
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

Power and Frequency Intrinsic Channels on gem5
Lilian Bossuet , Senior Member, IEEE, and Carlos Andres Lara-Nino

Abstract— Recent works have highlighted the vulnerability
of System-on-a-Chip (SoC) platforms against intrinsic channels
attacks. In this threat model, an adversary can leverage vul-
nerabilities in the SoC’s firmware, the operating system, or the
design tools to gain access to shared resources in the platform
and transfer data covertly. Given the diversity of attack avenues
and the constant evolution of heterogeneous SoCs, it is not
practical to study these attacks using conventional approaches.
To address this issue, we propose to employ gem5 in the study
of power and frequency intrinsic channels. Our work studies
heterogeneous SoCs which feature a processor system and an
FPGA. We employ the full system simulation of gem5 to emulate
a reference physical device. We then describe the emulation of
different intrinsic channels which leverage the clock tree and
power distribution network of the SoC to transfer data covertly.
Our findings demonstrate that gem5 can accurately replicate the
logical behavior of power and frequency intrinsic channels.

Index Terms— Frequency intrinsic channels, gem5, heteroge-
neous SoC, power intrinsic channels, Zynq UltraScale+.

I. INTRODUCTION

ASYSTEM-ON-A-CHIP is a heterogeneous platform, con-
stituted by the integration of general processors and

hardware accelerators in the same die. Their main components
include a processor system with some memory elements,
a shared memory block, acceleration engines (ASICs, FPGAs,
or ASIPs like DSPs and GPUs), and some interconnect logic.
In this work, we focus on the cases where the accelerator is
constituted by reconfigurable logic. Heterogeneous SoCs have
gained popularity given the need to improve the performance
of processors through hardware acceleration. The desire for
new computing architecture has been pushed, in part, by the
loss of Dennard’s scaling and the deceleration of Moore’s
Law [1], [2]. But also, by the interesting features offered by

Manuscript received 6 March 2024; revised 10 July 2024; accepted
28 July 2024. This work was supported in part by French Government through
the Agence Nationale de la Recherche in the framework of Project “micro-
ARCHItectural SECurity” (ARCHISEC) under Grant ANR-19-CE39-0008.
The work of Carlos Andres Lara-Nino was supported in part by the Spanish
Instituto Nacional de Ciberseguridad (INCIBE) through the Project HERMES,
in part by the Spanish Government through the Project ACITHEC under
Grant PID2021-124928NB-I00, and in part by the Catalonian Agència de
Gestiód’Ajuts Universitaris i de Recerca (AGAUR) under Grant 2021 SGR
00115. This article was recommended by Associate Editor Q. Liu. (Corre-
sponding author: Carlos Andres Lara-Nino.)

Lilian Bossuet is with CNRS, Institut d’Optique Graduate School, Labora-
toire Hubert Curien UMR 5516, Université Jean Monnet Saint-Étienne, 42000
Saint-Étienne, France (e-mail: lilian.bossuet@univ-st-etienne.fr).

Carlos Andres Lara-Nino is with the Departament d’Enginyeria, Informàtica
i Mathemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain (e-mail:
carlos.lara@fundacio.urv.cat).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2024.3435841.

Digital Object Identifier 10.1109/TCSI.2024.3435841

reconfigurable hardware accelerators [3], [4]. Along with these
factors, the monetary cost per logic-cell of FPGA fabric has
dramatically decreased, which makes them an attractive choice
for bulk acceleration [5].

Understandably, modern trends in the design of heteroge-
neous SoCs have been driven by the interest of drawing greater
performance for emerging applications benchmarks [6]. How-
ever, recent studies have shed light on the vulnerabilities of
these systems [7]. A platform with a greater diversity of hard-
ware components will experience greater security challenges.
We must consider that each part of the system can be targeted
by attackers. This is a concern for using heterogeneous SoCs
in critical applications. The design of secure SoC architectures
which maintain a competitive performance profile has become
a priority in such domains.

Covert data transmission is one of the attacks proposed
against heterogeneous SoCs [8]. Under this threat model,
an adversary leverages the shared resources between the
different components of the platform to secretly transfer infor-
mation. These shared resources become intrinsic channels.
The goal of these attacks is to allow different components
within the platform to exchange information. These covert
communications could bypass security policies designed to
isolate the platform’s components. Detecting and preventing
these attacks is an active area of research.

Studying intrinsic channels with conventional strategies
presents multiple challenges. First, the diversity of shared
resources which can be leveraged by an adversary is quite
large. Even when the scope is limited to clock, and power trees
(as in this work) the number of potential attacks is unlimited.
Truly, creativity dictates the boundary. Next, there are many
SoC architectures being used for different applications. The
main selling points of SoCs is that they can be tailored for
a particular use case. Unfortunately, each of these designs
ought to have particularities which make it susceptible to
specific attacks. Furthermore, studying intrinsic channels in a
physical device results costly. In most scenarios, disconnecting
an intrinsic channel is simply not possible. So, if intrinsic
channel vulnerabilities are discovered once the SoC has been
deployed, these could be difficult to mitigate.

The use of pre-silicon tools, like gem5 can contribute to
solving some of the challenges associated with the analysis
of intrinsic channels. By offering multiple architectural and
processor models it allows the designer to test many system
configurations. The fact that the device does not need to be
manufactured reduces testing time. In fact, gem5 does not
require hardware descriptions nor precise physical models of
components. Instead, it relies on the architectural description

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0001-7964-3137
https://orcid.org/0000-0003-0333-2564


2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

of the platform to emulate its behavior. Given these features,
the interest for using gem5 in this research field is clear. In this
paper, we demonstrate that gem5 can emulate frequency and
power intrinsic channels accurately.

Our main contributions include:
1) We present multiple approaches for transferring data

between different elements within a SoC.
2) We demonstrate the feasibility of these attacks by imple-

menting the intrinsic channels in a physical device.
3) We show how to emulate these attacks in gem5 with a

full-system ARM simulation and outline the challenges
that we have overcome in the process.

4) We provide, to the best of our knowledge, a complete
literature review on the emulation on intrinsic channels.

A conference version of this paper [9] has shown that it is
possible to use gem5 in the emulation of frequency intrinsic
channels. Particularly, that gem5 can emulate the behavior
of a specific device whose characteristics are known. Earlier
work [10] has shown that gem5 can also simulate power
intrinsic channels. However, that work does not employ a
reference device to show the accuracy of the approach. In this
paper, our goal is to bridge the gap between earlier works
by presenting power and frequency intrinsic channels which
are first implemented in a physical device and then emulated
with gem5. As in [9], we provide an open repository with the
source files which allow to reproduce our findings:

https://github.com/CarlosAndresLARA/int-gem5

The rest of the paper is structured as follows. In Section II
we review the state of the art on intrinsic channels and the
use of gem5 for their emulation. Section III describes the
threat model of covert communication attacks considered in
this work and their limitations. In Section IV we detail the
use of frequency and power intrinsic channels to mount covert
communications attacks in a physical heterogeneous SoC. Sub-
sequently, Section V describes the process to carry a successful
emulation of these attacks in gem5. Then, in Section VI
we discuss the results of our work and outline different
perspectives. Lastly, Section VII presents our final remarks
and concludes the paper.

II. RELATED WORKS

As mentioned, the covert transmission of data through
intrinsic channels is one of multiple threats leveraged against
complex heterogeneous SoCs. These internal links may allow
an attacker to transfer data between processes that would not
be allowed to communicate by the system’s security policies.
Typically, a covert transmission uses a spy application or
circuit that infiltrates the system and transfers the sensitive
data to a receiver which decodes it and uses it for illegitimate
purposes.

The literature describes several methods for the utilization
of intrinsic channels. Some of them rely on shared hardware
resources such as memory elements. In [11], Lipp et al. used a
common library (shared memory) and cache memory attacks
to exchange sensitive data between two unprivileged processes.

The covert means of communication between the two pro-
cesses were based on the use of either the Flush + Reload
[12] or the Flush + Flush [13] cache attacks. Others are not
so evident to detect. In [14] the authors described how to
exploit the mutual exclusion and synchronization mechanism
of modern operating systems to transfer data covertly. These
works highlight that the system architecture itself is ripe with
opportunities for the instantiation of intrinsic channels.

In [15], Masti et al. evaluated the feasibility of thermal
intrinsic channels. They used the thermal sensor included in a
processor core to communicate two processes running on two
different cores of the same processor. To send a logical one,
their spy process would stress the core which would cause the
processor to overheat. To send a logical zero, the spy process
would decrease the workload of the core. To decode the data,
their receiving process simply took core temperature readings
belonging to the same processor. A related approach was used
by Tian and Szefer [16] to mount temporal-thermal intrinsic
channels on Cloud-based FPGAs. In their work, the authors
showed that heat generated by one user of the FPGA could be
observed by another user of the same FPGA in a subsequent
session. Their attack was carried out on Microsoft Catapult’s
servers where FPGAs are available as remote acceleration
platforms. Despite the inherent limitations of the approach,
the work demonstrated that even with up to a few minutes of
idle period it was possible to transmit data.

In [17], it was demonstrated that it is possible to exploit the
crosstalk phenomenon of long wires [18] in the Arria 10 SoCs.
In their work, the authors showed that the crosstalk can be
observed for different long wires within these platforms. The
basis for this type of attack is that the value transmitted in
a long wire across the fabric has a noticeable effect on the
delay of adjacent long wires. These wires exist to improve the
routing and the performance of the reconfigurable designs.
Crosstalk between long wires causes information leakage
from one wire to another if they are close enough. When the
source is used as part of a protected region of the SoC and the
receiver is a wire connected to a malicious IP, this can lead to
information leakage. If the transmitter is malicious and seeks
to send information to a different IP, the long wires can be
used to create intrinsic channels. A related approach was used
by [19] to mount an attack on an AES core on a Cyclone IV
FPGA. A potential countermeasure for these attacks was later
presented by [20], who proposed routing strategies to mitigate
the risks of crosstalk attacks by isolating sensitive nets from
other components. Later, [8] studied the characteristics of
frequency-based intrinsic channels in modern SoC-FPGA
platforms. That work demonstrated that frequency-based
intrinsic channels can be stealthy but also high
performing.

The authors of [21] presented a practical use case for
intrinsic channels. That work employed the clock tree of the
device to transfer a single bit of information from a malicious
application in the processor system to a malicious IP in the
FPGA. This bit was used to synchronize the acquisition of
power traces with an internal sensor. With that work, the
authors showed that intrinsic channels do not require the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



BOSSUET AND LARA-NINO: POWER AND FREQUENCY INTRINSIC CHANNELS ON gem5 3

transfer of large volumes of data or fast data rates to be of
practical use for adversaries.

In [10] the authors have used gem5 to study power analysis
and intrinsic channel attacks on heterogeneous SoCs. Their
work employs a high-demand payload in the kernel to induce
a noticeable increase in the activity of the emulated system,
which is supposed to affect the power dissipation of the
device. The authors employ the simulation statistics produced
by gem5 to study the behavior of the simulation. However, that
work does not corroborate the accuracy of the simulation by
replicating the experiments in a physical device. Most recently,
[9] showed that it is possible to employ gem5 to emulate
frequency-based covert communications. But that work does
not address the potential of gem5 for emulating the physical
behavior of the circuit.

A. Exploiting the Frequency or Voltage Modulation

Works like [22] have used the power distribution network
(PDN) of FPGAs to transfer data covertly to an external
receiver. The technique described in that paper employs a
power pattern generator inside the core as a transmitter.
The receiver can be anything capable of monitoring the
power trace of the board; in their case an oscilloscope
was used. In their work, the authors did not envision the
creation of intrinsic channels, but rather intended for this
communication strategy to be used in monitoring, debugging,
or watermarking [23], [24]. However, the evidence suggests
that this approach could be coupled with in-board receivers to
complement a covert remote-monitoring scheme. In this line
of research, the work in [25] proposed to use the PDN to
mount actual covert communications within the FPGA. The
authors used non-combinatorial ring oscillator as transmitters
and TDC-based sensors as receivers. This class of attacks
underscores the significant challenges for isolation-based pro-
tection approaches since the PDN is a common resource
throughout most SoCs. Indeed, the isolation challenges persist
even when the logic is implemented in different dies. This
was demonstrated by [26] using FPGAs with 2.5D integration
of multiple dies, in concrete the Virtex Ultrascale+ series.
In their work, the authors managed to create intrinsic channels
across the different dies of the FPGA just by exploiting
the perturbations induced on the PDN. Furthermore, in [27]
the authors demonstrated that an FPGA could be used to
analyze the power traces of a different FPGA within the
same board. Later, in [28] the authors proposed to use the
current management techniques found in modern proces-
sors to implement covert communications within different
processes.

The potential of using frequency modulation to mount
intrinsic channel attacks on multi core platforms was first
studied by Alagappan et al. [29]. In that work, the authors
demonstrated the feasibility of an intrinsic channel using fre-
quency modulation. Their work employed dynamic frequency
adjustment to transfer sensitive data between the spy process
and the receiving process. To send a logical one, their spy
process would overload the CPU as in [15], which would cause

the system to change its frequency to meet the workload being
demanded by the spy process. The frequency chosen would
depend on the frequency governor mode used by the system
(performance, powersave, userspace, ondemand, or conserva-
tive). To send a logical zero, their spy process would decrease
the workload applied to the processor. The receiving process
performed a simple frequency reading to decode the message.
Independently, [30] presented the CLKSCREW attack which
exploited vulnerabilities in the DVFS mechanisms to bypass
the protections of the system. That work showed that a
malicious driver could extract secret cryptographic keys from
TrustZone, and escalate its privileges by loading self-signed
code into application space. As countermeasures the authors
proposed the introduction of hardware limit regulators and
division of power domains across security boundaries, as well
as potentially redesigning the chip with additional logic and
timing redundancy to mitigate the effects of faults. Recently,
the authors in [31] have shown that novel frequency manage-
ment mechanisms in Intel CPUs can be leveraged to mount
covert communication attacks.

In [32], the authors demonstrated for the first time
a malicious use of the frequency modulation against a
TrustZone-enabled SoC. The work described four proofs of
concept to transfer sensitive data from a secure entity in
the SoC to a non-secure one. Their study used the Zybo
board which is equipped with a Zynq-7000 ARM/FPGA SoC
(XC7Z010-1CLG400C). The main limitation of this work is
that their approach is restricted to the context of a specific
device. As new architectures and security systems have been
proposed, these results are now outdated.

B. DVFS in gem5

gem5 is a modular platform for computer-system architec-
ture research, encompassing the system-level architecture as
well as processor micro-architectures [33]. This Open-Source
simulator was created after merging the M5 and GEMS
simulators, preserving the processing-emulation capabilities
of the former and the memory-emulation components of
the latter. It allows to run cycle-accurate simulations of
multiple processor architectures, among them ARM. By cre-
ating a conglomerate of objects (SimObjects), gem5 allows
to emulate the interaction between the different compo-
nents of the processing system and study their synergy,
rather than simply trying to predict the outcome of some
computation.

The use of gem5 to emulate the DVFS-management was
first introduced in [34] where the authors extended the sim-
ulator to support full-system DVFS modeling. Their goal
was to enable energy-efficiency experiments to be per-
formed in gem5 and to highlight such studies. That work
provided, for the first time, clock and voltage domain dec-
laration, online power-estimation, a DVFS controller, and
kernel drivers for full-DVFS support. Their proposal would
become the basis for the DVFS handler included in the
official gem5 releases. Subsequently, works like [35] have
proposed high-level improvements to enhance the performance

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

of the DVFS handler in gem5. In that work, the authors
introduced a non-intrusive application-controlled DVFS man-
agement implementation for the system-call emulation mode.
The general goals of these works are to improve the data
modeling quality or the handler’s efficiency. This is an
interesting use of gem5: it makes it possible to explore
multiple design strategies without the need to create phys-
ical prototypes which result costly in terms of time and
money.

In [36], the authors introduced an ongoing study aiming at
analyzing the attacks relying on the hardware vulnerabilities
of the micro-architectures of CPUs and SoCs using gem5. The
main objectives of their work are to create a virtual and open
platform that emulates the behavior of micro-architectural
features and their interactions with the peripherals, like accel-
erators and memories in emerging technologies. The authors
describe diverse attacks which can be mounted on the gem5
simulator, among them the possibility of creating DVFS
covert-channels as described in [32].

C. Other Emulation Tools

Emulating the comportment of analogue and digital systems
is a challenge which has interested researchers for a long
time. The usual goals of these analyses are to verify the
correctness of the system and to discard unintended defaults.
As such, many commercial and academic tools have been
proposed to reproduce the electrical behavior of different
platforms. A reduced set of products has been designed
with the intended purpose of aiding in the security auditing
of computing architectures. These are denominated leakage
verification or detection tools. However, to the best of our
knowledge, only [10] has dealt with the emulation of intrinsic
channels.

Being an architectural attack, the first problem with emu-
lating covert communications is that we must study the full
system. There are few platforms which conduct full-system
simulations like gem5. Another problem is that frequency
intrinsic channels fall under the umbrella of logical behaviors,
whereas power intrinsic channels fall under the class of ana-
logue behaviors. There are few simulators which can produce
results for both cases as well.

Leakage analysis tooling could be adopted in the study
of intrinsic channels with some adjustments. However, the
state-of-the-art in this field can be divided into two large
groups: industrial and academic tooling which are not openly
available. Open-source tools for leakage verification include
MAPS [37] and COCO [38]. The former is exclusive for ARM
Cortex M3 systems but is not cycle accurate. The latter can
analyze any circuit but requires a gate-level description of
the platform. Another tool which relies on an open-source
initiative is SLEAK [39]. This system employs gem5 to
perform the emulation of ARM Cortex A8 processors. How-
ever, SLEAK itself is not readily available. In our work,
we intend to use gem5 “as is” to boost the reproducibil-
ity of our findings. Anybody who wishes to replicate our
work can refer to the freely available distribution of the
simulator.

Fig. 1. Attack scenarios considered in this work. a) A malicious application
transfers information to a second application through a frequency intrinsic
channel. b) The receiver can also be a hardware accelerator with a malicious
payload. c) A malicious application without root privileges can encode
information by stressing the core, leveraging a power intrinsic channel.

III. THREAT MODEL

In our work we consider two scenarios which can lead
to the exploitation of intrinsic channels in a platform. The
victim is always a heterogeneous SoC with a cluster of ARM
Cortex-A53 processors running a generic Linux, a cluster of
ARM Cortex-R5F processors running third-party applications
on bare-metal, and a reconfigurable nucleus which implements
third-party accelerators. In the first case (a) we consider a
malicious application running on the user space as a trans-
mitter which wishes to establish covert communications with
a second application also on the user space. The second
case (b) is that of a malicious application running on the
user space as a transmitter which wishes to establish covert
communications with a hardware accelerator in the FPGA. The
hardware accelerator includes a malicious payload composed
of ROS. In a third case (c), the transmitter is a malicious
application running on the user space which wishes to establish
covert communications with any other element in the SoC.
These three cases are illustrated in Fig. 1.

For cases a) and b), we consider that the transmitter can
modify the dividers of the different PLLs in the SoC to encode
a message through different frequency symbols. For this, the
transmitter requires root privileges which can be obtained
through privilege escalation attacks or exploiting day-zero
vulnerabilities. The receivers must be capable of monitoring
the frequency of the SoC. This can be achieved by accessing
the kernel APIs or by implementing internal sensors within the
platform. The second assumption is stronger as it provides the
adversary with the capabilities of modifying the bitstream of
the system. However, for case c), we do not grant privileges
to the malicious application and thus it cannot modify the
device’s clock tree. Instead, it can perform a sequence of
complex operations to stress the device and produce power
drops. The receiver can be inside or outside the SoC and is
assumed to possess a certain sensing capability to monitor
the power activity of the device. Internally, this could be
achieved through accessing the kernel drivers, sensing digital
delays, or monitoring the status of the on-board power regu-
lator. Externally, an adversary might employ an oscilloscope,
spectrum analyzer, or even a thermometer.

Covert communication attacks are less known than other
physical attacks. Their reach and limitations have not been
completely studied. On one hand, they are powerful tools
which enable the attacker to bypass logical isolation policies.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



BOSSUET AND LARA-NINO: POWER AND FREQUENCY INTRINSIC CHANNELS ON gem5 5

On the other hand, the assumed adversarial capabilities may
restrict the exploitability of intrinsic channels. For example,
in case studies a) and b) from Fig. 1 it is assumed that
the malicious application has root privileges, but this can be
thwarted with the virtualization of untrusted modules [40],
[41], [42]. Additionally, in a practical context, the sender might
have to compete with other processes for the access to the
clocking resources. For case study b) it is assumed that the
adversary can integrate a malicious payload in the SoC, but
this can be defeated by bitstream checking techniques [43],
[44]. Power waster applications like the one employed in
case study c) do not require privileges and could not trigger
any compiler warnings. However, their operation could be
disrupted by the activity of other processes in the system
or through the implementation of active leakage-disruption
countermeasures [45], [46]. Most recently, in [47] the authors
have proposed a deep learning approach for the detection of
covert communications. Overall, the study of the effectiveness
of such countermeasures falls outside the scope of this work.
We are concerned with the emulation of intrinsic channels
and covert communication attacks. However, reproducing the
behavior of the countermeasures is a natural future step on
this line of research.

IV. INTRINSIC CHANNELS ON THE PHYSICAL DEVICE

A. The Zynq Ultrascale+ Heterogeneous SoCs

The AMD-Xilinx Zynq Ultrascale+ is an interesting case
study for modern heterogeneous SoCs. We illustrate this archi-
tecture in Fig. 2. These chips feature an application processing
unit (APU), powered by an array of ARM Cortex-A53 cores
(A530 and A531 in Fig. 2), and a real-time processing unit
(RPU), which includes an array of ARM Cortex-R5F cores
(R50 and R51 in Fig. 2). Each one of these processing
units has independent instruction and data caches, and up
to L2 cache in the case of the APU. The main memory
of the SoC is an external DDR unit, driven by an on-chip
memory controller. There is also a smaller on-chip memory
which can be shared by the different cores, and a memory
management unit which performs the necessary assignments.
These boards also feature a nucleus of programmable logic: an
array of reconfigurable elements and silicon accelerators. The
interconnection between processors and accelerators follows
the AMBA-AXI specification through two main switches. The
reconfigurable fabric of the SoC can implement a wide range
of customized accelerators. For our work this means that
we can use this module to create internal sensors based on
reconfigurable logic.

In Fig. 2, in blue, we illustrate part of the clock tree
in the Zynq Ultrascale+ SoC. A main reference clock
(PSS_REF_CLK) is used to source the five main PLLs of the
architecture (RPLL, IOPLL, APLL, VPLL, DPLL). To gen-
erate the PLL output, the reference clocks are multiplied by
a constant. The resulting oscillators are then divided by one
or two six-bit constants to produce specific clock domains for
the distinct parts of the architecture.

From Fig. 2 it can also be seen how there are three main
power domains in these Ultrascale+ SoCs. The Low Power

Fig. 2. The architecture of the AMD-Xilinx xczu2cg. The clock tree and
power domains of these platforms are also illustrated. This image is adapted
from [9].

Domain will source the RPU, the peripherals, the on-chip
memory, and one of the interconnect switches. The Full Power
Domain will supply the APU, the memory management unit,
the memory controller, and the central interconnect switch.
The PL Power Domain will supply the reconfigurable fabric.
The goal for this separation of power domains is to improve
the system’s energy efficiency by allowing it to shut down
complete areas of the SoC when not used. For the low and full
power domains, the five main PLLs can be used to generate
clocks. For the FPGA, only three of the PLLs (RPLL, IOPLL,
DPLL) can be used to generate the four clocks available to the
fabric (from the processing system, since it is also possible to
use external clocks.)

Ultrascale+ SoCs allow the use of the RPU and the APU
independently. The cores in the RPU would normally run a
real-time operating system [48] or standalone applications.
The cores in the APU, on the other hand, are more com-
plex and their full potential can best be drawn by a kernel,
like Linux. In this work, we presume that both clusters
can be operated independently. We implement bare metal
applications in the RPU and Linux-based applications in the
APU. These chips also feature a power management unit
(PMU) which oversees the monitoring and configuration of the
PDN. The PMU features anti-tampering characteristics which
increase the difficulty of modulating the power supply of the
chip. In this regard, as illustrated in Fig. 2, the SoC under
analysis uses multiple voltage levels to source its different
components.

In practice, however, the power domains employ different
power supplies but some are shared (Fig. 3a). Moreover,
depending on the prototyping board just one or two power
management integrated circuits (PMIC) may be used to gen-
erate the different power levels required by the chip (Fig. 3b).
This connection strategy found in several commercial boards

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 3. The power distribution network of the TE0802.

creates as a result a strong eclectic coupling between the differ-
ent components of the SoC. Thus, facilitating the instantiation
of intrinsic power channels.

B. Frequency Modulation in the Zynq Ultrascale+

The frequency of the different clocks can be modified
by editing their multiplier or divider values. The multiplier
register will affect the PLL output, and in turn modify the
frequency of all the SoC components which rely on that
given oscillator. In contrast, the divider registers are specific
for a given clock and modifying them will only modify the
frequency of a particular clock signal. There are clocks which
use one and two dividers. These are stored as a six-bit section
of a 32-bit register. To modify the frequency of an oscillator it
is then necessary to edit the contents of these control registers.

At low level, like in bare-metal applications, the control
registers of the SoC can be edited through direct access
operations. For example, using the xil_io library. However,
to edit one of these control registers it is necessary to edit mul-
tiple security and configuration registers so that the frequency
change is enacted. Furthermore, the application performing the
operation must have access rights.

In the presence of a kernel, the modulation of frequency can
be simplified with the help of drivers which allow to request
the modification of specific clocks. For example, the processor
clocks (by using the cpufreq driver of Linux) or the FPGA
clocks (by using the fclk drivers of Xilinx). This scenario
is more favorable for attackers since the complexity of the
kernel may allow them to hide malicious applications more
easily.

C. Frequency Detection

A frequency detector can be a circuit built from logic
elements which can measure the variation in the propagation
delay of a digital signal [49]. These fluctuations are gener-
ated from changes in the power dissipation, electromagnetic
coupling, and thermal fluctuations of the circuit. For this
reason, such sensors have been employed to perform internal
monitoring of the chip [50], [51], [52]. The main types of

such sensors are based in time-to-digital converters and ring
oscillators. The former are more accurate and provide greater
resolution in the sampling but must be calibrated precisely and
placed directly in the platform. In contrast, sensors based in
ring oscillators (ROS) do not require any precise placement
directives and provide sufficient information when enough
samples are available.

Our work employs ring oscillator-based sensors due to their
simplicity [51], [52]. In these architectures, the ring oscillator
provides a consistent oscillatory wave whose period fluctuates
according to the nominal operation of the circuit. This signal is
then used to source a counter, which is subsequently sampled
by an external clock to produce a measurement. The number of
counts retrieved in a sampling period is thus correlated to the
frequency of the ring oscillator, and in turn to the operation of
the circuit. However, we are more interested in the sampling
clock of the sensor. By modifying this signal, we can obtain
an offset in the measurements due to the periodicity of the
small counter.

The frequency fluctuation can be detected from the FPGA
by observing the output of the sensor. Or from the processors,
by reading the value of the divider registers. In this work
we focus on the interaction between the processors and the
programmable logic, so we prefer the latter method to monitor
the frequency variation in the SoC. For this, we created a
simulation model of the sensor which can produce a digital
output as response to the frequency change.

D. Characterization of the System

To understand the limits of the proposed intrinsic channels
we first studied the behavior of a PLL in the target platform.
For all the proposed cases we used the IOPLL which can be
used to source clocks in all the power domains of the SoC.
Using a digital oscilloscope we sampled the time-response of
these components when requesting a change in the output fre-
quency. The oscilloscope was connected to a physical output
of the prototyping board (PMOD), a TE0802 manufactured by
Trenz electronic. The GPIOs are routed from the PS through
the FPGA to the chip ports, then through the PCB to the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



BOSSUET AND LARA-NINO: POWER AND FREQUENCY INTRINSIC CHANNELS ON gem5 7

Fig. 4. The experimental setup used to characterize the frequency intrinsich
channels in the Zynq Ultrascale+ SoC. 1) The ARM Cortex-R5F produces
a digital trigger to signal the start of the operation. 2) It request a frequency
change by updating the dvider of the IOPLL. 3) The IOPLL updates its output
frequency as response to the processor’s request. 4) The internal sensor detects
the frequency change and produces an output offset.

physical PMODs powered with a constant voltage of 3.3V.
The FPGA itself allows for different voltage levels, but the
physical outputs in the I/O Bank 26 used by the TE0802
only admit V cco = 1.8 V (LVCMOS18). As reference,
we generated a digital trigger through the processor’s GPIOs.
We then measured the width of these pulses. We also captured
the activation of the MSB bit in the output of the delay sensor.

The experimental setup is illustrated in Fig. 4. We captured
the behavior of the IOPLL output as a response to a change
request from a bare-metal application which produces a digital
trigger and the most-significant bit in the sensor output. Our
intention was to measure the response time of the IOPLL and
of the sensor to find the channel’s minimal latency. Our find-
ings suggest that the minimum response time for a frequency
change is approximately 600ns. That is the time elapsed
from the moment one of the RPU cores modifies the register
until the output of the sensor is updated. Therefore, assuming
that we could transfer one bit per transition, the maximum
bandwidth for the proposed channels would be 1.6 MBps.
Note that this is the theoretical limit, without considering the
necessary delay to achieve a consistent transmission (low-error
rate).

With the configuration shown in Fig. 4 we are not able
to test for additional GPIO or PMOD voltage levels on the
TE0802. However, we suspect that the time response of the
GPIOs would be different with other conditions (i.e., in other
prototyping boards). In particular, the frequency response of
the outputs might differ, which could impact the accuracy of
the measurement of interest: the delay in the PLL response.
Empirically, we verified that the PMODs of the TE0802
are accurate up to 100MHz. This gives us a resolution of
10ns. That is, 1/60th of the perceived response delay (600ns).
Therefore, we believe that the impact of the prototyping
board is not large enough to impede achieving an accurate
characterization of the PLLs in the Zynq Ultrascale+ SoC.

We also characterized the ROS which would be used to
detect the frequency change. For this, we implemented a
matrix of 64 sensors and sampled it using different fre-
quencies. Results for this experiment are provided in Fig. 5.
It was possible to clearly differentiate between the multiple
sample windows, with greater separation between 100, 150,
and 300 MHz. This analysis was useful to document the

Fig. 5. Characterizing the output of the ROS as a function of the sampling
frequency. The selected frequencies range from 375 MHz (dividing the output
of the IOPLL at 1.5 GHz by four) to 75 MHz (dividing the same oscillator
by 20). Each observation consists of 40,000 samples.

sensor’s behavior and create a model which could be used
in the simulation.

E. Intrinsic Channels Within the APU

The first intrinsic channels we investigated are those that
can be implemented within the APU of the platform. That
is, we assume that a malicious application or driver being
executed in one of the cores can transfer some information to
a receiver in a different part of the APU. This kind of attack
might be interesting for applications which delegate one or
more of the cores to perform trusted computations.

A regular Linux kernel, if configured properly, will feature
the cpufreq driver which allows to modify the frequency
of the underlying system. This can be leveraged to implement
an intrinsic channel between different cores controlled by the
same operating system. We used this driver, available in the
Linux distribution of AMD-Xilinx, to modify the processor
clock of the APU. This oscillator is used by all the cores plus
other components in this system. Therefore, through frequency
modulation it is possible to transfer information between
various parts of the APU. To demonstrate the feasibility of
this attack, we created a sender program and a receiver
program. They were cross-compiled and loaded in the file
system using Petalinux. Subsequently each application was
executed in different cores of the APU. We transmitted the 16-
byte message “This is a covert secret message!” encoded with
a straightforward modulation strategy of Alg. 1. This approach
is viable since the cpufreq driver in Zynq Ultrascale+
platforms offer four frequency values.

In Fig. 6a we illustrate some of the samples captured by
the receiver application. In this case, the transmitting and
receiving delays should be similar since both applications
are running in Linux and both perform the task of opening
and writing/reading a file, which is slow. So, to increase the
number of samples being retrieved and thus reduce the error
rate we added a delay of 350 µS after the transmission of each
symbol.

F. Intrinsic Channels Between the APU and the FPGA

The second type of intrinsic channels under evaluation were
those that originate from an application executed in the APU

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Algorithm 1 Frequency Modulation for Low-Width Windows
Require: f1, f2, f3: three frequency symbols.

for byte in message do
for bit in byte do

if bit then
fclk ← f1

else
fclk ← f2

end if
fclk ← f3

end for
end for

and target the reconfigurable fabric. Our intended receiver was
the delay sensor based on ring oscillators. To transmit the
data, we targeted one of the clocks sourcing the FPGA from
the processing system. This signal was used as the sampling
clock for the delay sensor.

In the case of the Linux distribution of AMD-Xilinx, the
kernel also features a set of APIs (/sys/devices) which
allow to modify the frequency of the FPGA clocks. These
drivers use configuration files which can be managed from
the application space. Thus, performing the modification of
an FPGA oscillator is a matter of locating the adequate file,
opening it, modifying its contents, and closing it again (the
file must be closed for the change to be detected).

We applied a straightforward modulation strategy with a
C-language application in Linux. The receiver was also a
ring-oscillator based delay sensor implemented in the FPGA.
We could read its output through an AXI channel. In this
case, the sampling frequency of the FPGA was greater than
the sending rate, so we removed the additional delay after
the transmission of the symbols used in the previous attack.
Instead, we used a 10 µS delay in the acquisition of samples.
In Fig. 6b we illustrate the results for this experiment.

From this attack we could appreciate how the output of
the delay-sensor fluctuated in function of the operation of
the SoC, but also of the sampling rate. For a sampling
frequency of 100 MHz, we observed a mean output value of
450 counts, for 150 MHz a mean output of 540 counts, and
for 300 MHz a mean output value of 770 counts. Whereas
the “noise” produced by the sensor showed a variation of ±
10 counts. We did not implement anything besides the sensor
in the FPGA, thus we assumed there were no data-dependent
components in the experiment. Nonetheless, there ought to be
some influence from the activity of the processor system, but
it was deemed negligible. In this experiment we could also
observe how the transmission delay was far greater than the
sampling rate, which was reduced with an additional sampling
delay. The limiting factor being the requirement for the sender
to perform frequency modulation through the fclk API.

As discussed before, the FPGA clocks can also be modified
by overwriting the value of their dividers in a register. This can
be achieved in Linux by mapping the control registers of the
SoC through the mmap utility. We used this approach to create
a new sender application which would obtain access to the
CTRL_APB registers, and to the PLX_REF_CTRL registers

Fig. 6. Frequency intrinsic channels in the Zynq Ultrascale+ SoC. The
frequency-modulation is performed according to Alg. 1 with frequency
symbols selected from Fig. 5. These images appeared in [9].

which contain the dividers for the FPGA clocks. We used the
same modulation strategy as in previous experiments, added
a small transmission delay, and removed the sampling delay
from the previous experiment. The results are illustrated in
Fig. 6c.

G. Power Intrinsic Channels

Some authors [25] have documented the feasibility of covert
data transmissions over power intrinsic channels. These attacks
leverage the characteristic of SoCs of sharing a common
power distribution network. If the system under attack includes
programmable voltage regulators, then these might be used
to perform voltage scaling. Such regulators are normally
connected to the processor through I2C buses. Therefore,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



BOSSUET AND LARA-NINO: POWER AND FREQUENCY INTRINSIC CHANNELS ON gem5 9

Fig. 7. A malicious application which stresses the core to transfer data.

an adversary with access to this bus could mount such attacks.
In Linux systems, the DVFS controller modifies not only
the frequency but also the voltage of the core, this has
been documented in [10]. The kernel may switch between
operating performance points predefined by the manufacturer.
In this case, the adversary can obtain root privileges in the
kernel and modify the system voltages to perform covert data
transmission. Alternatively, a malicious application running on
the kernel space can stress the processor to induce frequency
fluctuations. This eliminates the assumption of granting root
privileges to the adversary.

In a general sense, that is, even without the availability of a
DVFS system, when a malicious application stresses the core,
its behavior should have an impact on the power footprint of
the system. The work in [25] demonstrated this phenomenon
by employing power wasters in the FPGA. However, gaining
access to the programmable logic and remaining undetected
is challenging for an adversary. Instead, in our work, we have
created a malicious transmitter application which simply per-
forms a series of arithmetic operations. The application was
coded in C and loaded into the kernel using Petalinux. The
stress payload is presented in Fig. 7. This routine is called
with a variable number of iterations (iter) to induce stress
periods of variable length. The duration of such periods is
then used to encode information. This modulation algorithm
is detailed in Alg. 2. This modulation strategy allows to
parameterize the activation and rest periods of the encoding
which could potentially be used to optimize the transfer rate
of the intrinsic channel. As there is no need to access any
system files or registers then the limit is simply the recovery
time of the capacitive elements in the board.

We studied the impact of the sender on the platform we
monitored the main power supply of the board using a digital
oscilloscope. The results are provided in Fig. 8. We applied
a basic filtering of the power trace, and the activity of the
transmitter became evident. This implies that the activity of
the processor system has an impact on the main power supply,
and therefore on the SoC as a whole. This attack highlights the
challenge in mitigating intrinsic channel attacks. An adversary
does not require any special privileges to induce a noticeable
effect on the computing device.

Algorithm 2 Voltage Modulation for a Power Intrinsic Chan-
nel
Require: n a given number of iterations
Require: t a given wait time

for byte in message do
for bit in byte do

if bit then
stress(2n)

else
stress(n)

end if
wait(t)

end for
end for

Fig. 8. The transmission of a stream of bits over a power intrinsic channel.

V. INTRINSIC CHANNELS ON GEM5

A. DVFS in gem5

The gem5 simulator offers support for dynamically scaling
the frequency of the system and its voltage levels. This is
achieved by modeling an energy controller which performs
frequency modulation. The registers of the EnergyCtrl
SimObject can be read from a bare-metal application or
through drivers in the Linux kernel. While this energy con-
troller also performs voltage scaling, the simulator does not
provide a regulator SimObject to monitor this value.

The hardware components (PLLs, voltage regulators) of
the system are modeled using software scripts (SimOb-
jects): EnergyCtrl, DVFSHandler, ClockDomain.
The ClockDomain SimObject allows to define a clock
domain with a frequency number and connect it to a compo-
nent of the design. The EnergyCtrl and DVFSHandler
SimObjects allow to apply a clock domain frequency (the
clock source) according to the performance level chosen by
the driver, if the platform is simulating a Linux environment,
or according to the register contents if the system is bare-metal.

To use the DVFS system in the gem5 simulator, the user
must integrate the three SimObjects described, enable the use
of the DVFSHandler, compile the Linux kernel with the
CPUfreq driver and define the clock sources in the device
tree. Then, the simulation script must also specify the oper-
ating performance points for the platform. Recall that these
are pre-defined frequency/voltage pairs. These parameters can
be either defined in the simulation script or provided as

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

arguments. The latter approach allows for greater flexibility
and is hence favored.

B. The cpufreq Driver and gem5

Emulating Linux-based operating systems like Ubuntu is a
well understood process in gem5. The community has com-
piled a large set of binaries which can be used to run complete
simulations.1 The sources for the kernel and other binaries
can also be obtained from online repositories.2 However, the
simulator offers the potential to use just any generic kernels
and binaries for any purpose that the users might be interested
in. For example, if we want to emulate an Zynq Ultrascale+
platform we would seek to use the AMD-Xilinx binaries,
including their distribution of Linux.3

It is trivial to compile a generic Linux and load it into
a gem5 simulation. However, when it comes to DVFS,
there are two critical components missing on regular ker-
nels which are required by gem5. One is an extension
of the cpufreq driver to include the gem5 energy con-
trol and the gem5 multi-core utilities. The other is an
extension of the clk driver to include the gem5 energy
control clock. To emulate the proposed attacks, it was
first necessary to “patch” the kernel with the missing
drivers. After editing the kernel’s source, it is necessary to
ensure that the CONFIG_ARCH_GEM5_ENERGY_CTRL and
CONFIG_ARM_GEM5_MULTI_CLUSTER_CPUFREQ are set
in the configuration file. We verified that applying this strategy
to the official Linux kernel as well as the AMD-Xilinx Linux
kernel allows to generate kernel binaries which can be used
to emulate DVFS in gem5. The kernels were patched with
source codes from the publicly available gem5 repositories.2

The method for patching a Linux kernel is fully detailed in
our public repository:

https://github.com/CarlosAndresLARA/patches

C. The Virtual Platform

The APU of the Zynq Ultrascale+ SoC is an array of
Cortex-A53 cores clocked at a top frequency of 1.3 GHz.
Each one of these cores has independent instruction and data
caches and shares a common L2 cache and DDR memory. Our
methodology aims at reproducing a virtual platform based on
this board as close as possible with common gem5 compo-
nents. In theory, any computing device can be emulated with
gem5, but the development time required may vary. In Fig. 9
we illustrate the components of the virtual platform used in
our work.

The first step to construct the simulation was to compile
the gem5 simulator targeting the ARM architecture in opti-
mized mode. We then created a full-system simulation script
based on a multi-core architecture. We instantiate a variable
number of cores with fixed instruction and data caches,
as well as a shared L2 cache. To emulate the Cortex-A53 we
opted for the CpuCluster SimObject with the MinorCPU

1https://www.gem5.org/documentation/general_docs/fullsystem/guest_
binaries

2https://gem5.googlesource.com
3https://github.com/Xilinx/linux-xlnx

Fig. 9. The virtual platform emulated with gem5.

model. The caches were emulated using the L1_ICache,
L1_DCache, and L2Cache SimObjects. The voltage and
frequency domains were provided through command line
arguments, using the values available for the Zynq Ultrascale+
SoCs. To enable the emulation of the trusted firmware we
used the VExpress_GEM5_Foundation machine type.
We relied on the automatic generation of gem5 to source the
device-tree blob. As binaries, we used one of the bootloaders
shipped with the gem5 simulator. The kernel was our custom
Linux binary. We used an Ubuntu image found online1 and
edited it by manually cross-compiling and packaging the attack
applications.

We created a custom SimObject and added it to gem5 to
emulate the behavior of the delay sensor in the FPGA. This
module would read the control registers of the EnergyCtrl
SimObject and produce an output through a debug flag. The
output was modeled using our observations from Fig. 6b
as a base offset according to the frequency plus a ±10
random component. At this point we did not expand on the
data-dependent component of the sensor output, but it would
be interesting to implement more complex models as function
of the state of different SimObjects in the simulation, for
example the contents of the caches.

D. APU-to-APU Intrinsic Channels

The first intrinsic channel to be emulated was straightfor-
ward. We cross-compiled the sender and receiver applications
and loaded them into the file system. Then we launched the
simulation and started the applications. The results are shown
in Fig. 10a. The main challenge to emulate the results from
Subsection IV-E was determining the transmission delay of the
sender. We observed that while the physical cores can maintain
a constant delay due to the availability of a real-time clock,
the delays in gem5 depend on the operating frequency of the
processor.

E. APU-to-FPGA Intrinsic Channels

Next, we emulated the intrinsic channels between a Cortex-
A53 core and the delay sensor SimObject. For this scenario
we modified the sender to also transfer some customization
parameters to the receiver, for example the frequency symbols
that would be used and the transmission delay. The results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



BOSSUET AND LARA-NINO: POWER AND FREQUENCY INTRINSIC CHANNELS ON gem5 11

Fig. 10. Frequency intrinsic channels emulated with gem5. These images
appeared in [9]. These results are associated with the experimental results
shown in Fig. 6.

are shown in Fig. 10b. In this case, the main challenge was
to identify the target registers since gem5 does not include
FPGA clocks. Instead, the EnergyCtrl SimObject allows to
create multiple clock domains and assign a frequency to each
domain through a couple of control registers. The delay-sensor
SimObject was simply pointed to these registers. Thanks to
the parametrization of our system, it was easier to achieve the
desired results. We could adjust the transmission delay from
the live simulation until the number of samples per bit was
equivalent to the results observed in Subsection IV-F.

Finally, this dynamic modulation strategy was used to
replicate the attacks where the kernel application has direct
access to the registers. These results are illustrated in Fig. 10c.
In this case we show more data and demonstrate the decoding
of the message. As it can be noted, the difference in the
transmission delay can accumulate over many samples causing

the transmission rates between the real experiments and the
emulation to diverge.

F. Emulating Power Intrinsic Channels

gem5 is a cycle-accurate architectural simulator. Therefore,
there is a big question of whether it is possible to approximate
physical behaviors with gem5. The most evident magnitude
would be to approach the power footprint of the system
from the simulation activity. This has been studied in [10]
with moderate success. In that work, the authors intended to
investigate the statistical relationship between the simulation
activity and the application data. And the emulation of power
intrinsic channels by observing the simulation statistics while
the operating system processes a large payload (e.g. the AES
trusted application found in OP-TEE). We complement that
work by showing that gem5 can indeed emulate power intrinsic
channels even with smaller applications. And that it is possible
to reproduce the behavior observed in a physical device.

We employed the virtual platform described in
Subsection V-C and enabled the statistics reporting of
gem5 as described in [10]. We then implemented the
malicious application used in Subsection IV-G in the virtual
environment. We set a statistics dump rate of 1e − 6 and
fixed reference values for n, t . We also disabled the DVFS
system to remove its influence. We limited the scope of
our analysis to the statistics associated with the processor
system’s activity. Some of these observations are illustrated
in Fig. 11a. As can be noted, statistics like the instructions
per cycle, the activity of the data cache, and the type of
committed instructions can indeed provide insights on the
workload of the operating system.

We assume that the statistics reported by gem5 have a
physical cost. In the physical device these statistics represent
a given number of operations which have taken place in the
device. These operations involve some energy expenditure.
Therefore, we can approximate the power footprint of the
SoC with a function of different statistics and some gain
constants. For example, a basic power model like the one
described in [10] can be used to approximate the dynamic
power of the virtual platform. This model is presented in
Fig. 11b. Normally, from a physical device we have access
to the product of all the “implicit” statistics of the SoC. But
with gem5 the process is inverted in the sense that we have the
fine-grained statistics, and we seek to approximate the power
model. The results from Fig. 11b are meant to be analogue
to those in Fig. 8. In this case we can also observe a small
timing discrepancy which can be reduced by adjusting the t
parameter in the virtual platform.

VI. DISCUSSION AND PERSPECTIVES

gem5 is an interesting platform for the analysis of intrinsic
channels. It enables the emulation of the behavior of soft-
ware routines and custom hardware modules. The latter are
described as python classes which can define their behavior
using multiple programming languages. For example, in this
work we have emulated a Hardware Trojan to function as a
receiver in our covert communication attacks. In this sense,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Fig. 11. A power intrinsic channel emulated with gem5. This result is associated with the experimental result shown in Fig. 8.

gem behaves as a logical emulator which allows us to verify
the correctness of the system. However, at a lower level
it also lets us approach the system’s physical behavior. A
gem5 simulation produces statistics which register the status
of the architecture at regular intervals. As shown in [10], these
statistics might reveal insights on the physical behavior of an
equivalent device. Nonetheless, there are multiple limitations
which ought to be addressed to improve the usability of gem5
for the emulation of intrinsic channels and other physical
attacks.

One of the main challenges for the use of gem5 is the
slow learning curve for beginners. The gem5 project is quite
active, but the documentation lags at times. The “know how”
about certain functionalities might get lost as a result and
new users might be left without help. Additionally, some
changes adopted by the main gem5 distribution are quite
large but not quite thorough. This can render years of parallel
development outdated. Thus, modules that rely on a particular
version of the kernel can have limited usability. To prevent
this problem, we have avoided modifying the platform as
much as possible. However, even basic simulation scripts can
become obsolete given the dynamicity of the gem5 commu-
nity. The statistics-reporting of the simulator is affected by
these problems. Being one of the earliest components of the
system it has remained operational through many iterations of
changes. However, as statistics are not usually harvested in
large volumes the dumping mechanism itself remains quite
rudimentary. Some authors have opted for harvesting data
using the applications themselves or the debug utilities of the
kernel [36]. But these approaches are useful when we know
what exactly it is that we are looking for. Indeed, leakage
verification and analysis benefit from “all” of the information
to conduct a holistic study.

Another interesting perspective in the use of gem5 is the
emulation of countermeasures. Once the attacks are known,
for example as reported in this paper, then it is possible to
propose countermeasures. gem5 would remove the technology
dependency which so often limits the reproducibility of results.
The results obtained in this work provide confidence that
the results shown in the simulator would also apply to the
physical device. For example, logical protections seeking to

limit the interaction between the kernel space and the hardware
could be implemented simply by changing the simulation
binaries. Or leakage randomization strategies could be studied
by constructing power models from the simulation statistics.

Overall, gem5 offers great potential with its modularity. It is
simple to create virtual models of hardware components and
to include them into a full system simulation. This enables
the analysis of individual modules in a larger context such a
SoC with a full operating system. Nonetheless, approaching
the behavior of hardware elements is always a challenge. For
example, a simple solution would be to create SimObjects
which produce statistics based on their input parameters.
Power leakage could be approached through the Hamming
weight of some function of these data. But there are better
methods for generating synthetic data if we already know the
model. Indeed, the relevance of employing automated tools in
the analysis of physical attacks is discovering unintended or
hidden behaviors. A potential improvement could be to read
hardware descriptions from netlists or to support simulation
activity files to replicate the functionality of circuits.

VII. CONCLUSION

In this paper, we have presented our results regarding the
use of gem5 to emulate the covert transmission of data on
heterogeneous SoCs. Our results illustrate that despite the
differences between the real and the emulated platform, the
emulation is flexible enough to allow for parametrization of
different components and values. This can bring the results
closer to the expected observations.

The proposed methodology allows to study the implemen-
tation of power and frequency-based intrinsic channels in
ARM systems. However, given the flexibility of gem5 it is
simple to modify the parameters of the system to emulate a
different platform. In this case we only need to adjust the
response time of the virtual models to account for technology
variations. The gem5 simulator allows to emulate any kernel
which is to be run in the physical device (given enough
processing resources) hence the interaction of the same drivers
can be replicated. Furthermore, the simulator offers support for
different processor architectures such as RISC-V so it would

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



BOSSUET AND LARA-NINO: POWER AND FREQUENCY INTRINSIC CHANNELS ON gem5 13

also be possible to emulate non-ARM SoCs and study the
proposed attacks in these platforms.

In this paper, we filled a gap in the state of the art by
emulating power intrinsic channels and demonstrating that the
simulation’s behavior approaches that of a physical device.
We have also demonstrated that an adversary may leverage
the simple behavior of an unprivileged application to mount
power intrinsic channels on the target device. This removes
many of the assumptions found in the literature.

REFERENCES

[1] L. Johnsson and G. Netzer, “The impact of Moore’s law and loss of
dennard scaling: Are DSP SoCs an energy efficient alternative to x86
SoCs?” J. Phys., Conf. Ser., vol. 762, Oct. 2016, Art. no. 012022.

[2] L. Eeckhout, “Is Moore’s law slowing down? What’s next?” IEEE Micro,
vol. 37, no. 4, pp. 4–5, Jul. 2017.

[3] C. Kachris, B. Falsafi, and D. Soudris, Hardware Accelerators in Data
Centers, 1st ed., Cham, Switzerland: Springer, Aug. 2018.

[4] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of cloud FPGAs:
A survey,” 2020, arXiv:2005.04867.

[5] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and
C. J. Rossbach, “Sharing, protection, and compatibility for reconfig-
urable fabric with AmorphOS,” in Proc. 13th USENIX Symp. Operating
Syst. Design Implement. Berkeley, CA, USA: USENIX Association,
Oct. 2018, pp. 107–127.

[6] A. Clark, “Xilinx machine learning strategies for edge,” Xilinx,
San Diego, CA, USA, 2018. [Online]. Available: https://web.archive.
org/web/20220407054353/https://www.xilinx.com/publications/events/
machine-learning-live/san-diego/xilinx_machine_learning_strategies_
for_edge.pdf

[7] S. Chaudhuri, “A security vulnerability analysis of SoCFPGA archi-
tectures,” in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf. (DAC),
Jun. 2018, pp. 1–6.

[8] L. Bossuet and C. A. Lara-Nino, “Advanced covert-channels in modern
SoCs,” in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),
May 2023, pp. 80–88.

[9] L. Bossuet and C. A. Lara-Nino, “Emulating covert data transmission
on heterogeneous SoCs,” in Proc. Asian Hardw. Oriented Secur. Trust
Symp. (AsianHOST), Dec. 2023, pp. 1–7.

[10] L. Bossuet, V. Grosso, and C. A. Lara-Nino, “Emulating side channel
attacks on gem5: Lessons learned,” in Proc. IEEE Eur. Symp. Secur.
Privacy Workshops (EuroSPW), Jul. 2023, pp. 287–295.

[11] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache attacks on mobile devices,” in Proc. 25th
USENIX Secur. Symp. (USENIX Security) Berkeley, CA, USA: USENIX
Association, Aug. 2016, pp. 549–564.

[12] P. Mata and N. Rao, “Flush-reload attack and its mitigation on an
FPGA based compressed cache design,” in Proc. 22nd Int. Symp. Quality
Electron. Design (ISQED), Apr. 2021, pp. 535–541.

[13] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush:
A fast and stealthy cache attack,” in Detection of Intrusions and
Malware, and Vulnerability Assessment. Cham, Switzerland: Springer,
1007, pp. 279–299.

[14] J. Zhang, C. Shen, and G. Qu, “Mex+sync: Software covert channels
exploiting mutual exclusion and synchronization,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 42, no. 12, pp. 4491–4504,
Dec. 2023.

[15] M. Alagappan, J. Rajendran, M. Doroslovacki, and G. Venkataramani,
“DFS covert channels on multi-core platforms,” in Proc. IFIP/IEEE
Int. Conf. Very Large Scale Integr. (VLSI-SoC). Berkeley, CA, USA:
USENIX Association, Aug. 2015, pp. 865–880.

[16] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud
FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,
Feb. 2019, p. 298.

[17] G. Provelengios, C. Ramesh, S. B. Patil, K. Eguro, R. Tessier, and
D. Holcomb, “Characterization of long wire data leakage in deep
submicron FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Program.
Gate Arrays, Feb. 2019, p. 292.

[18] I. Giechaskiel, K. Eguro, and K. B. Rasmussen, “Leakier wires: Exploit-
ing FPGA long wires for covert- and side-channel attacks,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 3, pp. 1–29, Aug. 2019.

[19] C. Ramesh et al., “FPGA side channel attacks without physical access,”
in Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr. 2018, pp. 45–52.

[20] Z. Seifoori, S. S. Mirzargar, and M. Stojilović, “Closing leaks: Rout-
ing against crosstalk side-channel attacks,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, Feb. 2020, p. 197.

[21] A. Fellah-Touta, L. Bossuet, and C. A. Lara-Nino, “Combined internal
attacks on SoC-FPGAs: Breaking AES with remote power analysis
and frequency-based covert channels,” in Proc. IEEE Eur. Symp. Secur.
Privacy Workshops (EuroSPW), Jul. 2023, pp. 281–286.

[22] D. Ziener, F. Baueregger, and J. Teich, “Using the power side channel of
FPGAs for communication,” in Proc. 18th IEEE Annu. Int. Symp. Field-
Program. Custom Comput. Mach., May 2010, pp. 237–244.

[23] C. Marchand, L. Bossuet, and E. Jung, “IP watermark verification based
on power consumption analysis,” in Proc. 27th IEEE Int. Syst.-on-Chip
Conf. (SOCC), Sep. 2014, pp. 330–335.

[24] L. Bossuet, P. Bayon, and V. Fischer, “Electromagnetic transmission
of intellectual property data to protect FPGA designs,” in VLSI-SoC:
Design for Reliability, Security, and Low Power. Cham, Switzerland:
Springer, 1007, pp. 150–169.

[25] D. R. E. Gnad, C. D. K. Nguyen, S. H. Gillani, and M. B. Tahoori,
“Voltage-based covert channels using FPGAs,” ACM Trans. Design
Autom. Electron. Syst., vol. 26, no. 6, pp. 1–25, Jun. 2021.

[26] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Reading between the dies:
Cross-SLR covert channels on multi-tenant cloud FPGAs,” in Proc.
IEEE 37th Int. Conf. Comput. Design (ICCD), Nov. 2019, pp. 1–10.

[27] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “Remote
inter-chip power analysis side-channel attacks at board-level,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2018,
pp. 1–7.

[28] J. Haj-Yahya et al., “IChannels: Exploiting current management mech-
anisms to create covert channels in modern processors,” in Proc.
ACM/IEEE 48th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021,
pp. 985–998.

[29] M. Alagappan, J. Rajendran, M. Doroslovacki, and G. Venkataramani,
“DFS covert channels on multi-core platforms,” in Proc. IFIP/IEEE Int.
Conf. Very Large Scale Integr. (VLSI-SoC), Dec. 2017, pp. 1–6.

[30] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
perils of security-oblivious energy management,” in Proc. 26th USENIX
Secur. Symp. Berkeley, CA, USA: USENIX Association, Aug. 2017,
pp. 1057–1074.

[31] Y. Guo, D. Cao, X. Xin, Y. Zhang, and J. Yang, “Uncore encore:
Covert channels exploiting uncore frequency scaling,” in Proc. 56th
Annu. IEEE/ACM Int. Symp. Microarchitecture, New York, NY, USA,
Oct. 2023, pp. 843–855.

[32] E. M. Benhani and L. Bossuet, “DVFS as a security failure of TrustZone-
enabled heterogeneous SoC,” in Proc. 25th IEEE Int. Conf. Electron.,
Circuits Syst. (ICECS), Dec. 2018, pp. 489–492.

[33] N. Binkert, “The Gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, pp. 1–7, Aug. 2011.

[34] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth, and S. Kaxiras,
“Introducing DVFS-management in a full-system simulator,” in Proc.
IEEE 21st Int. Symp. Modeling, Anal. Simulation Comput. Telecommun.
Syst., Aug. 2013, pp. 535–545.

[35] Y. H. Yassin, M. Jahre, P. G. Kjeldsberg, S. Aunet, and F. Catthoor, “Fast
and accurate edge computing energy modeling and DVFS implementa-
tion in GEM5 using system call emulation mode,” J. Signal Process.
Syst., vol. 93, no. 1, pp. 33–48, Jan. 2021.

[36] Q. Forcioli et al., “Virtual platform to analyze the security of a system
on chip at microarchitectural level,” in Proc. IEEE Eur. Symp. Secur.
Privacy Workshops (EuroSPW), Sep. 2021, pp. 96–102.

[37] Y. Le Corre, J. Großschädl, and D. Dinu, “Micro-architectural power
simulator for leakage assessment of cryptographic software on ARM
Cortex-M3 processors,” in Proc. 9th Int. Workshop Constructive
Side-Channel Anal. Secure Design. Cham, Switzerland: Springer,
2018, pp. 82–98. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-319-89641-0_5

[38] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem, “COCO:
Co-design and co-verification of masked software implementations on
CPUs,” in Proc. 30th USENIX Secur. Symp. Berkeley, CA, USA:
USENIX Association, Aug. 2021, pp. 1468–1469.

[39] D. Walters, A. Hagen, and E. Kedaigle, “SLEAK: A side-channel
leakage evaluator and analysis kit,” MITRE Corp., Bedford, MA, USA,
Tech. Rep. AD1107774, 2014.

[40] B. Sá, J. Martins, and S. Pinto, “A first look at RISC-V virtualization
from an embedded systems perspective,” IEEE Trans. Comput., vol. 71,
no. 9, pp. 2177–2190, Sep. 2022.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[41] J.-Y. Hwang et al., “Xen on ARM: System virtualization using Xen
hypervisor for ARM-based secure mobile phones,” in Proc. 5th IEEE
Consum. Commun. Netw. Conf., Jan. 2008, pp. 257–261.

[42] S. Yazdanshenas and V. Betz, “Quantifying and mitigating the costs of
FPGA virtualization,” in Proc. 27th Int. Conf. Field Program. Log. Appl.
(FPL), Sep. 2017, pp. 1–7.

[43] D. R. E. Gnad, S. Rapp, J. Krautter, and M. B. Tahoori, “Check-
ing for electrical level security threats in bitstreams for multi-tenant
FPGAs,” in Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2018,
pp. 286–289.

[44] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FPGAD
efender: Malicious self-oscillator scanning for Xilinx UltraScale +
FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 13, no. 3,
pp. 1–31, Sep. 2020.

[45] J. Krautter, D. R. E. Gnad, F. Schellenberg, A. Moradi, and
M. B. Tahoori, “Active fences against voltage-based side channels in
multi-tenant FPGAs,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2019, pp. 1–8.

[46] O. Glamoćanin, A. Kostic, S. Kostic, and M. Stojilovic, “Active wire
fences for multitenant FPGAs,” in Proc. 26th Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), May 2023, pp. 13–20.

[47] A. R. Díaz-Rizo, A. E. Abdelazim, H. Aboushady, and
H.-G. Stratigopoulos, “Covert communication channels based on
hardware trojans: Open-source dataset and AI-based detection,” in
Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), May 2024,
pp. 101–106.

[48] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha,
“Analysis of power dissipation in embedded systems using real-time
operating systems,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 22, no. 5, pp. 615–627, May 2003.

[49] G. W. Roberts and M. Ali-Bakhshian, “A brief introduction to time-
to-digital and digital-to-time converters,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 57, no. 3, pp. 153–157, Mar. 2010.

[50] I. Vornicu, R. Carmona-Galán, and Á. Rodríguez-Vázquez, “Arrayable
voltage-controlled ring-oscillator for direct time-of-flight image sensors,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 11, pp. 2821–2834,
Nov. 2017.

[51] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel
attacks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 229–244.

[52] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. L. Moundi, and F. Olivier,
“Remote side-channel attacks on heterogeneous SoC,” in Proc.
18th Smart Card Res. Adv. Appl. Conf. (CARDIS). Cham,
Switzerland: Springer, Mar. 2020, pp. 109–125. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-42068-0_7

Lilian Bossuet (Senior Member, IEEE) received the
M.Sc. degree in electrical engineering from INSA,
Rennes, France, in 2001, and the Ph.D. degree in
electrical engineering and computer sciences from
the University of South Britanny, Lorient, France,
in 2004. Since 2017, he has been a Professor with
Université Jean Monnet Saint-Étienne, where he is
currently the Head of the Computer Science Depart-
ment, Hubert Curien Laboratory. He is also the Head
of the Secured Embedded Systems and Hardware
Architecture Group, Hubert Curien Laboratory. His

main research interests include hardware security, security of embedded
systems, IP protection, PUF design and characterization, secure-by-design
crypto-processor, and reconfigurable architecture. He has published more than
200 refereed publications in these areas.

Carlos Andres Lara-Nino received the master’s
and Ph.D. degrees in computer sciences from CIN-
VESTAV, Mexico, in 2016 and 2020, respectively.
From 2021 to 2024, he was a Post-Doctoral Fellow
with the Hubert Curien Laboratory, Jean Monnet
University, and CNRS, France. He is currently a
Researcher with the Security and Privacy Research
Group (CRISES), Universitat Rovira i Virgili, Spain.
His research interests include digital systems design,
data processing with reconfigurable hardware, infor-
mation and hardware security, and cryptography.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


