
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

Advanced Quantization Schemes to Increase
Accuracy, Reduce Area, and Lower Power

Consumption in FFT Architectures
Mario Garrido , Senior Member, IEEE, Víctor Manuel Bautista , Alejandro Portas, and Javier Hormigo

Abstract— This paper explores new advanced quantization
schemes for fast Fourier transform (FFT) architectures. In pre-
vious works, FFT quantization has been treated theoretically or
with the sole aim of improving accuracy. In this work, we go one
step beyond by considering also the implications that quantization
schemes have on the area and power consumption of the
architecture. To achieve this, we have analyzed the mathematical
operations carried out in FFT architectures and explored the
changes that benefit all the figures of merit. By combining or
alternating truncation and rounding, and using the half-unit
biased (HUB) representation in the different computations of
the architecture, we have achieved quantization schemes that
increase accuracy, reduce area, and lower power consumption
simultaneously. This win-win result improves multiple figures of
merit without worsening any other, making it a valuable strategy
to optimize FFT architectures.

Index Terms— Fast Fourier transform (FFT), half-unit biased
(HUB) representation, accuracy, single-delay feedback (SDF).

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most crucial
signal-processing algorithms. It is used in a wide range of

applications in areas such as communication systems [1], [2],
[3], [4], radio astronomy [5], [6], [7], and medical imaging [8],
[9], [10].

Over the last 20 years, numerous hardware FFT architec-
tures have been proposed. The main design goals have been
to reduce the area of the FFT and increase the throughput.
On the one hand, the area has been reduced by presenting
new architectures with more efficient use of the hardware
resources [11], by implementing the rotators as shift-and-add
operations [12], and by allocating these rotators in such a

Manuscript received 4 March 2024; revised 26 April 2024 and 27 May
2024; accepted 27 June 2024. This work was supported in part by
MCIN/AEI/10.13039/501100011033 and “ERDF A Way of Making Europe”
under Project PID2021-126991NA-I00, in part by European Union Next
Generation EU/PRTR under Project TED2021-131527B-I00, in part by the
Fondo Europeo de Desarrollo Regional under Grant UMA20-FEDERJA-059,
and in part by MCIN/AEI/10.13039/501100011033 and “ESF Investing in
Your Future” under Grant RYC2018-025384-I. This article was recommended
by Associate Editor L. Gan. (Corresponding author: Mario Garrido.)

Mario Garrido, Víctor Manuel Bautista, and Alejandro Portas are
with the Department of Electronic Engineering, ETSI de Telecomuni-
cación, Universidad Politécnica de Madrid, 28040 Madrid, Spain (e-mail:
mario.garrido@upm.es; victor.bautista@upm.es; alejandro.portas.fernandez@
alumnos.upm.es).

Javier Hormigo is with the Department of Computer Architecture, Univer-
sidad de Málaga, 29071 Málaga, Spain (e-mail: fjhormigo@uma.es).

Digital Object Identifier 10.1109/TCSI.2024.3421348

way that their number and complexity are reduced [13], [14].
On the other hand, the throughput has been increased thanks
to the use of parallel [1], [14], [15] FFT architectures.

Despite the large number of works on low-area or high-
throughput FFT architectures, not so many works in the
literature optimize FFT architectures based on the accuracy
of the computations. Among them, some works deal with the
scaling of the data at the stages of the FFT architecture [16],
[17]. These works allow for a different word length at each
stage of the FFT computation. This makes it possible to choose
the word length profiles that lead to the highest accuracy with
the smallest use of resources. Other works analyze the accu-
racy in real-valued FFTs [18], [19], instead of complex-valued
ones. In other approaches, the accuracy is improved by scaling
the rotation coefficients [20], [21]. In these works, explor-
ing multiple alternatives for the rotation coefficients leads
to more accurate rotations in the FFT. Finally, some works
modify the quantization scheme concerning the conventional
truncation [22], [23], [24]. These works provide solutions that
compensate for the quantization bias by alternating truncation
and rounding, which leads to higher accuracy.

In this work, we analyze new quantization schemes based on
rounding and truncation and incorporate the half-unit biased
(HUB) representation system in the computations. To derive
these new quantization schemes we have looked not only
at the accuracy improvement but also at the impact on the
hardware resources of the architecture. Contrary to previous
approaches, which improve accuracy at the cost of increasing
area and power consumption, we have derived quantiza-
tion schemes that increase the accuracy of the computations
and simultaneously reduce area and power consumption.
To achieve this, we classified the components of the FFT
into several groups: even, odd, first and last butterflies;
and general and trivial rotators. Then, we applied differ-
ent truncation and rounding schemes to them and evaluated
their impact on accuracy, hardware resources, and power
consumption.

Furthermore, we have considered using the half-unit biased
(HUB) representation system. The HUB format is based on
assuming that a logic ‘1’ is appended to the binary numbers
that represent the data. This ‘1’ leads to numbers with one
extra bit. However, this extra bit is not represented in a physi-
cal bit of information. Additionally, in fixed-point designs, the
HUB approach allows for calculating round-to-nearest with no

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0001-5739-3544
https://orcid.org/0000-0002-5077-4210
https://orcid.org/0000-0002-5454-6821

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

additional hardware cost compared to conventional truncation.
This either results in an improvement in accuracy or allows
for reducing the word length and, therefore, the area and
delay of the circuit [25], [26]. In floating-point designs, this
simplification improves the implementation of arithmetic units
directly [27], [28], [29]. Additionally, the HUB format has
been successfully used to improve the accuracy and reduce the
complexity of other signal processing algorithms implemented
in hardware, such as the QR decomposition [25]. However, the
HUB format has not been applied to the FFT. This work is
the first in this line and the first to apply HUB to complex
numbers.

To apply the different quantization schemes to the FFT,
we have considered the single-path delay feedback (SDF)
FFT [11], one of the most widely used FFT architectures. The
SDF is a pipelined FFT architecture that processes one sample
per clock cycle in a continuous flow. This provides a good
trade-off between throughput and area. Despite considering
the SDF FFT architecture for the analysis in the paper, it is
worth realizing that the accuracy of the FFT is independent
of the architecture that we use: As long as the mathematical
calculations, i.e., additions and multiplications, are carried out
using the same quantization scheme, in terms of accuracy it
does not matter if these computations are carried out in series,
as in the SDF FFT [30], in parallel, as in multi-path delay
commutator (MDC) [31], [32], multi-path serial commutator
(MSC) [33], and multi-path delay feedback (MDF) [34] FFTs,
or iteratively, as in memory-based (MB) FFTs [35]. For all of
them, the same quantization scheme leads to the same value
at each output frequency.

Experimental results for a 16-bit radix-22 1024-point SDF
FFT have been carried out to analyze different quantization
schemes. It has been observed that a careful selection of the
quantization scheme results in implementations that achieve
higher accuracy, lower area, and lower power consumption
simultaneously. This represents a win-win situation regarding
accuracy, area, and power consumption. Consequently, explor-
ing quantization schemes becomes a key factor for optimizing
FFT architectures.

Another advantage of the proposed approach concerning
previous theoretical works is that our work is based on actual
experimental results. This provides exact results from the
architectures and allows for including other figures of merit
in the analysis, such as area and power consumption, which
is impossible in a theoretical quantization analysis. This way,
this paper offers a global study that integrates all the figures
of merit of all analyzed architectures.

This paper is organized as follows. Section II reviews the
HUB format and the SDF FFT architecture. In Section III,
we show how rounding, truncation, and the HUB format are
applied to the different operations in the FFT. Section IV
describes the quantization schemes we analyzed in this paper.
Section VI provides the experimental results for the different
configurations and analyzes them. In Section VII, we ana-
lyze the influence of other FFT parameters in the SQNR.
In Section VIII, we compared the proposed architectures with
previous works. Finally, in Section IX, we summarize the
paper’s main conclusions.

II. BACKGROUND

A. The HUB Representation System
The HUB representation system is a new family of formats

that allow for optimizing computations with real numbers
by simplifying rounding to nearest and two’s complement
operations [36]. It is based on shifting the values exactly
represented under conventional formats by half of the weight
of the least significant bit (LSB). In practice, HUB numbers are
like conventional ones but append an implicit least significant
bit (ILSB) to the binary number to get the represented value.
This ILSB is constant and equal to one [36]. For example, the
HUB number 1.1010 represents the value 1.10101. This hid-
den LSB (the ILSB) must not be stored or transmitted. It only
has to be considered when an operation with that number
is carried out. Thus, the HUB format has the same number
of explicit bits and the same accuracy as the conventional
one.

The main advantage of using HUB numbers is that
rounding to the nearest is performed simply by trunca-
tion. For example, the nearest 4-bit HUB number to the
value 1.0101101 is 1.010 (which represents 1.0101), whereas,
for a conventional representation, it would be 1.011. Gen-
erally, the error in a particular example is different for
traditional and HUB formats. However, the bounds of the
quantization errors for both approaches are the same [36].
Therefore, although HUB and conventional approaches pro-
vide different values, both representations allow for the same
accuracy.

Another essential advantage of the ILSB is that the two’s
complement of a HUB number is implemented simply by
inverting all explicit bits (one’s complement) [36]. For conven-
tional fixed-point numbers, the two’s complement operation
requires a bit-wise inversion plus the addition of one unit-in-
the-last-place (ULP). Conversely, in the HUB approach, the
ILSB absorbs the effect of the required increment, and no
addition needs to be calculated. This significantly reduces the
logic required to implement the two’s complement of a HUB
number.

Finally, the conversion between conventional and HUB
formats is almost trivial. A HUB number is converted to a
conventional one simply by explicitly appending the ILSB.
Note that HUB is a store/transmission format, meaning that
a HUB number must be converted to a conventional format
(explicitly or virtually) before operating with it. Consequently,
HUB operators generally start by appending the ILSB to the
input values, which transforms them into conventional values
that are operated regularly. Conversely, a conventional number
could be transformed into a HUB number with less bit-with
by simply truncating it. Therefore, HUB and conventional
numbers can be quickly and effectively combined in the same
design as seen in the following sections. Note, however, that
the conversion between a conventional and a HUB number
with the same bit-width always causes a loss of accuracy.
Therefore, converting a conventional number to a HUB one
should be performed when its bit-width has to be reduced.
This typically occurs after performing an arithmetic opera-
tion that produces a bit-width growth, such as addition or
multiplication.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GARRIDO et al.: ADVANCED QUANTIZATION SCHEMES 3

Fig. 1. Radix-22 1024-point SDF FFT architecture.

Fig. 2. Internal structure of a stage in an SDF FFT architecture.

B. FFT Architecture Under Study

Fig. 1 shows the FFT architecture under study. It is a
1024-point radix-22 SDF architecture [11]. It consists of n =

log2(N) = log2(1024) = 10 stages, where N is the FFT
size. Each stage, s ∈ {1, . . . , n}, includes a butterfly (R2),
a buffer of length 2n−s , and a rotator. In the architecture, there
are two types of rotators: trivial and general. Trivial rotators
are diamond-shaped and calculate rotations by the angles 0◦

and −90◦. These rotations are called trivial because they are
computed by simply exchanging the real and imaginary parts
of the data and/or changing their signs. General rotators are
represented with the symbol (⊗) and calculate rotations by
multiple angles. The implementation of general rotators often
involves complex multipliers.

The internal structure of a stage in the SDF FFT is shown in
Fig. 2. First, the buffer collects 2n−s data. Then, these data are
added and subtracted with the incoming data in the butterfly.
The results of the additions pass to the rotator, while the results
of the subtractions are fed back to the buffer. When these
data leave the buffer, they are sent to the rotator. This occurs
at the same time that data for a new FFT calculation arrive
at the input of the stage, which allows for continuous flow
processing.

III. QUANTIZATION IN THE FFT

This work considers truncation, rounding, and the HUB
format for the quantization schemes under study. This section
describes how to adapt the FFT operations accordingly.

We assume that the FFT architecture is embedded in a con-
ventional number format system to have a general framework
for the study. Therefore, we consider conventional input and
output signals in all the configurations, and we only work with
HUB numbers internally in those quantization schemes that
use HUB. The reason for taking this approach is to compare
all the quantization schemes under the same circumstances.

Note also that the only difference between a HUB number
and a conventional one is the existence or absence of the ILSB,
which is not physically present. Consequently, some of the
modifications described in this section are simply conceptual
and do not require any actual modification of the specific logic
circuit.

Fig. 3. Mathematical operations in the adders of the FFT butterflies. (a) Adder
in conventional fixed-point representation using truncation. (b) Adder in both
HUB and conventional fixed-point representation using rounding.

This section analyzes how the different parts of the FFT
architecture are treated depending on the format. This includes
adapting the inputs, butterflies, general rotators, trivial rotators,
and outputs.

A. Adaptation of the Input From Conventional to HUB
Format

When HUB format is used in the FFT, the conventional
input signal is turned into HUB format in the first operator
of the FFT unit, which is a butterfly. This first butterfly is
particular because it has conventional input and HUB output.
No actual physical (or logical) change is needed to achieve
this. The butterfly circuit is the same as the conventional one
explained next in Section III-B. However, its output values
are considered as HUB numbers, with an ILSB set to one that
must be considered in the next arithmetic unit.

B. Adaptation of the Butterflies

1) Truncation: The implementation of conventional butter-
flies requires one addition and one subtraction for the real parts
and another addition and subtraction for the imaginary parts.
When adding or subtracting two numbers with W L bits, the
output of the adder requires W L + 1 bits to represent all the
possible output values. To keep the word length of the data
constant throughout the FFT, the LSB after the adders in the
butterflies is truncated. This corresponds to the equation

X A =

⌊
X I ± YI

2

⌋
, (1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

where X I and YI are the inputs, X A is its output, (±) is a
plus in the case of an adder and a minus in the case of a
subtractor, and (⌊·⌋) is the floor operation. Fig. 3(a) shows the
case of adding two numbers. Note that we consider all the
binary numbers as integer numbers, following the convention
in [20]. According to it, any binary number can be considered
an integer number scaled by a power of two, so we can treat the
binary number as an integer and apply the scaling afterward.

2) Rounding: The mathematical operation in case of round-
ing is

X A =

⌈
X I ± YI

2

⌉
=

⌊
X I ± YI + 1

2

⌋
, (2)

where (⌈·⌉) is the ceil operation. Again, (±) is a plus in the
case of an adder and a minus in the case of a subtractor. In the
case of the adder, the circuit that calculates this operation is
shown in Fig. 3(b). The equivalence between rounding up and
adding one plus truncating in (2) is possible because only one
bit is removed.

3) HUB: When the inputs are in HUB format, the input
numbers have an implicit 1, which corresponds to adding
0.5 to both X I and YI . Thus, the output of an adder is obtained
as

X A =

⌊
X I + 0.5 + YI + 0.5

2

⌋
. (3)

Mathematically, (3) is the same equation as (2) for the case
of addition, so the circuit for rounding and HUB is the same
in the case of addition, which is shown in Fig. 3(b). However,
note that in the case of rounding, the circuit is obtained from
rounding the data, whereas for HUB, the circuit is the result
of using HUB inputs.

Contrary to the HUB addition, the implicit bits cancel each
other in the HUB subtraction. This results in

X A =

⌊
X I − YI

2

⌋
, (4)

so the truncation and HUB format calculations in the subtrac-
tors are the same.

As a final remark, regardless of whether the inputs are
conventional or HUB numbers, to produce a HUB output,
the outputs of both adder and subtractor are truncated as in
the conventional output circuit to keep the word length while
avoiding overflow. No modification is required at the output
to get HUB output values. In this case, the output values
are simply considered HUB numbers with an ILSB. However,
in this case, the truncation carries out an actual rounding-half-
up thanks to the ILSB.

C. Adaptation of the General Rotators

1) Truncation: In a conventional fixed-point representation
using truncation, general rotators calculate

X O =

⌊
X B · (C + j S)

R

⌋
, (5)

where C + j S is the rotation coefficient, R is the magnitude
or scaling of this coefficient, and X B = X Br + j X Bi is the
complex output of the butterfly that must be rotated. The

Fig. 4. FFT rotators using multipliers. (a) Conventional fixed-point repre-
sentation. (b) Rounding. (c) HUB format.

circuit calculating the rotation is shown in Fig. 4(a). The
coefficients are represented with W LC bits and their scaling
is R = 2W LC −2. This scaling is applied to guarantee that
the coefficients can be represented with W LC bits. Note that
W LC bits have a range of values [−2W LC −1, 2W LC −1

− 1].
Therefore, if the scaling of the rotator were R = 2W LC −1,
it would not be possible to represent the value 2W LC −1 with
W LC bits.

As an FFT rotator calculates a rotation in the complex plane,
it only modifies the input signal’s phase and preserves its
magnitude. Therefore, as the rotation coefficients scale the
signal by R = 2W LC −2, this scaling must be compensated
to set the output signal with the same magnitude as the input.
This is why the W LC − 2 LSBs are removed from the output
of the rotator in Fig. 4(a). The middle W L bits are the output
of the rotator, and the 2 MSBs are removed. Note that the
output signal never reaches the level of these 2 MSBs since
the magnitude of the coefficients is R = 2W LC −2.

2) Rounding: Rounding in the rotators is calculated as

X O =

⌈
X B · (C + j S)

R

⌉
, (6)

which is equivalent to

X O =

⌊
X B · (C + j S) +

R
2 (1 + j)

R

⌋
. (7)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GARRIDO et al.: ADVANCED QUANTIZATION SCHEMES 5

Fig. 5. Trivial rotators in the FFT. (a) Conventional fixed-point representation.
(b) HUB format.

The corresponding circuit is shown in Fig. 4(b). Note that
R/2 = 2W LC −3. By adding R

2 (1 + j) after the multiplication,
we are adding one unit to the bit that is placed to the right
of the bit that will end up as LSB after removing the least
significant W LC − 2 bits. This creates the effect of rounding.
Note that, as numbers are complex, R/2 is added to their real
and imaginary parts through the factor (1 + j).

3) HUB: If the input signal of the rotator is a HUB number,
the circuit that calculates the complex multiplication is shown
in Fig. 4(c) and its mathematical operation is

X O =

⌊
(X B + 0.5 + j0.5) · (C + j S)

R

⌋
. (8)

As the input X B is in HUB format and the coefficient is a
conventional fixed-point number, the implicit bit is included
in the operation to carry out the rotation. This corresponds
to adding (0.5 + j0.5) to X B , which is done in hardware by
appending a ‘1’ to the LSBs of the real and imaginary parts
of X B .

Similarly to the butterfly case, regardless of the input format,
the HUB outputs for the rotators are obtained by truncating the
outputs of the multipliers. This truncation produces a rounded-
half-up HUB number.

D. Adaptation of the Trivial Rotators

1) Conventional Representation: Trivial rotators calculate
rotations by 0◦ and −90◦. The hardware implementation of the
trivial rotator for a conventional fixed-point format is shown
in Fig. 5(a). In this case, the word length of the data is kept,
so no truncation or rounding is carried out. The rotation by
0◦ is a multiplication by 1, which does not modify the data.
The rotation by −90◦ is a multiplication by − j . As (x + j y) ·

(− j) = y− j x , the real part of the output, X Or , is equal to the
imaginary part of the input, X Bi , whereas the imaginary part
of the output, X Oi , is the result of changing the sign of the real
part of the input, X Br . The sign change requires calculating
the two’s complement of the value, which comprises a bit-wise
inversion plus adding 1 ULP. Additionally, the figure includes
two multiplexers to select between the rotation by 0◦ or −90◦

2) HUB: When the numbers are represented in HUB for-
mat, the trivial rotator is implemented as shown in Fig 5(b).
In this case, the sign change is accomplished simply with a bit-
wise inversion, as Section II-A explains. Thus, adding 1 ULP
is not required, simplifying the logic of the trivial rotator for
the HUB case.

Note that the word length is not modified in fixed-point and
HUB trivial rotators, so they do not lead to any accuracy loss.

E. Adaptation of the Output From HUB to Conventional
Format

As discussed at the beginning of Section III, we consider
that the inputs and outputs of the FFT use the conventional
fixed-point format.

When the FFT uses the HUB format, its output must
be transformed into a conventional fixed-point number. This
conversion is carried out at the output of the last butterfly
by simply considering that the output value is a conventional
truncated value instead of a rounded HUB one. The circuit for
the last butterfly is the same as in other HUB stages, according
to Fig. 3(b).

IV. CONFIGURATIONS UNDER STUDY

For this paper, we have analyzed many FFT architectures
with different quantization schemes and number representa-
tions. The goal has been to improve the accuracy of the FFT
while also having good results in terms of hardware resources
and power consumption. Among all the cases that we have
analyzed, Table I shows the most relevant configurations. The
format of the inputs for each module is specified in the table
as (HUB) for HUB input numbers and (-) for conventional
ones. The adaptation from conventional numbers to HUB
ones is done as explained in Section III-A. For the outputs
of the modules, the quantization of conventional outputs can
be by truncation (Trunc), rounding-half-up (Rnd), or keeping
the word length (Exact). As trivial rotators keep the word
length, no quantization occurs, so (-) is used for the outputs
in the conventional format. For HUB outputs (HUB), only
rounding-half-up by truncation is considered. The first and last
butterflies are specified apart since they are special cases for
HUB configurations.

The first column of Table I shows the acronyms of the
configurations under study. The basic truncation case (BT) cor-
responds to the widely used configuration with conventional
fixed-point numbers and truncation after each butterfly and
rotator. This is the base case of our study. Analogously to
BT, the basic rounding case (BR) uses rounding after all the
butterflies and rotators of the architecture. BR makes half of
the values exact, and the other half is rounded up, as they are
exactly in the middle point. Consequently, in the butterflies,
this rounding produces accuracy similar to BT but with the
opposite bias.

In [22] and [23] truncation is alternated with rounding on
each stage so that the negative and positive biases compensate
each other. We use this approach in the TR1 configuration,
where the outputs of general rotators and odd butterflies are
rounded, and the outputs of even butterflies are truncated.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE I
QUANTIZATION SCHEMES UNDER STUDY

We also tested a similar configuration with odd butterflies
truncated and even butterflies rounded. The results of these two
configurations are almost the same, so we have only included
the first one.

TR2 and TR3 are based on the description in [23], where
each FFT stage alternates truncation and rounding. In TR2, the
outputs of rotators are truncated, odd butterflies are rounded,
and even ones are not quantized, except for the last one, which
is truncated. TR3 is the opposite option, with rounding in
rotators and last butterflies and truncation in odd butterflies.

TR4 is obtained by keeping the exact configuration of the
butterflies as in TR1 but truncating the output of general
rotators instead of rounding them. The opposite butterfly
configuration, i.e., odd butterflies truncated and even butterflies
rounded, is considered in TR5.

For the HUB format, the basic HUB configuration (BHUB)
uses all the HUB circuits described in Section III so that all
internal values between the modules are HUB numbers. The
fact that the HUB format produces an actual rounding-half-up
when truncating significantly improves accuracy without sub-
stantial hardware cost. However, similarly to the conventional
case, in the butterflies, this rounding equals the accuracy of
a truncation but with the opposite bias, since only one bit is
discarded. This prevents the basic HUB implementation from
reaching the level of accuracy of the best configurations with
conventional numbers.

For this reason, we propose a second configuration (THUB),
inspired by the alternate-stage rounding approach. THUB
combines HUB and conventional numbers, intending to reduce
logic and improve accuracy simultaneously. In this configura-
tion, all internal butterflies use identical circuits, but odd ones
are considered to have HUB output, whereas even ones are
considered to have conventional ones. Moreover, all butterfly
inputs are HUB values except for the first one. Thanks to
this configuration, inputs to trivial rotators are always HUB
numbers, significantly simplifying its implementation (see
Section III-D). In contrast, inputs of the general rotators are
always conventional numbers, reducing the multipliers’ size.
Moreover, all rounding is carried out by truncation, which
also simplifies the circuit. Regarding accuracy, alternating the

format at the output of the butterflies produces that truncation
is alternated with rounding-half-up, whereas general rotator
outputs are always rounded-half-up. This is the same rounding
configuration as TR1 but with much less hardware cost,
as shown in the experimental results.

Besides the architectures presented above, we have tested
other options using HUB that have resulted in worse results.
One of them is the use of HUB unbiased rounding in the
butterflies. This rounding only requires a little more logic to
zero the LSB of the output if the discarded bit equals zero [37].
However, the final SQNR was very similar (but worse) to the
regular HUB version, so we do not recommend its use for this
application.

Another modification to BHUB that we considered was for
the values between the even butterflies and the general rotators.
In the HUB version, the W L + 1 bits of the butterfly outputs
are truncated to get W L-bit values. However, at the input of
the rotator, the ILSB is appended to get W L + 1 bits again.
Thus, we thought that keeping the exact value from the output
of the butterfly would not cost much and would improve the
accuracy. As expected, this modification improves slightly the
accuracy with no significant cost compared to the regular HUB
implementation. However, it has less accuracy and more area
than the THUB configuration and, therefore, is not included
in the experimental results.

Finally, we also tested a modification of THUB with the
symmetric configuration in the butterflies, i.e., even butterflies
with HUB output and odd ones with conventional values,
conventional trivial rotators, and HUB general ones. This
configuration has worse area and power consumption than
THUB and even, reduces the accuracy.

V. SETUP FOR THE EXPERIMENTS

The accuracy of the quantization schemes under study is cal-
culated through the signal-to-quantization-noise ratio (SQNR).
This figure of merit reflects the relation between the input
signal and the quantization error introduced in the calculation
of the FFT.

Fig. 6 shows the setup used to measure the SQNR of the
proposed FFT configurations. We have considered random

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GARRIDO et al.: ADVANCED QUANTIZATION SCHEMES 7

Fig. 6. Setup used to measure the SQNR of the proposed architectures.

Fig. 7. Example of the distribution of input data, x[n], with 5120 samples.

signals for the real and imaginary parts of x[n]. Fig. 7 shows
an example of the statistical distribution of the input data in
Fig. 6. The horizontal axis corresponds to the real part of x[n],
and the vertical axis corresponds to the imaginary part of x[n].
Note that data follow a uniform distribution strictly inside the
circle with a radius equal to one. The reason for using this
distribution is that input values whose magnitude is greater
than or equal to one can cause overflow problems along the
stages of the FFT. Note that if a twiddle factor rotates a value
outside the circle, it may end up out of the square, causing
overflow. Therefore, all numbers in the region outside the
circle are not considered valid input data. Another alternative
that we considered is to use only values in a square ranging
from −0.5 to 0.5, both for the real and imaginary parts. This
alternative reports SQNR values that are 3 dB smaller than the
values reported in this paper. This is consistent with the fact
that each extra bit increases the SQNR by 6 dB, as using the
square in −0.5 to 0.5 represents a reduction of half a bit in
the maximum magnitude of the inputs concerning the circle
with magnitude 1.

Input data are generated with Matlab, where we calculate
the ideal FFT of x[n], X I D , and prepare the inputs to be
processed in hardware. The inputs are scaled by a factor
2W L−1

− 1 to cover the bit range of the word length, W L ,
and rounded to the nearest integer. These values are input
to Vivado, where the FFT architectures are simulated. The
simulation outputs are loaded again into Matlab. Then, these
outputs are divided by 2W L−1

−1 to compensate for the scaling
of the input data before the simulation and, later, multiplied
by a factor K . The truncation at the output of the butterflies
divides the input of the next stage by two. As there are
10 stages and one butterfly at each stage, the output has to
be multiplied by K = 210 to compensate for the scaling in
butterflies. This way, the quantized signal, X Q , maintains the

same magnitude as X I D . With the values of X I D and X Q , the
SQNR is calculated as

SQNR (dB) = 10 · log10

(
E
{
|X I D|

2}
E
{
|X Q − X I D|2

}) . (9)

The numerator E{|X I D|
2
} represents the estimated value of

the power of the ideal signal and E{|X Q − X I D|
2
} repre-

sents the estimated value of the noise power. Each SQNR
calculation considers 1000 trials, which means to simulate
1000 FFTs.

Finally, it is worth noting that the approach we use to
calculate the SQNR may differ from the way it is calculated in
other papers, leading to different values of SQNR in different
works for the same FFT configuration. Due to this, contrary
to other previous works in the literature that do not detail
the setup to calculate the SQNR, we have provided a detailed
explanation of our setup so that experiments from different
works can be compared in the future.

VI. EXPERIMENTAL RESULTS

For the experimental results, we have implemented the
1024-point radix-22 SDF FFT using all the configurations
presented in Table I on a Virtex-7 XC7VX330TFFG1157-3
field-programmable gate array (FPGA) using Vivado 2022.1.
The word length of all architectures is 16 bits for the real
part and 16 bits for the imaginary part of the data. Table II
shows the post-implementation results. General rotators are
implemented with a complex multiplier that uses 3 DSP slices
according to [38] to reduce power consumption.

By comparing the architectures in Table II, it can be
observed that all of them use 4 BRAMs and 12 DSPs. How-
ever, the number of LUTs, FFs, and Slices differ. To calculate
the power consumption under the same conditions, the power
has been calculated for all the architectures at a frequency
fCLK = 360 MHz. However, some architectures can achieve
a higher maximum clock frequency, fMAX. Finally, the last
column of the table shows the SQNR of the architectures,
which has been calculated as explained in Section V.

For a more thorough comparison of the configurations
under study, Table III shows the improvements concerning
the conventional approach (BT) for all the figures of merit
where the configurations differ, i.e., LUTs, FFs, Slices, fMAX,
power consumption, and SQNR. All the improvements are
reported in percentage except for the SQNR improvement,
which is reported in dB. Note also that the values in the
table report improvements, not variations. For instance, if the
area is reduced, the improvement is positive, not negative.
This way, all the positive values in the table improve the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE II

EXPERIMENTAL RESULTS FOR A 16-BIT RADIX-22 1024-POINT SDF FFTS USING DIFFERENT FORMATS

TABLE III
IMPROVEMENTS IN AREA, POWER, fMAX AND SQNR OF THE IMPLEMENTATIONS REPORTED IN TABLE II

WITH RESPECT TO THE CONVENTIONAL APPROACH (BT)

figures of merit, whereas all the negative ones worsen them,
which serves to show clearly what gets better and what gets
worse.

In Table II, it can be observed that all the configurations
improve the SQNR with respect to BT in the range from
0.90 to 5.19 dB. However, in BR, TR1, TR2, TR3, and TR4,
this improvement comes at the cost of worsening the area,
maximum frequency, and power consumption. In fact, the
number of FFs is 3.87% to 24.30% worse and the power con-
sumption is 4.48% to 11.85% worse, which is a considerable
cost for the benefit in terms of SQNR.

TR1 and TR3 are the configurations that obtain the highest
SQNR among all the approaches. This is achieved thanks
to the alternation of rounding and truncation in the FFT
stages, and the use of rounding for the general rotator out-
puts. However, this comes at the cost of having the highest
area (including the number of FFs, slides, and LUTs) and
power consumption. These increases are primarily due to the
rounding on the general rotator and the exact output in the
even butterflies. A better-balanced result among configurations
with conventional format is obtained in the case of TR5,
where there is the alternation of rounding and truncation in
butterflies and the output of the general rotator is truncated.
This configuration obtains a decent improvement of 3.75 dB
in SQNR, while the other figures of merit only experience a
slight variation.

Nonetheless, the best results are achieved by the approaches
based on HUB. BHUB reaches the highest maximum clock
frequency among all configurations while improving the area
and the SQNR simultaneously. The only drawbacks are a
3.85% worse power consumption and an increase in the
number of FFs.

Among all the approaches, the best one is the THUB
configuration since all the figures of merit are improved or
kept equal concerning BT. The alternation of truncation and
rounding, along with the rounding (carried out by truncation)
performed in the output of the general rotators, allows it to
achieve a high SQNR, only 0.24 dB below TR3. However,
in contrast to TR3, it also achieves the lowest area and
power consumption, and the second-best speed among all
configurations. Comparing THUB with TR1, which has almost
the same SQNR as TR3 but less area, THUB uses almost
20% less FF and slides, almost 10% less LUTs and power
and it also may work at 20% more speed. Thus, THUB is an
excellent configuration for calculating the FFT, as it achieves
a win-win deal that improves multiple figures of merit with
respect to BT without worsening the values of any of them.

VII. INFLUENCE OF OTHER FFT
PARAMETERS IN THE SQNR

Apart from the quantization schemes, other FFT parameters
have an influence on the SQNR. In this section, we review the
main parameters related to the FFT and the impact that they
have on the SQNR. These parameters are:

• Architecture type: The FFT architecture itself does not
have any influence on the SQNR. Note that different
architectures differ in the order of the data, parallelization,
or calculation of the FFT in the pipeline or iteratively.
However, this does not affect the mathematical operations
that are carried out, and therefore, the architecture type
does not have any impact on the SQNR.

• FFT size (N): The SQNR depends on the FFT size.
Larger FFTs have smaller SQNR. The SQNR for different
FFT sizes is related in such a way that doubling N results

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GARRIDO et al.: ADVANCED QUANTIZATION SCHEMES 9

TABLE IV
SQNR DIFFERENCES IN DECIBELS OF TYPICAL FFT ALGORITHMS WITH

RESPECT TO RADIX-2 DIF FOR DIFFERENT FFT SIZES AND W L = 16

in an SQNR that is approximately 3 dB smaller, as can
be deduced from [17] and [24].

• Parallelization (P): Being related to the architecture
type, parallelization of the architecture has no influence
on the SQNR, as it does not affect the mathematical
operations that are carried out.

• Word length (W L): Increasing the word length by one
bit leads to a 6 dB higher SQNR. This comes from the
fact that increasing one bit corresponds to multiplying the
amplitude of the signal, A, by 2, while keeping the noise
level. Thus, the difference in dB between a signal with
amplitude 2A and a signal with amplitude A is:

1 dB = 10 · log10

(
(2A)2

A2

)
≈ 6 dB. (10)

• Calculations in butterflies and rotators: As butter-
flies and rotators are the components that carry out the
mathematical operations, any modification on how these
calculations are carried out affects the SQNR. One clear
example is to substitute the rotators based on complex
multipliers that we have used in the paper with the
CORDIC rotator [39]. This would change the operations
and the quantization, leading to new results for SQNR.

• FFT algorithm: FFT algorithms differ in the rotations
at the FFT stages [40]. In decimation in frequency
(DIF) algorithms, rotations are moved toward the first
stages, whereas in decimation in time (DIT) algorithms,
rotations are moved toward the last stage. These move-
ments change the operations in the FFT. However, the
impact of changing the algorithm in the SQNR is small.
Table IV shows the difference in SQNR for various
FFT algorithms with respect to the typical radix-2 DIF
algorithm. The results consider different FFT sizes, N ,
and W L = 16 throughout the entire FFT. Note also that
the mathematical operations in any radix-2k algorithm are
the same as in a radix-r algorithm with r = 2k , as was
shown in [40]. By analyzing the table, it can be observed
that the magnitude of the SQNR difference is close to
zero in most cases and only exceeds 1 dB in the case of
the radix-2 DIT algorithm.

• Clock frequency, throughput, and latency: The accu-
racy of the FFT computations is independent of the speed
at which these calculations are obtained. Thus, parameters
such as the clock frequency, throughput, or latency of the
design do not have any influence on the SQNR.

• Area and number of components: In the same way that
the type of architecture does not have any influence on
the SQNR, the area and number of components used to
implement the FFT do not affect the SQNR.

• Device: The implementation of an FFT on an FPGA
or application-specific integrated circuit (ASIC) has an
impact on multiple parameters of the FFT. However, the
mathematical calculations are the same in any device
where the FFT is implemented. Therefore, the SQNR is
unaffected by the device where the FFT is implemented.

As a result, the parameters that influence the SQNR are the
quantization scheme used in the FFT architecture, the FFT
size, the word length of the data, the calculations in butterflies
and rotators, and the FFT algorithm. Other characteristics
of the FFT, such as architecture type, parallelization, clock
frequency, throughput, latency, area, number of components,
and device, do not have any influence on the SQNR.

VIII. COMPARISON

Table V compares the SQNR of the proposed THUB archi-
tecture to other state-of-the-art FFT hardware architectures that
report SQNR. As the mathematical computations are indepen-
dent of the architecture, the table combines different types
of FFT architectures: MDC, SDF, MSC, and MB. The table
also includes architectures implemented on ASICs and FPGAs.
For architectures on ASICs, the table reports the technology,
voltage, and area. For architectures implemented on FPGAs,
the table reports the type of FPGA, Virtex Ultrascale+ (VU+)
or Virtex 7 (V7), and number of slices, LUTs, FFs, DSP
slices, and BRAMs. The table also includes the FFT size,
parallelization, word length, radix, quantization scheme, clock
frequency, throughput, latency, and power consumption.

As can be observed, the architectures reported in Table V
are very heterogeneous. The differences in N , P , architecture
type, and device do not allow for a direct comparison of
figures of merit such as throughput, area, latency, and power
consumption. However, as explained in Section VII, the SQNR
is independent of many characteristics related to the FFTs.
This allows us to compare the SQNR of these architectures.

The SQNR is reported at the bottom of the table. To com-
pare the SQNR values under similar circumstances, the last
row of the table provides the equivalent SQNR (ESQNR),
which removes the impact of the FFT size and the word length
of the architectures. Thus, the equivalent SQNR is calculated
as

ESQNR (dB) = SQNR (dB)

+ 3 log2

(
N

1024

)
− 6(W L − 16), (11)

and corresponds to the SQNR that an equivalent FFT with
N = 1024 and W L = 16 would have.

By comparing the equivalent SQNR in previous approaches
to the results achieved by the proposed THUB implementation,
it can be observed that the proposed design reaches the highest
SQNR value, which highlights the value of the proposed
quantization schemes toward improving the FFT accuracy.

As the ESQNR is only an approximation, we should also
compare the proposed approach with other FFT architectures

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE V
COMPARISON OF STATE-OF-THE-ART FFT ARCHITECTURES

that have the same FFT size and word length as the proposed
one. Thus, if we consider architectures with 16 bits and
1024 points, the proposed design achieves 20.9, 6.81, and
20.62 dB higher SQNR than [30], [31], and [33], respectively.
Therefore, the proposed approach not only achieves the highest
equivalent SQNR but also significantly improves previous FFT
architectures with similar characteristics in terms of accuracy.

IX. CONCLUSION

In this paper, we have analyzed several quantization
schemes to improve accuracy in FFT architectures. Among
them, alternatives that use a conventional number represen-
tation and alternate quantization and rounding along FFT
stages improve accuracy at the cost of increasing area and
power consumption. The best results are obtained for the HUB
format combined with an alternating quantization strategy.
This approach not only increases the SQNR but also reduces
the area and power consumption, which is a win-win solution
that improves many figures of merit simultaneously without
worsening any of them. As a result, this approach is excellent
for designing advanced FFT architectures.

REFERENCES

[1] S. Agarwal, S. R. Ahamed, A. Gogoi, and G. Trivedi, “A 28-Gbps radix-
16, 512-point FFT processor-based continuous streaming OFDM for
WiGig,” Circuits, Syst., Signal Process., vol. 41, no. 5, pp. 2871–2897,
May 2022.

[2] A. Madanayake et al., “Fast radix-32 approximate DFTs for 1024-beam
digital RF beamforming,” IEEE Access, vol. 8, pp. 96613–96627, 2020.

[3] Z. Wei, H. Qu, W. Jiang, K. Han, H. Wu, and Z. Feng, “Iterative signal
processing for integrated sensing and communication systems,” IEEE
Trans. Green Commun. Netw., vol. 7, no. 1, pp. 401–412, Mar. 2023.

[4] V. Manuel Bautista, M. Garrido, and M. López-Vallejo, “Serial butter-
flies for non-power-of-two FFT architectures in 5G and beyond,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 10, pp. 3992–4003,
Oct. 2023.

[5] K. Virkler et al., “DSN radio astronomy spectrometer,” in Proc. 34th
Gen. Assem. Sci. Symp. Int. Union Radio Sci. (URSI GASS), Aug. 2021,
pp. 1–4.

[6] H. Kanders, T. Mellqvist, M. Garrido, K. Palmkvist, and O. Gustafsson,
“A 1 million-point FFT on a single FPGA,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 66, no. 10, pp. 3863–3873, Oct. 2019.

[7] S. Corda, B. Veenboer, A. J. Awan, A. Kumar, R. Jordans, and
H. Corporaal, “Near memory acceleration on high resolution radio
astronomy imaging,” in Proc. 9th Medit. Conf. Embedded Comput.
(MECO), Jun. 2020, pp. 1–6.

[8] L. Li and A. M. Wyrwicz, “Parallel 2D FFT implementation on FPGA
suitable for real-time MR image processing,” Rev. Sci. Instrum., vol. 89,
no. 9, pp. 1–9, Sep. 2018.

[9] J. Zhang et al., “Improved dynamic contrast-enhanced MRI
using low rank with joint sparsity,” IEEE Access, vol. 10,
pp. 121193–121203, 2022.

[10] B. L. West, J. A. Fessler, and T. F. Wenisch, “Jigsaw: A slice-
and-dice approach to non-uniform FFT acceleration for MRI image
reconstruction,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2021, pp. 714–723.

[11] M. Garrido, “A survey on pipelined FFT hardware architectures,”
J. Signal Process. Syst., vol. 94, no. 11, pp. 1345–1364, Nov. 2022.

[12] K. Möller, M. Kumm, M. Kleinlein, and P. Zipf, “Reconfigurable
constant multiplication for FPGAs,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 36, no. 6, pp. 927–937, Jun. 2017.

[13] P. Paz, “Design space exploration of FFT architectures using rotator
allocation,” M.S. thesis, Dept. of Electron. Eng., Universidad Politécnica
de Madrid, Madrid, SpAIN, 2020.

[14] M. Garrido and P. Malagón, “The constant multiplier FFT,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 68, no. 1, pp. 322–335, Jan. 2021.

[15] Y. Guo, Z. Wang, Q. Hong, H. Luo, X. Qiu, and L. Liang, “A 60-
mode high-throughput parallel-processing FFT processor for 5G/4G
applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 31,
no. 2, pp. 219–232, Feb. 2023.

[16] T. Lenart and V. Owall, “Architectures for dynamic data scaling in
2/4/8K pipeline FFT cores,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 11, pp. 1286–1290, Nov. 2006.

[17] D. Guinart, “Deterministic analysis of the accuracy in FFT hard-
ware architectures,” M.S. thesis, Dept. Elect. Eng., Linkoping Univ.,
Linkoping, Sweden, 2012.

[18] M. Alrwashdeh and Z. Kollár, “Analysis of quantization noise in FFT
algorithms for real-valued input signals,” in Proc. 32nd Int. Conf.
Radioelektronika (RADIOELEKTRONIKA), Apr. 2022, pp. 1–5.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GARRIDO et al.: ADVANCED QUANTIZATION SCHEMES 11

[19] N. K. Unnikrishnan, M. Garrido, and K. K. Parhi, “Effect of finite word-
length on SQNR, area and power for real-valued serial FFT,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[20] M. Garrido, O. Gustafsson, and J. Grajal, “Accurate rotations based on
coefficient scaling,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58,
no. 10, pp. 662–666, Oct. 2011.

[21] M. Garrido, F. Qureshi, and O. Gustafsson, “Low-complexity multi-
plierless constant rotators based on combined coefficient selection and
shift-and-add implementation (CCSSI),” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 61, no. 7, pp. 2002–2012, Jul. 2014.

[22] P. Kabal and B. Sayar, “Performance of fixed-point FFT’s: Rounding
and scaling considerations,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., vol. 11, Apr. 1986, pp. 221–224.

[23] B. Zhou, Y. Peng, and D. Hwang, “Pipeline FFT architectures optimized
for FPGAs,” Int. J. Reconfigurable Comput., vol. 2009, no. 1, pp. 1–9,
Sep. 2009.

[24] T. Spiteri, “Compensating for bias due to rounding for fixed-point FFT,”
in Proc. Eur. Conf. Commun. Syst. (ECCS), May 2023, pp. 1–5.

[25] S. D. Muñoz and J. Hormigo, “Improving fixed-point implementation of
QR decomposition by rounding-to-nearest,” in Proc. Int. Symp. Consum.
Electron. (ISCE), Jun. 2015, pp. 1–2.

[26] J. Hormigo and J. Villalba, “Optimizing DSP circuits by a new family
of arithmetic operators,” in Proc. 48th Asilomar Conf. Signals, Syst.
Comput., Nov. 2014, pp. 871–875.

[27] J. Hormigo and J. Villalba, “Measuring improvement when using HUB
formats to implement floating-point systems under round-to-nearest,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 6,
pp. 2369–2377, Jun. 2016.

[28] J. Hormigo and J. Villalba, “HUB floating point for improving FPGA
implementations of DSP applications,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 64, no. 3, pp. 319–323, Mar. 2017.

[29] J. Villalba-Moreno and J. Hormigo, “Floating point square root under
HUB format,” in Proc. IEEE Int. Conf. Comput. Design (ICCD),
Nov. 2017, pp. 447–454.

[30] V. M. Bautista and M. Garrido, “An automatic generator of non-power-
of-two SDF FFT architectures for 5G and beyond,” in Proc. 38th Conf.
Design Circuits Integr. Syst. (DCIS), Nov. 2023, pp. 61–66.

[31] M. Garrido, S.-J. Huang, and S.-G. Chen, “Feedforward FFT hardware
architectures based on rotator allocation,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 2, pp. 581–592, Feb. 2018.

[32] K. H. Viglianco, D. R. Garcia, and J. J. W. Kunst, “Implementation of a
4-parallel 128-point radix-8 FFT processor via folding transformation,”
in Proc. Argentine Conf. Electron. (CAE), Mar. 2023, pp. 13–18.

[33] G.-T. Deng, M. Garrido, S.-G. Chen, and S.-J. Huang, “Radix-2k MSC
FFT architectures,” IEEE Access, vol. 11, pp. 81497–81510, 2023.

[34] J. Wang, C. Xiong, K. Zhang, and J. Wei, “A mixed-decimation MDF
architecture for radix-2k parallel FFT,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 1, pp. 67–78, Jan. 2016.

[35] Z. Kaya and M. Garrido, “Low-latency 64-parallel 4096-point memory-
based FFT for 6G,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70,
no. 10, pp. 4004–4014, Oct. 2023.

[36] J. Hormigo and J. Villalba, “New formats for computing with real-
numbers under round-to-nearest,” IEEE Trans. Comput., vol. 65, no. 7,
pp. 2158–2168, Jul. 2016.

[37] J. Villalba-Moreno, J. Hormigo, and S. González-Navarro, “Unbiased
rounding for HUB floating-point addition,” IEEE Trans. Comput.,
vol. 67, no. 9, pp. 1359–1365, Sep. 2018.

[38] P. Paz and M. Garrido, “Efficient implementation of complex multipliers
on FPGAs using DSP slices,” J. Signal Process. Syst., vol. 95, no. 4,
pp. 543–550, Apr. 2023.

[39] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Trans. Electron. Comput., vol. 8, no. 3, pp. 330–334, Sep. 1959.

[40] M. Garrido, “A new representation of FFT algorithms using triangular
matrices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 10,
pp. 1737–1745, Oct. 2016.

Mario Garrido (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in electrical engineering
from the Universidad Politécnica de Madrid (UPM),
Spain, in 2004 and 2009, respectively.

In 2010, he moved to Sweden to work as
a Post-Doctoral Researcher with the Department
of Electrical Engineering, Linköping University.
From 2012 to 2019, he was an Associate Profes-
sor with the Department of Electrical Engineering,
Linköping University. In 2019, he moved back to
UPM, where he holds a Ramón y Cajal Research

Fellowship. So far, he has been the author of more than 50 scientific
publications. His research interests include optimized hardware design for
signal-processing applications, design of hardware architectures for the
fast Fourier transform (FFT), circuits for data management, the CORDIC
algorithm, neural networks, and circuits to calculate statistical and mathemat-
ical operations. His research covers high-performance circuits for real-time
computation and designs for small area and low power consumption.
He appeared in the “World’s Top 2% Scientists List” elaborated by Standford
University in 2022 and 2023.

Víctor Manuel Bautista was born in Madrid,
Spain, in 1998. He received the bachelor’s degree
in engineering in telecommunication technologies
and services engineering and the master’s degree in
electronic systems engineering (MUISE) from the
Universidad Politécnica de Madrid (UPM), Spain,
in July 2021 and July 2022, respectively, where
he is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering. His research
interests include optimized hardware design for com-
munication systems, focusing on the design of fast

Fourier transform (FFT) hardware architectures for non-power-of-two sizes.

Alejandro Portas received the bachelor’s degree
in industrial electronic engineering from the Uni-
versity of Córdoba (UCO) in September 2019 and
the master’s degree in electronic systems engineer-
ing (MUISE) from the Universidad Politécnica de
Madrid (UPM) in July 2021, where he carried out
the research for this paper.

After finishing his studies, he worked as an
Embedded Software Engineer with Indra and Airbus,
in air traffic management (ATM) and defense fields,
respectively. Since September 2023, he has been

with Sener in defense and space.

Javier Hormigo received the M.Sc. and Ph.D.
degrees in telecommunication engineering from the
Universidad de Málaga, Spain, in 1996 and 2000,
respectively. He joined the Universidad de Málaga
in 1997, where he is currently a Full Professor with
the Computer Architecture Department. He has pub-
lished six patents and over 60 papers in international
journals and conferences, winning the “Best Paper
Award” at the ICCD 2013 Conference. His research
interests include designing accelerators, with a spe-
cific focus on high-level synthesis for FPGA and

the application of non-conventional arithmetic in these application-specific
circuits. He also serves as an Associate Editor and the Topical Editor for
IEEE TRANSACTIONS ON COMPUTERS and has been recognized with the
“IEEE TC Award for Editorial Service and Excellence” in 2021 and 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

