the output mantissa Mz, the quotient
P should be in the form (1 + Mz), and hence P should be
normalized in the range [1, 2). Accordingly, the normalization
block in Fig. 1b performs the following operations:

(1 + Mz)

=

{
2 · P = 2 · (1 + Mx)/(1 + My) i f M SBP = 0
P = (1 + Mx)/(1 + My) i f M SBP = 1

(3)

Thus, when MSBP = 0 a left shift is required to move
P in the range [1, 2). In this case the exponent has to be
decremented by 1 in order to compensate for the mantissa
shift. Overall, Ez can be computed as follows:

Ez = Ex − Ey − bias − M SB P (4)

As shown in (3), the mantissa computation requires the
division between (1 + Mx) and (1 + My), which is the most
compute-intensive block.

III. PROPOSED TECHNIQUE

Before describing our approach, let us call P ′ the approx-
imate mantissa quotient, and let us define the Relative Error
Distance (RED) between P and P ′ as

RE D =

∣∣∣∣ P − P ′

P

∣∣∣∣ (5)

Starting from (5), we compute the Mean Relative Error
Distance (MRED) as the average value of the RED.

In the following, section III-A shows the theoretical rea-
soning used to set up the minimization problem able to find
optimal coefficients, while section III-B revisits the proposed
approach with the aim to find the coefficients numerically.
Then, in section III-C quantization effects are addressed to
compute optimal quantized coefficients.

A. Theoretical Approach

As observable from (2), the quotient P can be seen as a
function of two variables, Mx and My, which assumes values
in the mantissas’ plane defined as [0, 1) × [0, 1). In order
to approximate the quotient, we partition the plane Mx–My
in nx × ny regions as shown in Fig. 2, where each region,
named tile in the following, has dimensions 1x = 1/nx and
1y = 1/ny.

In the following, we introduce the indexes h, k to identify
a tile of the plane, and call (Mxh, Myk) the coordinates of
its lower-left corner, with Mxh = (h − 1) · 1x and Myk =

(k − 1) · 1y (see Fig. 2).
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Fig. 2. Partitioning of the mantissas’s plane in nx ×ny tiles. In this example,
nx and ny are equal to 4 and 8, respectively.

Then, in the (h, k)-th tile the mantissa quotient is approx-
imated with a linear expression of Mx, My as in a first-order
Taylor expansion:

P ′
= ah,k · (Mx − Mxh) + bh,k · (My − Myk) + ch,k (6)

where ah,k , bh,k , ch,k are suitable constants, while Mx and My
lay in the range [Mxh, Mxh+1) and [Myk, Myk+1), respectively.

The coefficients of the approximation are not computed as
in Taylor expansion, but instead are calculated in each tile in
order to minimize the MRED of the approximation.

To that purpose, we introduce in each tile a set of uniformly
distributed nsx × nsy sampling points (Mxi, Myj) whose coor-
dinates are:

Mxi = Mxh + i ·
1x
nsx

i = 0, 1, . . . , nsx − 1

My j = Myk + j ·
1y
nsy

j = 0, 1, . . . , nsy − 1 (7)

The MRED is minimized for this set of sampling points.
Let us consider the point (Mxi, Myj), highlighted in blue in
Fig. 2, and let us call Pi, j as the exact quotient: Pi, j =

(1 + Mxi)/(1 + Myj). The relative error distance at the
considered (i, j) point is:

RE Di, j

=

∣∣∣∣ Pi, j −ah,k · (Mxi −Mxh)−bh,k · (My j −Myk)−ch,k

Pi, j

∣∣∣∣
(8)

The MRED in the (h, k)-th tile is obtained by averaging the
RED over the set of sampling points:

M RE Dh,k =
1

nsx · nsy
·

nsx −1∑
i=0

nsy−1∑
j=0

RE Di, j (9)

B. Minimization Problem

In order to minimize the overall MRED of the divider,
we proceed tile-by-tile, by minimizing the MREDh,k of (9)

for h = 1..nx, k = 1..ny. Thus, the optimization problem can
be expressed as follows:

for each tile, find the coefficients ah,k, bh,k, ch,k such that:

nsx −1∑
i=0

nsy−1∑
j=0

RE Di, j min! (10)

We can organize the problem of (10) in an equivalent
form, more suitable for numerical solution. To that purpose,
we introduce a set of auxiliary variables ui,j in addition to
ah,k, bh,k, ch,k, and reformulate (10) as follows:

nsx −1∑
i=0

nsy−1∑
j=0

ui, j min! (11)

Subject to : RE Di, j ≤ ui, j (12)

for: i = 0.. nsx−1; j = 0.. nsy−1
By using (8), the constraint (12) can be written as:∣∣Pi, j −ah,k ·(Mxi −Mxh)−bh,k ·(My j −Myk)−ch,k

∣∣≤ui, j Pi, j

(13)

This constraint is in the form |a| ≤ b. It can be rewritten
with two linear constraints not involving the absolute value:

|a| ≤ b ⇔

{
a ≤ b
−a ≤ b

(14)

In this way, (13) is modified as follows:

− ah,k · (Mxi − Mxh) − bh,k · (My j − Myk)

− ch,k − ui, j · Pi, j ≤ −Pi, j

ah,k · (Mxi − Mxh) + bh,k · (My j − Myk)

+ ch,k − ui, j · Pi, j ≤ Pi, j (15)

The minimization problem (11),(15) takes the form of a
standard linear programming problem, defined as:

cT x min!

subject to : Ax ≤ b (16)

where the vector x includes 3+nsx·nsy variables corresponding
to the desired coefficients ah,k, bh,k, ch,k and the auxiliary
variables ui,j. The number of constraints is 2 · nsx · nsy.

In the paper the minimization problem is solved in Matlab
by using the Dual Simplex method. Our numerical experiments
show that having nsx , nsy larger than 20 does not change
the solution of the optimization problem. Therefore, we fixed
nsx = nsy = 20 points per tile.

The Fig. 3 highlights the behavior of the overall MRED
of the divider for different partition schemes, defined by the
parameters nx, ny. For the sake of simplicity, the values of nx,
ny are chosen as powers of two. As shown in the figure, the
MRED depends on the adopted partition scheme, exhibiting a
reduction up to two orders of magnitude for increasing values
of nx, ny. The error exhibits a larger dependence on ny, with
best results achieved for ny ≥ 8. For instance, considering the
curve for nx = 8 (depicted in black), the MRED reduces from
10−2 up to about 10−4. Likewise, the error steeply decreases
for nx in the range [2, 16], whereas a lower reduction is
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Fig. 3. Behavior of the overall MRED of the mantissa divider as function
of different partition schemes.

registered when nx passes to 32 (as shown by the very close
green and violet curves for ny ≤ 16). Following the above
considerations, partition schemes with nx in the range [2, 16]
and ny in the range [2, 32] are suitable candidates to realize
the approximate divider. At the same time, is it worth noting
that the number of partitions affects the number of coefficients
and, as consequence, the hardware complexity of the circuit.
Therefore, a careful choice of the partition scheme is pivotal
to properly balance the trade-off between accuracy of results
and hardware performance.

C. Quantized Minimization Problem

An efficient hardware implementation of the proposed
algorithm requires a careful quantization of the coefficients
ah,k, bh,k, ch,k, so that they can be efficiently stored in a look-
up table. In order to find optimal solution also taking into
consideration coefficient quantization, we replace ah,k, bh,k,
ch,k with quantized terms aqh,k, bqh,k, and cqh,k:

aqh,k = Ah,k · L SBa

bqh,k = Bh,k · L SBb

cqh,k = Ch,k · L SBc (17)

where Ah,k, Bh,k, Ch,k are integer variables, and LSBa, LSBb,
LSBc are the weights of the least significant bits of the novel
coefficients. Using (17) in place of ah,k, bh,k, ch,k allows
to find a quantized solution to the problem (11), (15). The
minimization problem takes the form of a mixed-integer linear
programming problem, which searches for optimal values of
the integer variables Ah,k, Bh,k, Ch,k able to minimize the
MRED taking as input parameters the partition scheme, defined
by nx, ny, and the coefficient weights LSBa, LSBb, LSBc
(please note that the problem is mixed-integer since variables
ui,j remain real). It is worth noting that, using the coefficients
of (17), the mantissa quotient of (6) is computed now as:

P ′
= aqh,k ·(Mx−Mxh)+bqh,k ·(My−Myk)+cqh,k (18)

The algorithm 1 details the steps needed to calculate the
coefficients aqh,k, bqh,k, and cqh,k.

A careful choice of the weights LSBa, LSBb, LSBc allows
to obtain the best trade-off between precision and hardware

complexity. The lower LSBa, LSBb, LSBc the better the
MRED (due to the finer resolution of the coefficients), but
the larger the hardware complexity (due to the logic to store
the coefficients). Figure 4 shows the behavior of the MRED
with quantized coefficients as function of LSBa, LSBb for
LSBc = 2−2, 2−4, 2−7, 2−10. In this analysis, we refer to
the partitions nx = 2, ny = 4 (Fig. 4a), nx = 2, ny = 8
(Fig. 4b), nx =4, ny = 8 (Fig. 4c), and nx = 8, ny = 8
(Fig. 4d), and also reports the error performance using the
unquantized coefficients. The minimization problem is solved
in Matlab by using the legacy branch and bound method and
nsx × nsy = 20 × 20 points per tile. As shown, the MRED
depends on the weights LSBa, LSBb, exhibiting a strong
improvement for values varying from 2−1 to 2−4. At the same
time, a careful choice of LSBc is also required. Indeed, only
for LSBc = 2−7, 2−10 the MRED is able to approach the
value of the unquantized case, whereas the accuracy worsens
for LSBc = 2−2, 2−4.

Algorithm 1 Algorithm for Computing the Coefficients
Needed to Approximate the Quotient P According to (18)
Input: The number of tiles, nx, ny; the weights of the less-significant
bits used to represent in binary format the coefficients of the
approximation: LSBa , LSBb , LSBc .
Output (for each tile): the quantized coefficients used in the
approximation: aqh,k , bqh,k , cqh,k .
Steps:
1. nsx = 20; nsy = 20; // Fixed to 20 since numerical experiments
showed that larger values do not change the solution
2. 1x = 1/nx; 1y = 1/ny;
3. for h = 1:nx
4. for k = 1:ny
5. Mxh = (h − 1)1x ; Myk = (k − 1)1y;
6. for i = 0 : nsx −1
7. for j = 0 : nsy−1
8. Mxi = Mxh + i1x/nsx; My j = Myk + j1 y/nsy;
9. compute matrix A and vectors c, b with (11)(15)(17)
10. solve problem (16) to compute Ah,k , Bh,k, Ch,k
11. aqh,k = Ah,k LSBa ; bqh,k = Bh,k LSBb; cqh,k = Ch,k LSBc;
12. end for;
13. end for;
14. end for;
15. end for;

IV. HARDWARE IMPLEMENTATION OF
THE MANTISSA DIVIDER

The hardware implementation of the proposed approximate
mantissa divider is depicted in Fig. 5. The values of nx and
ny are powers of two. Please, note that the proposed structure
will be integrated into the floating-point divider of Fig. 1 to
carry out the analyses shown in the following sections.

In order to compute the quotient, each mantissa is divided
into two main fields as shown in Fig. 5a, where we consider
the case of an nM = 8-bit mantissa and a partition scheme
with nx = 4 for the sake of demonstration. With reference to
Mx, the first field gathers 2 MSBs (highlighted in red) and
constitutes the index h, used for the selection of the desired
coefficients. It is worth noting that choosing nx as a power of
two allows to find the value of the index just selecting log2(nx)
MSBs of the mantissa.

The second field corresponds to the mantissa with-
out the bits of the index, and represents the difference
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Fig. 4. MRED with respect to the weights LSBa, LSBb for different values of LSBc in the cases: (a) nx = 2, ny = 4, (b) nx = 2, ny = 8, (c) nx = 4,
ny = 8, and (d) nx = 8, ny = 8. The dotted black line represents the error of the divider without quantization of the coefficients.

Mxdiff = (Mx − Mxh), used to compute P ′ according to (18).
To better clarify this point, let us consider the values of Mx
in the tile h = 3. The lower-left corner of the tile starts with
Mxh =11000000, while Mx in this tile assumes the values
11000000, 11000001, . . . , 11111111. As consequence, the dif-
ference Mx–Mxh can be obtained by simply discarding 2 MSBs
of Mx. This avoids the need of a subtracter to compute
Mx–Mxh with beneficial effects on hardware performance.

As shown in Fig. 5(a), we discard t LSBs of Mxdiff
(highlighted in gray in the figure), to further reduce the
hardware complexity. Accordingly, Mxdiff is expressed on
nM−log2(nx) −t bits.

The mantissa My is segmented in the same way, with
log2(ny) MSBs corresponding to the index k, and the following
nM–log2(ny)–t bits that correspond to the truncated difference
Mydiff = (My–Myk).

The structure of the approximate mantissa divider is shown
in Fig. 5b, particularized to the case of 8-bit mantissas with
t = 3 truncated bits and partition scheme nx = 4, ny = 4. The
indexes h, k allow to address the coefficients Ah,k, Bh,k, Ch,k,
stored in a LUT. The LUT will be synthesized with standard
cells and stores the coefficients computed at design time. The
truncated mantissas and the coefficients are multiplied and
added as reported in (18). The multipliers and the adder are

fused in a unique carry-save adder block (CSAB). For the sake
of demonstration, Fig. 5c shows the schematic of the CSAB
again in the case of mantissas on nM = 8 bits, t = 3 truncated
LSBs. Coefficients Ah,k, Bh,k are supposed to be on 2 bits
with LSBa = LSBb = 2−1, while Ch,k is on 7 bits with
LSBc = 2−6. In this example, the LSBs of the truncated
mantissas have weight 2−5. Therefore, the products aqh,k ·

Mxdiff, bqh,k· Mydiff have LSB whose weight is 2−6.
The truncation allows to express the approximate quotient

P ′ on a reduced number of bits as also shown in the example
of Fig. 5c, where only 7 bits are computed instead of 9. It is
worth noting that the reduced bit-width of P ′ allows also
to simplify the multiplexer in the normalization block of the
floating-point divider (visible in Fig. 1b), with further hard-
ware improvement on the overall circuit. After normalization,
the extracted mantissa is extended up to the number of bits
defined by the standard (e.g. 23 bits in single precision format)
by left-side zero padding.

V. DESIGN PERFORMANCE

A. Error Metrics

In order to compute the error metrics, the floating-point
divider integrating the proposed mantissa divider is simulated
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Fig. 5. (a) Partition of the mantissa Mx in the case nM = 8 bits, (b) schematic
of the proposed approximate mantissa divider, and (c) detail of the carry save
adder block (CSAB) with nM = 8 and t = 3 truncated LSBs. Coefficients
Ah,k, Bh,k are expressed on 2 bits with LSBa = LSBb = 2−1, while Ch,k is
on 7 bits with LSBc = 2−6.

with 106 couples of random inputs. Then, the obtained results
are compared to the exact case. Let us name z and z′

as the exact and the approximate floating-point quotients,
respectively. The relative error distance is defined as RED =

|(z − z′)/z |, whereas the Mean Relative Error Distance is
MRED = mean(RED), where mean(·) is the mean value oper-
ator. We also introduce the error bias EB = mean((z − z′)/z),
the probability of having RED greater than 2% (PRED), and
the normalized mean error distance referred to the mantissa
divider, defined as NMED = mean(|P − P ′

|)/Pmax, with
Pmax that is the maximum possible value of the mantissa
quotient. Moreover, we assess the mean absolute error MAE =

mean(| z-z′
|), and the root mean square error RMSE.

Our approach has several design parameters (the number of
tiles nx, ny, the coefficient weights LSBa, LSBb, LSBc, the
number t of truncated bits).

The selection of these parameters involves a trade-off
between precision and hardware complexity.

- Increasing nx, ny improves the accuracy (owing to the
smaller tiles size) but calls for a large number of coeffi-
cients and hence in larger look-up tables to store them.

- Reducing LSBa, LSBb, LSBc improves the MRED (due
to finer resolution of the coefficients), but increases the
hardware complexity (due to the larger word size used to
store the coefficients).

- Increasing the number of truncated bits, t , simplifies the
hardware at the cost of precision.

Defining the combination of design parameters resulting
in the optimal hardware-accuracy trade-off is not a straight-
forward task. Nevertheless (considering the trends described
above) some trial and errors are sufficient to obtain very
effective and most likely optimal implementations (reported
in Table I and Fig. 9 as a function of the desired precision
targets), that overcome the state-of-the-art.

We consider the following partition schemes, offering a
good compromise between hardware performance and preci-
sion: (i) nx = 2, ny = 4, (ii) nx = 2, ny = 8, (iii) nx = 4,
ny = 8, (iv) nx = 8, ny = 8. In addition, quantized coefficients
are computed with weights LSBa = 2−2, LSBb = 2−2, and
LSBc = 2−7. The values of the coefficients for the four
partition schemes are reported in Fig. 6, grouped in the form
Ah,k, Bh,k, Ch,k for each combination of the indexes h, k.

Figure 7 depicts the behavior of the MRED as a function of
the number t of truncated LSBs of the mantissas. The MRED
is practically constant for t ≤ 16, whereas an increase in the
error is shown when more than t = 17 bits are truncated.

The nomenclature used for the proposed floating-point
architecture is FPD2Dnx×ny,t, which points out the imple-
mented partition scheme and the number of truncated bits in
the mantissa divider. In particular, in the following we focus
our attention on the designs FPD2D2×4,19, FPD2D2×8,18,
FPD2D2×8,17, FPD2D4×8,17, FPD2D8×8,17, FPD2D8×8,16,
FPD2D8×8,15 that show a favorable tradeoff between accuracy
and hardware complexity.

Table I collects the error performance of the above designs,
also offering a comparison with the state-of-the-art. After a
careful analysis, we select for our study the implementations
of [21], [24], [26], [27], and [29], named ALD, FPAD,
LPCAD(k, t), CADE(N , L), and FPDMEK,pt, respectively,
since they offer the best hardware-accuracy trade-off among
the works cited in section II-A. For LPCAD, k is the number
of coefficients used in the approximation, and t is the number
of preserved columns in the inner multiplier. For CADE, N is
the number of LSBs used to identify the 22·N regions in which
a coefficient is defined to minimize the approximation error,
and L is the number of bits used to quantize the coefficients.
For FPDME, K is the number of stipes used in the mantissas’
plane, while pt is the number of truncated bits. In addition, p
least significant bits are truncated also in ALD, while in FPAD
parameters L and A define the approximation depth and the
number of adders involved for the shift-and-add operation.

As shown in Tab. I, the proposed technique is able to
offer a wide range of values for the MRED in dependence
on the adopted partition scheme and mantissa truncation. For
instance, FPD2D2×4,19 achieves an MRED of 1.98%, whereas
implementations FPD2D8×8,15 and FPD2D8×8,16 are able to
approach MRED =0.4%. Similar observation applies for the
PRED, which reduces of about two orders of magnitude from
the configuration nx = 2, ny = 4 to nx = 8, ny = 8.
At the same time, the EB is very close to zero in all the
cases with best results achieved for ny = 8. The proposed
dividers perform well also in terms of NMED, MAE, and
RMSE, offering a wide range of values. In this case, partition
scheme with nx = 8, ny = 8 leads to best results with
NMED in the range 2.51 × 10−3

− 4.84 × 10−3 and MAE
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TABLE I
ERROR METRICS AND HARDWARE PERFORMANCE OF THE OF THE PROPOSED DIVIDER AND THE STATE-OF-THE-ART

Fig. 6. Coefficients of the divider in the cases (a) nx = 2, ny = 4, (b) nx = 2, ny = 8, (c) nx = 4, ny = 8, (D) nx = 8, ny = 8 computed with weights
LSBa = 2−2, LSBb = 2−2, and LSBc = 2−7. for each couple of coordinates h, k, coefficients are grouped in the form (Ah,k, Bh,k, Ch,k).

in the range 3.87 × 10−2
− 5.35 × 10−2. Similarly, RMSE

reduces up to 6.5 with FPD2D8×8,15. Among the other designs,
FPDME16,16, FPDME32,16 [29], CADE N = 4, L = 8 [27],
and LPCAD(3,8) [26] achieve performance comparable to the
cases with nx = 4, ny = 8 and nx = 8, ny = 8, exhibiting
MRED in the range 0.38%–0.75% and PRED between 8×10−2

and 5 × 10−4. Results are comparable also in terms of
NMED and MAE, ranging in 3.54 × 10−3

− 5.41 × 10−3 and
3.79 × 10−2

− 1.03 × 10−1, respectively. At the same time
CADE N = 4, L = 8 [27] and FPDME32,16 [29] achieve best

values of RMSE. On the other hand, the other dividers exhibit
worse accuracy, with MRED up to 4% in the case ALD [21].

B. Hardware Performance

The proposed divider and the state-of-the-art are synthesized
in TSMC 28nm CMOS technology using Cadence Genus
with a clock period Tck of 10ns and supply voltage of 0.9V.
Power consumption is computed by means of post-synthesis
simulations and exploiting standard delay format (SDF) and
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Fig. 7. MRED vs. the number t of truncated bits of the mantissas.

toggle count format (TCF) file to annotate net delays and
the switching activity of the circuit. In addition, 105 random
inputs are used to feed the circuits during the simulations.
Area occupation and critical path delay are also investigated
by means of post-synthesis analyses.

Figure 8 displays area and power breakdown in the cases
of FPD2D2×4,19 and FPD2D8×8,15, offering the lowest power
and the best error metrics, respectively. As shown, the mantissa
divider, which gathers both the LUT and the CSAB, deter-
mines the largest part of the area and power consumption.
For instance, mantissa divider of FPD2D2×4,19 occupies about
60% of the total area and dissipates about 54% of the overall
power consumption. For FPD2D8×8,15 area and power of the
mantissa divider are responsible for about 80% and 70% of
the total area and power, respectively. Accordingly, reducing
hardware complexity of mantissa divider allows to reduce the
hardware complexity of the overall circuit.

Table I collects the hardware results, expressed also in terms
of power-delay-product (PDP) and area-delay-product (ADP).
Please note that the presented results encompass the entire
floating-point divider, including mantissa division, normaliza-
tion and exponent calculation.

For the comparisons, we also report hardware performance
of the exact floating-point divider, chosen from the ChipAware
library of the synthesizer. As shown, the proposed circuits are
able to offer a remarkable improvement of performance with
respect to the exact case, with PDP reducing up to a factor
×3876 and ADP reducing up to a factor ×417 in the case
FPD2D2×4,19.

The designs FPD2D2×4,19 and FPD2D2×8,18 exhibit PDP
less than 10fJ and ADP in the range from 46µm2

· ns to
62µm2

· ns, achieving performance close to FPDME4,17 [29].
On the other hand, PDP increases in the case of finer par-
titions and less aggressive truncation. For instance, dividers
with nx = 8, ny = 8 limit PDP and ADP saving up to the
factors ×1687 and ×176, respectively, with results that worsen
reducing the number of truncated bits. Among the other
implementations, FPAD [24] and FPDME4,15 [29] exhibit PDP
reductions in the range ×2052–×2462 and comparable values
of ADP, whereas LPCAD [26] and CADE [27] show a superior
complexity. At the same time, ALD [21] has good hardware

performance with PDP and ADP of about 3fJ and 22µm2
·

ns, respectively, but it is worth noting that this performance is
achieved at the cost of lower precision, as shown in the table.

To put results in perspective, Fig. 9 shows the tradeoff
between PDP vs. MRED (Fig. 9a) and ADP vs. MRED
(Fig. 9b). In these plots the best tradeoff is represented by
the lower-left corner of the figure and the Pareto front is
highlighted by the black dotted line. As shown, the pro-
posed dividers offer the best trade-off between precision and
hardware, defining the pareto front for MRED in the range
4 × 10−3–2 × 10−2.

VI. IMAGE APPLICATION

A. JPEG Compression

JPEG compression reduces the amount of information
used to represent an image, to reduce memory storage or
data transmission. The algorithm initially converts the Red-
Green-Blue (RGB) color space to the luminance-chrominance
domain, and then utilizes cosine transformation to identify
the frequency content of the selected image. Subsequently,
it employs variable quantization to represent low frequencies
with fine precision and high frequencies with rough accuracy.
This approach enables the algorithm to primarily approximate
the higher frequencies, which are less perceptible to the human
eye. In addition, the algorithm also offers the possibility to
define the amount of compression by acting on a quality
factor Q, chosen in the range [0, 100], with Q = 0 and
Q = 100 corresponding to the strongest and the finest
approximation, respectively.

In our case, the proposed divider and the state-of-the-art
proposals are used to implement the quantization step. For
this analysis, we consider the images Autumn, Pears, Peppers,
Mandrill, Light House and Fabric, from the Matlab dataset,
with quality factor Q = 35, 70, 100. The accuracy is assessed
by comparing the images compressed with exact divider with
those compressed with approximate dividers. As figure of
merits, we use the Mean Similarity Index (SSIM) and Peak
Signal-to-Noise Ratio (PSNR), expressed in dB. Table II
collects the results, showing the mean SSIM and the mean
PSNR computed among the six images for each value of Q.
In addition, last two columns also report the overall mean
SSIM and PSNR, offering a synthetic overview of accuracy
performance. As shown, proposed dividers are able to offer
SSIM values very close to 1 in all the cases with average PSNR
that overcomes 45dB. The accuracy increases by increasing the
number of tiles, as expected. Among the different implemen-
tations, the divider FPD2D8×8,15 achieves the best result, with
an average PSNR of 45.4dB and SSIM of 0.997. The circuits
FPDME [29] are able to approach performance of the proposed
divider with an average PSNR up to 44.4dB, whereas CADE
N = 4, L = 8 [27] and LPCAD(3,8) [26] exhibit lower results,
with PSNR around to 42dB. At the same time, implementation
ALD p = 8 [21] offers worst accuracy, with PSNR limited
to 24.3dB. Figure 10a and 10b depict the images “Pears” and
“Light House” compressed with quality factor Q = 35 and
Q = 70, respectively. For the sake of demonstration, we report
the results obtained with the implementations ALD p = 8
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Fig. 8. (a) Area and (b) power breakdown for the divider FPD2D2×4,19, and (c) area and (d) power breakdown for the divider FPD2D8×8,15.

Fig. 9. Tradeoff between (a) PDP vs. MRED and (b) ADP vs. MRED for the proposed floating-point dividers and the state-of-the-art. The black dotted line
represents the Pareto front.

[21], offering the worst PSNR, and FPD2D8×8,15, offering the
best PSNR. As shown, the image obtained with the proposed
divider is practically unchanged with respect to the exact case,
as also confirmed by the high values of PSNR and SSIM.
Conversely, ALD [21] exhibits a sensible quality degradation
that is coherent with the lower values of PSNR and SSIM.

B. Tone Mapping of HDR Images

High dynamic range (HDR) images are employed in several
applications such as photography, computer graphics, or medi-
cal imaging, and are produced by capturing high-quality scenes
where the pixels are represented in floating-point to give a
wide range of details. In these applications, tone mapping is
used to convert HDR images in standard formats.

We have analyzed the performance of the proposed dividers
and of the state-of-the-art to realize a tone mapping algorithm
based on the Reinhard operator [32]. To this aim, the scaled
luminance L(i, j) of the HDR image is computed, where i =

0, 1, ..N , j = 0, 1, . . . , M are the coordinates of its pixels:

L(i, j) =
α

Lw,m
Lw(i, j) (19)

where α is a parameter chosen in the range [0, 1], Lw is
the luminance defined as function of the red, green, and blue
(R,G,B, respectively) channels of the HDR image:

Lw(i, j)=0.27·R(i, j)+0.67·G(i, j)+0.06·B(i, j) (20)

and Lw,m is the geometric mean of Lw, defined as:

Lw,m = exp

 1
N M

N−1∑
i=0

M−1∑
j=0

log(Lw(i, j))

 (21)

In the following, we consider the case α = 0.5. As second
step, the display luminance Ld(i,j) is computed as follows:

Ld(i, j) =
L(i, j)

1 + L(i, j)
(22)

and is multiplied to the R,G,B channels of the HDR image:

R′(i, j) = Ld(i, j) · R(i, j)

G ′(i, j) = Ld(i, j) · G(i, j)

B ′(i, j) = Ld(i, j) · B(i, j) (23)

were R′, G ′, B ′ are the channels with low dynamic range.
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TABLE II
ACCURACY PERFORMANCE OF PROPOSED DIVIDERS AND OF THE STATE-OF-THE-ART IN JPEG COMPRESSION

Fig. 10. JPEG compression results for the images (a) “Pears” with quality factor Q = 35 and (b) “Light House” with quality factor Q = 70 for the
implementations ALD p = 8 [21] and FPD2D8×8,15.

As last step, the resulting channels are quantized
(e.g. on 8 bits) to represent the image in a standard for-
mat. Table III collects the result of tone mapping algorithm,
obtained by applying the approximate dividers for the compu-
tation of (19), (21), and (22). In this case, three test images
are considered, Bottles Smal, Oxford Church, and Office,
whose pixels are represented in single-precision floating-point
arithmetic. As shown, the proposed dividers are able to offer
high values of PSNR (up to 43.6dB on average) with SSIM

very close to 1. Only the implementation CADE N = 4,
L = 8 [27] is able to achieve a larger PSNR (44.8dB on
average), whereas the other implementations exhibit poorer
performance. Among the implementation, LPCAD [26] offers
worst results, with PSNR that range between 10dB and 12dB
and SSIM up to 0.658.

For the sake of demonstration, Fig. 11 reports the images
obtained with LPCAD [26] and the proposed dividers in the
case of the “Office” image. As shown, images computed with
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TABLE III
ACCURACY PERFORMANCE OF PROPOSED DIVIDERS AND OF THE STATE-OF-THE-ART IN TONE MAPPING APPLICATION

Fig. 11. Tone mapping of the “Office” image for the LPCAD implementations and the proposed dividers.

LPCAD [26] exhibit a visible alteration of the luminance
level, whereas the proposed dividers allow to compute images
practically unchanged with respect to the exact case.

VII. CONCLUSION

In this paper, we have proposed a novel approxi-
mate floating-point divider based on bidimensional linear
approximation. In our approach, the mantissa quotient
(1 + Mx)/(1 + My) is revisited as function of the two variables
Mx, My. The domain of this function is partitioned in nx × ny
tiles, with nx, ny that are powers of two. In each tile, the
quotient is approximated with a linear combination of Mx,

My and a minimization problem is set up in order to find
optimal quantized coefficients that minimize the MRED of
the divider. From the hardware point of view, the proposed
circuit only requires a fused multiply-and-add structure and a
hardwired LUT. The proposed architecture is highly tunable
at design-time over a wide range of accuracy, depending
on the number of tiles chosen for the approximation. The
obtained results demonstrate error performance and hardware
features superior to the state-of-the-art. The proposed dividers
define the Pareto front, considering the trade-off between
power-delay-product vs. MRED and area-delay-product vs.
MRED, for MRED in the range of 4 × 10−3

− 2 × 10−2.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



DI SMEO et al.: LOW-POWER HIGH PRECISION FLOATING-POINT DIVIDER 13

Application results for JPEG compression and tone mapping
further highlight the strength of our proposal, which exhibits
Structural Similarity Index (SSIM) very close to 1 in all cases
and Peak Signal-to-Noise Ratio (PSNR) up to 45 dB.
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