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Low-Complexity Hardware Architecture of APN
Permutations Using TU-Decomposition
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Abstract— Functions with good cryptographic properties
which are used as S-boxes in the design of block ciphers have
a fundamental importance to the security of these ciphers since
they determine the resistance to various kinds of cryptanalytic
attacks. Almost Perfect Nonlinear (APN) functions provide the
best possible resistance to differential cryptanalysis, which is
one of the most efficient cryptographic attacks against block
ciphers known to date. Furthermore, APN permutations are of
particular interest in practice since many cipher designs require
the S-box to be a permutation. In this paper, we present a low-
complexity hardware architecture for the TU-decomposition of
APN permutations, showing how Dillon’s APN permutation can
be decomposed in this way as a practically relevant example.
The TU-decomposition of an m-bit permutation is based on
the use of two m/2-bit keyed permutations (T and U) to
reduce the complexity of the original permutation. Dillon’s
permutation on 6 bits is the only known APN permutation on
an even number of bits, so its study is of fundamental interest.
We present hardware theoretical complexities and experimental
results obtained from FPGA and ASIC implementations for
the proposed TU-decomposition hardware architecture. These
complexities and results are compared with other hardware
architectures given in the literature for the same function. From
the comparisons, it can be observed that the TU-decomposition
architecture presented here greatly outperforms other hard-
ware approaches with respect to area, delay and area×delay
complexities.

Index Terms— Block cipher, S-box, almost perfect nonlinear
(APN), TU-decomposition, finite field, HW architecture.

I. INTRODUCTION

BLOCK ciphers are the most important cryptographic
primitives in symmetric cryptography, and they allow the

encryption and decryption of an input message using a shared
secret key [1]. Block ciphers are essential building blocks of
virtually all modern cryptographic protocols, and the design

Manuscript received 28 February 2024; revised 5 June 2024;
accepted 27 June 2024. The work of Lilya Budaghyan was supported
in part by the Trond Mohn Foundation under Grant “Construction of
Optimal Boolean Functions” and in part by the Research Council of
Norway under Grant 314395. The work of José L. Imaña was supported
by MCIN/AEI/10.13039/501100011033 and in part by the “ERDF a way
of making Europe” under Grant PID2021-123041OB-I00. This article
was recommended by Associate Editor X. Zeng. (Corresponding author:
José L. Imaña.)

Lilya Budaghyan and Nikolay Kaleyski are with the Selmer Center, Depart-
ment of Informatics, University of Bergen, 5020 Bergen, Norway (e-mail:
Lilya.Budaghyan@uib.no; Nikolay.Kaleyski@uib.no).

José L. Imaña is with the Department of Computer Architecture and
Automation, Faculty of Physics, Complutense University of Madrid, 28040
Madrid, Spain (e-mail: jluimana@ucm.es).

Digital Object Identifier 10.1109/TCSI.2024.3421354

of secure and efficient block ciphers is therefore of crucial
importance for any cryptography applications.

Block ciphers must be resistant against any cryptanalytic
attacks that a third-party might employ, in order to guarantee
security [2]. Furthermore, they must encrypt and decrypt
efficiently in terms of time and memory, since in a typical
cryptographic protocol it is more often than not the block
ciphers that need to process the largest amount of data.

The design of block ciphers involves the interleaving of
highly complex non-linear transformations (that provide the
security of the cipher) with fast and easy to implement
linear operations (that provide no security by themselves,
but strengthen the effect of the non-linear transformations).
The non-linear transformations are typically called substitution
boxes, or S-boxes, and are typically modeled as functions that
input and output sequences of bits [1]. Various properties and
statistics can be computed for a given S-box which describe
how well it resists different kinds of attacks. The security of
a cipher can be evaluated by considering the properties of its
underlying S-boxes. An S-box is a function which maps n
input bits to m output bits. For this reason, S-boxes are also
called (n, m)-functions. An important case is when n = m and
a sequence of bits is replaced with another sequence with the
same length.

The resistance of an S-box to differential [3] and linear
cryptanalysis [4] (two of the most efficient cryptographic
attacks against block ciphers) is determined by its differential
uniformity [5] and nonlinearity, respectively. In order to be
resilient to these attacks, the differential uniformity of an
S-box should be as low as possible while the nonlinearity
should be as high as possible. When n = m, the functions
having the lowest differential uniformity are called Almost
Perfect Nonlinear (APN). In the case of nonlinearity, its
optimal value is only known in the case of odd n. The
functions achieving this highest nonlinearity are called Almost
Bent (AB). It can be proved that any AB function is also
APN [6], but an APN function is not necessarilly AB,
even in the case of odd n. The S-boxes are also frequently
required to be bijective, such as in block ciphers designed
using a Substitution Permutation Network (SPN). For example,
the design of the Rijndael cipher, which was selected as
the Advanced Encryption Standard (AES) [7], is based on
an SPN and has a bijective (8, 8)-function as an S-box.
This function is not APN; this is because at the time of
writing, no APN permutations on 8 bits are known, so a

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-4220-4111
https://orcid.org/0000-0002-9695-1454


2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

permutation with the next best differential uniformity is used
instead.

APN permutations with an odd number of bits have been
known for a long time [8], but it was believed that APN
permutations with an even number of bits do not exist [9], [10]
until Dillon et al. [11] found an APN permutation on six bits.
Dillon’s permutation is the only known APN permutation with
an even number of bits (up to equivalence) and has also been
used for the design of the FIDES lightweight authenticated
encryption algorithm [12], so its study is of fundamental
interest.

APN functions are mostly represented as polynomials over
finite fields, mainly using a univariate polynomial represen-
tation [13] or using a composition of simpler functions [14],
[15], [16], that could lead to different hardware implementa-
tion complexities. For functions operating on a small number
of bits, hardware implementation can be done simply using a
lookup table containing all values of the function. However,
this approach can be infeasible (especially in the case of
resource-constrained devices) for functions working on a large
number of bits because the size of the lookup table grows
exponentially with the dimension [17], [18], [19]. For this
reason, it is important to consider other hardware architectures
that lead to efficient implementations in terms of memory
requirements.

Low-complexity non-APN S-boxes considering security
properties as differential uniformity and nonlinearity, among
others, have been reported in the literature. In [31] and [32],
low area and highly secure lightweight 8-bit S-boxes based on
field inversion over F28 were presented. Lighweight crypto-
graphic 8-bit S-boxes based on the use of two low-complexity
4-bit S-boxes were also presented in [33]. Optimized fault-
tolerant and error-correcting 4-bit S-boxes for cryptographic
applications with multiple errors detection were also given
in [34]. However, the above S-boxes do not have the low-
est differential uniformity and therefore they are not APN
permutations.

In this paper, we present a low-complexity hardware archi-
tecture for the T U -decomposition of APN permutations and
demonstrate how to decompose Dillon’s APN permutation.
The new architecture is based on the decomposition of Dillon’s
APN into smaller 3-bit keyed permutations (T, U ) over F23 .
This T U -decomposition [15], obtained applying methods of
reverse engineering to S-boxes [16], [20], can produce impor-
tant reductions on the hardware implementation complexity
of Dillon’s APN permutation in comparison with classical
approaches based on its evaluation as a polynomial over F26

for a given input. We present hardware theoretical complexities
and experimental results obtained from FPGA and ASIC
implementations for the proposed T U -decomposition hard-
ware architecture and we compare them with other hardware
architectures given in the literature for the same permutation.
From the results obtained, the T U -decomposition architec-
ture presented here greatly outperforms all other hardware
approaches in terms of area, delay and area×delay complex-
ities. It is important to note that the hardware architecture
presented here can easily be generalized to any permutation
on an even number of bits, and is not restricted to just Dillon’s

permutation; the latter is merely chosen as a particularly
relevant practical example for demonstrating our method.

The paper is organized as follows. Section II introduces
the fundamental concepts and definitions used throughout
the paper. Dillon’s APN permutation is given in Section III.
Section IV presents the procedure for the T U -decomposition
of Dillon’s APN permutation g(x). The hardware architecture
of the T U -decomposition of Dillon’s APN permutation and
the description of the different components are given in
Section V. Theoretical complexity analysis of the hardware
architecture presented here and its comparison with other
approaches are given in Section VI. Section VII gives FPGA
and ASIC implementation results and discussion. Finally, the
conclusions and some potential directions for future work are
given in Section VIII.

II. NOTATIONS AND DEFINITIONS

Let F2 = {0, 1} be the finite field with two elements
(also referred to as the binary field) and let F2m be the
binary extension field with 2m elements. Let also f (y) =∑m

i=0 fi yi be a monic irreducible polynomial of degree m
over the binary field, with fi ∈ F2 for i = 0, 1, . . . , m.
Any element x ∈ F2m can be represented in the standard
or polynomial basis {1, ρ, . . . , ρm−1

} as x =
∑m−1

i=0 xiρ
i

=

(1, ρ, . . . , ρm−1) · (x0, . . . , xm−1)
T , where xi ∈ F2 and ρ is

a root of the irreducible polynomial f (y). The coefficients
(x0, . . . , xm−1) are denoted as the coordinates of the element
x with respect to the polynomial basis.

We refer the reader to [1] for a general reference on
(n, m)-functions and their cryptographic properties. A vec-
torial Boolean function, or (n, m)-function, is a function
mapping from Fn

2 to Fm
2 . Modern block ciphers include one

or more vectorial Boolean functions as their only nonlinear
components. That is the reason why (n, m)-functions are of
fundamental importance in cryptography. If n = m, then any
vectorial Boolean function can be uniquely expressed as a
polynomial S(x) =

∑2m
−1

i=0 si x i , with si ∈ F2m , that is called
the univariate representation of S. The algebraic degree of
S is the largest binary weight (number of 1’s in the binary
representation) of any exponent i of x (with si ̸= 0) in the
univariate representation. Affine functions have an algebraic
degree at most 1, while quadratic and cubic functions have
algebraic degree 2 and 3, respectively. An affine function h
satisfying h(0) = 0 is called linear.

The differential properties of an (n, m)-function g are given
by its Difference Distribution Table (DDT). The DDT of g
is the 2n

× 2m matrix 1g such that 1g(a, b) = #{x ∈

Fn
2, Dag(x) = b}, where Dag(x) = g(x + a) + g(x) is the

derivative of g in direction a ∈ F2n . The maximum coefficient
in 1g (for all non-zero row indices a) is the differential
uniformity of g and, if it is equal to δ, then g is said to be
differentially δ-uniform. The lower the differential uniformity
of an (n, n)-function, the stronger its resistance to differential
cryptanalysis [3]. The lowest possible value of the differential
uniformity is 2, and functions achieving this optimal value
are called Almost Perfect Nonlinear (APN) functions. This
is one of the reasons why the study of APN functions is of
fundamental importance for the design and construction of
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secure block ciphers [21], [22], [23], [24]. A well-established
method for constructing block ciphers from S-boxes is the so-
called Substitution Permutation Network (SPN). In order for
an S-box to be used in an SPN, it must be a permutation. Thus,
it is highly desirable to find APN permutations from the point
of view of block cipher design.

With reference to the nonlinearity of and S-box g needed to
resist linear cryptanalysis, it can be studied using the Linear
Approximation Table (LAT). The LAT of an (n, m)-function g
is the 2n

×2m matrix 3g such that 3g(a, b) = #{x ∈ Fn
2, a·x =

b · g(x)} − 2n−1, where “·” is the scalar product. The nonlin-
earity of an (n, m)-function g is 2n−1

− max(|3g(a, b)|), for
all non-zero row and column indices a and b. In order to resist
linear attacks, the nonlinearity of an S-box must be high.

III. DILLON’S APN PERMUTATION

APN functions must be permutations in order to be used as
S-boxes in Substitution Permutation Networks. While many
functions are known to be APN permutations in Fm

2 for m
odd, it was long believed that there are no APN permutations
for m even (known as the “big APN problem”). However,
in 2010 mathematicians from the NSA (Dillon) presented
what, to date, is the only known 6-bit APN permutation [11].
At present, Dillon’s permutation is the only known APN
permutation on an even number of bits n. We know that for
even n less than 6 no APN permutations exist, while for even
n greater than 6, the existence of APN permutations remains
unresolved. Furthermore, Dillon’s permutation has been used
to design the lightweight authenticated cipher FIDES [12],
so the efficiency of its hardware implementations and the study
of its cryptographic properties are of great interest [25].

Dillon’s APN permutation can be efficiently implemented
in hardware by means of its decomposition into simpler
functions [14], [15]. A hardware architecture and implemen-
tation of the univariate polynomial representation of Dillon’s
permutation g(x), with x ∈ F26 , was given in [14], where g(x)

was also presented as a composition of two functions f1 and
f −1
2 , i.e., g = f1 ◦ f −1

2 . The univariate representation of g(x)

given in [14] is g(x) = ρ18x57
+ ρ22x56

+ ρ18x50
+ ρ22x49

+

ρ7x48
+ρ18x43

+ρ22x42
+ρ44x41

+ρ57x40
+ρ18x36

+ρ22x35
+

ρ22x34
+ρ50x33

+ρ24x32
+ρ18x29

+ρ57x28
+ρ25x25

+ρ18x24
+

ρ18x22
+ρ57x21

+ρ7x20
+ρ18x18

+ρ18x17
+ρ18x15

+ρ57x14
+

ρ44x13
+ρ29x12

+ρ11x11
+ρ18x10

+ρ24x8
+ρ57x7

+ρ22x6
+

ρ22x5
+ ρ3x4

+ ρ18x3
+ ρ13x , while the functions f1(x) and

f −1
2 (x) in [14] are f1(x) = x+ρ7x8

+ρ4 f (x)+ρ32 f (x)8 and
f −1
2 (x) = ρx56

+ ρx49
+ ρ22x48

+ ρx42
+ ρ23x41

+ ρ36x40
+

ρx35
+ρ15x34

+ρ29x33
+ρ36x28

+ρ36x21
+ρ22x20

+ρ36x14
+

ρ23x13
+ ρ8x12

+ ρ58x8
+ ρ36x7

+ ρ15x6
+ ρx5

+ ρ58x ,
respectively. For f1(x), the function f (x) = ρx3

+ ρ5x10
+

ρ4x24 was used, where ρ is a root of the primitive pentanomial
f (y) = y6

+ y4
+ y3

+ y + 1 over F2. It can be observed
that Dillon’s permutation g(x) has algebraic degree 4, while
the functions f1(x) and f −1

2 (x) used to express g(x) =

f1( f −1
2 (x)) have algebraic degrees 2 and 3, respectively. The

reduction of the algebraic degree of the functions involved in
the representation implies a reduction of the complexity of the
hardware implementation, so the study of the decomposition

TABLE I
DILLON’S PERMUTATION g(x) IN OCTAL

of Dillon’s permutation is of fundamental interest. A look-
up table of this permutation [14] in octal is given in Table I,
where if the input x is given in octal as e.g. x = cd = 26 then
g(x) = 47.

Applying methods of reverse engineering to S-boxes [16],
[20], a method to obtain a decomposition of Dillon’s APN per-
mutation relying on two 3-bit keyed permutations (T, U ) was
given in [15]. We follow this method and apply it to Dillon’s
permutation g(x) in Table I to obtain a T U − decomposi tion
and present its hardware architecture. We then compare the
complexity of the proposed architecture with the complexi-
ties of the corresponding architectures of the univariate and
decomposed representations given in [14].

IV. T U -DECOMPOSITION OF DILLON’S APN
PERMUTATION

The procedure for the T U -decomposition of Dillon’s APN
permutation g(x) has the following steps [15]:

• Obtain a permutation η by means of the creation of the
LAT table for g(x) and the construction of its Pollock’s
graphical representation.

• Apply the permutation η to the table (x, g(x)) with the
inputs/outputs of g(x) given in Table I to obtain a new
table (η(x), η(g(x))).

• Obtain the keyed permutations T from the table
(η(x), η(g(x))).

• Obtain the keyed permutations U from the tables
(x, g(x)) and (η(x), η(g(x))).

We note that this same procedure generalizes to any function
on an even number of bits, and Dillon’s permutation is chosen
as a particularly relevant example to illustrate the method.

A. Computation of the Permutation η

In order to determine the permutation η, the LAT of Dillon’s
APN S-box g(x) must first be computed. Then the Pollock’s
Pattern Recognition [20] method is applied. This method
is based on turning the LAT of the S-box to be analyzed
(where values in the LAT are 0s, 4s and 8s) into a picture
and then identifying structural properties by means of pattern
finding. The picture obtained is similar to Jackson Pollock’s
abstract drip paintings, hence the name of this method. The
Pollock’s representation [15] of the absolute value of the LAT
of g(x) for Table I is shown in Figure 1, where some patterns
(row and columns) with only black and white colors can
be found (white color corresponds with 0 value, grey with
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Fig. 1. Pollock’s representation of the LAT of g(x).

4 and black with 8). Furthermore, it can be observed that
the columns with only black and white colors have abscissas
{0, 8, 20, 28, 38, 46, 50, 58} and that the binary representation
of these numbers forms a linear subspace of F26 generated by
the values {8, 20, 38} [15]. Using the binary representations,
this can be proven considering that 28 = 8⊕20, 46 = 8⊕38,
50 = 20 ⊕ 38 and 58 = 8 ⊕ 20 ⊕ 38 (where ⊕ stands for the
bitwise XOR). Then a permutation η can be constructed such
that η : 1 → 8, η : 2 → 20, η : 4 → 38 and then completing
it in a natural way by setting η : 8 → 1, η : 16 → 2 and
η : 32 → 4 to obtain a linear permutation η of F26 . The
composition of the permutation η with the S-box will have
the structural effect of grouping the black-and-white columns
in the LAT [15].

B. Computation of (η(x), η(g(x))

The application of the above permutation η to Dillon’s APN
S-box g(x) given in Table I by the pairs (x, g(x)) allows
us to obtain the new table (η(x), η(g(x)) given in Table II
with values in octal. Table II allows us to easily identify the
property that if the last three bits of the input η(x) are fixed and
its first three bits take all possible 23 values, then the last three
bits of the output η(g(x)) also take all possible values [15].
In Table II, for each column (last 3 bits of η(x) fixed), the last
3 bits (rightmost digit) of the output η(g(x)) take all possible
values.

As given in [15], a permutation π from F2n × F2n to itself
can be decomposed using two keyed n-bit permutations T and
U if the following property is fulfilled: fixing the lowest (right-
most) n-bits l of the input to any value and taking the highest
(leftmost) n-bits h all possible 2n values then the highest n-bits
output of π takes all possible 2n values. In this case, the
permutation π(h, l) is π(h, l) = (Tl(h), UTl (h)(l)). Figure 2
shows the T U -decomposition [15]. The above permutation η

TABLE II
TABLE (η(x), η(g(x)) IN OCTAL

Fig. 2. T U decomposition.

TABLE III
KEYED Ti PERMUTATIONS OF T

applied to Dillon’s S-box g(x) satisfies this property, so its
keyed 3-bit permutations Ti and Ui of T and U , respectively,
can be determined.

C. Computation of the Keyed Permutations T

The keyed permutations Ti , with i ∈ {0, . . . , 7}, of T can
be directly obtained from the octal Table II where, for a fixed
column d , it can be observed that the rightmost digits of the
outputs η(g(x)) for c ∈ {0, . . . , 7} take all possible values.
Therefore, each column i in Table II determines the keyed
permutations Ti , i ∈ {0, . . . , 7}, as given in Table III, where
Ti denotes the permutation corresponding to the key i .

D. Computation of the Keyed Permutations U

In order to determine the keyed permutations Ui , with
i ∈ {0, . . . , 7}, of U we use Dillon’s S-box g(x) given in
Table I. Now using the keyed permutation Ti in Table III we
annotate the values obtained for TV (M), where M is fixed
(M ∈ {0, . . . , 7} is one of the columns in Table III) and V
ranges from 0 to 7. The annotated values will be the inputs
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TABLE IV
KEYED Ui PERMUTATIONS OF U

for the keyed permutations Ui . Now in Table I with the pairs
(x, g(x)) in octal, we fix the 3 least significant bits of the
input x (the d columns) to the value M and let the 3 most
significant bits of the input x (the c rows) take all possible
values V (ranging from 0 to 7), i.e., x = V M where M is
fixed and V varies. Then we annotate the three least significant
bits (rightmost digits) of the values g(x) = g(V M) and denote
these values as gr (V M). Finally the obtained values gr (V M)

must be the outputs of the keyed permutations UTV (M)(V ),
i.e., UTV (M)(V ) = gr (V M) with V, M ranging from 0 to 7.
The keyed permutations Ui , i ∈ {0, . . . , 7}, of U are given in
Table IV, where Ui denotes the permutation corresponding to
the key i .

For example, for M = 1, Table III shows in boldface the
values of T0(1) = 3, T1(1) = 3, T2(1) = 2, T3(1) = 7,
T4(1) = 2, T5(1) = 4, T6(1) = 1, T7(1) = 5, and Table I
shows in boldface the values gr (V 1), with V from 0 to 7,
i.e., gr (01) = 0, gr (11) = 1, gr (21) = 0, gr (31) = 4,
gr (41) = 6, gr (51) = 1, gr (61) = 7, gr (71) = 6. Now
using the expression UTV (M)(V ) = gr (V M), the following
values for keyed permutations Ui can be obtained: U3(0) = 0,
U3(1) = 1, U2(2) = 0, U7(3) = 4, U2(4) = 6, U4(5) = 1,
U1(6) = 7 and U5(7) = 6. These values are represented in
boldface in Table IV.

V. HARDWARE ARCHITECTURE OF THE
TU-DECOMPOSITION OF DILLON’S APN PERMUTATION

The hardware architecture of Dillon’s APN Permutation
g(x) using the above T U -decomposition is shown in Figure 3,
where the dashed rectangle shows the T U -decomposition with
the outputs swapped. It must be noted that this architecture
generalizes to any even size of the input, and is not restricted
to just Dillon’s permutation; the latter is merely chosen as a
particularly relevant practical example for demonstrating our
method. The construction of the different building blocks is
given in the following subsections.

A. Permutation η

The permutation η has the 6-bit input x and the 6-bit output
η(x). Using the binary representation of x =

∑5
i=0 xi 2i , we

have that the coefficients xi , with i ∈ {0, . . . , 5}, have 2i as
their associated weights. In the same way, the 6-bit output
η(x) =

∑5
i=0 ηi 2i has the coefficients ηi associated with

weights 2i . As given in Subsection IV-A, the permutation
η can be constructed such that η(1) = 8, η(2) = 20,
η(4) = 38, η(8) = 1, η(16) = 2 and η(32) = 4. Therefore,

Fig. 3. Hardware architecture of T U -decomposition of Dillon’s permutation.

the permutation η(1) = 8 connects the input x0 (with weight
1 = 20) with the output η3 (with weight 8 = 23). Similarly,
η(8) = 1, η(16) = 2 and η(32) = 4 will connect x3 with
η0, x4 with η1 and x5 with η2, respectively. Furthermore,
η(2) = 20 will connect x1 with both η2 and η4 (20 = 22

+24).
Finally, η(4) = 38 will connect x2 with η1, η2 and η5
(38 = 21

+ 22
+ 25). It is easy to determine the binary matrix

of the linear permutation η that is given as follows:

η =


0 0 0 1 0 0
0 0 1 0 1 0
0 1 1 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (1)

Therefore, the outputs are η0 = x3, η1 = x4 ⊕ x2, η2 =

x5 ⊕ x2 ⊕ x1, η3 = x0, η4 = x1 and η5 = x2. The hardware
architecture of the block implementing the permutation η is
shown in Figure 4.

B. Keyed Permutation T

In order to compare different architectures of Dillon’s APN
permutation, polynomial expressions can be computed for the
keyed permutations Ti , with i ∈ {0, . . . , 7}, of T given in
Table III. The 3-bit inputs to block T can be represented
as finite field elements in F23 generated by the irreducible
trinomial f (y) = y3

+ y + 1. In this case, the elements of F23

represented in the polynomials basis {1, ρ, ρ2
}, with ρ being a

root of f (y), are {0, 1, ρ, ρ+1, ρ2, ρ2
+1, ρ2

+ρ, ρ2
+ρ+1}

where their binary strings can be represented as integers
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Fig. 4. Permutation η.

TABLE V
POLYNOMIAL REPRESENTATION OF KEYED Ti PERMUTATIONS

{0, 1, 2, 3, 4, 5, 6, 7}, respectively. Now keyed permutations Ti
can be represented by univariate polynomials over F23 using
Lagrange interpolation. For x ∈ F23 , these polynomials (with
algebraic degree 2) are given in Table V where it can be
observed that the terms 6x6

+7x5
+6x3 are common to every

Ti and therefore key-independent. Furthermore, the selection
of each of the permutations Ti depends on the key i , so a
vectorial multiplexer can be used for their selection as shown
in Figure 5(a).

The hardware architecture of the keyed permutations Ti
can be determined as follows. The 3-bit input x to Ti , i ∈

{0, . . . , 7}, is a finite field element in F23 generated by the
irreducible trinomial f (y) = y3

+ y+1, with ρ being a root of
f (y). From the univariate expressions given in Table V, it can
be observed that the squares x2 and x4 must first be computed
in such a way that the remaining powers x3, x5 and x6 can be
computed by the finite field F23 multiplication of these squares
and/or the input x , i.e., x3

= x ·x2, x5
= x ·x4 and x6

= x2
·x4.

Subsequently, the above powers of x must be multiplied by
some element {0, 1, ρ, ρ + 1, ρ2, ρ2

+ 1, ρ2
+ ρ, ρ2

+ ρ + 1}

(represented in Table V as integers) of F23 and finally XORed
to compute the keyed permutation Ti .

The finite field multiplier over F23 used in this paper
and, as an example, the hardware architecture of the keyed
permutation T0 are given in the following.

1) Multiplier Over F23 : In this work, we have used the
method given in [28] for the design of F2m multipliers for
irreducible trinomials. Following [28], the product C = A · B,
with A, B ∈ F23 , can be computed by using the functions
S1 = a0b0, S2 = (a0b1 + a1b0), S3 = a1b1 + (a0b2 + a2b0),
T0 = (a1b2 +a2b1) and T1 = a2b2, where ai , bi ∈ F2 are the
coordinates of A and B, respectively. With these functions,
the coordinate expressions of the product C = A · B over F23 ,

Fig. 5. (a) Keyed permutation T . (b) Keyed permutation U .

with ci ∈ F2, are

c0 = S1 + T0

c1 = S2 + T1 + T0 (2)
c2 = S3 + T1

2) Architecture of T0: As given in Table V, the univariate
expression of the keyed permutation T0 is T0 = 6x6

+ 7x5
+

1x4
+ 6x3

+ 5x2
+ 0x + 0, where x is a finite field element in

F23 generated by the irreducible trinomial f (y) = y3
+ y + 1,

with ρ being a root of f (y). In this case, the elements of F23

in the polynomials basis {1, ρ, ρ2
} are {0, 1, ρ, ρ+1, ρ2, ρ2

+

1, ρ2
+ρ, ρ2

+ρ+1}, where their binary strings are represented
by the integers {0, 1, 2, 3, 4, 5, 6, 7}, respectively.

For the input x = x2ρ
2
+x1ρ+x0, with xi ∈ F2, the squares

x2 and x4 modulo f (y) can be easily computed because x2i
=

x2ρ
2·2i

+ x1ρ
1·2i

+ x0ρ
0·2i

and the powers of ρ are reduced
modulo f (y) using the expressions ρ3

= ρ + 1, ρ4
= ρ2

+ρ,
ρ5

= ρ2
+ρ + 1, ρ6

= ρ2
+ 1, ρ7

= 1 and ρ8
= ρ. Therefore

the squares x2 and x4 modulo f (y) = y3
+ y + 1 are

x2
= (x2 + x1)ρ

2
+ x2ρ + x0 (3)

x4
= x1ρ

2
+ (x2 + x1)ρ + x0 (4)

The remaining powers x3, x5 and x6 can be computed as
x3

= x · x2, x5
= x · x4 and x6

= x2
· x4, where · corresponds

to the use of the F23 multiplier given in equation (2).
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Fig. 6. Keyed permutation T0.

As previously given, the integers 7, 6, 5, 1 in the T0 expres-
sion corresponds to the field elements ρ2

+ ρ + 1 = ρ5,
ρ2

+ ρ = ρ4, ρ2
+ 1 = ρ6, 1, respectively. Therefore, the

products 7a, 6a and 5a, with a = a2ρ
2
+ a1ρ + a0, ai ∈ F2,

being a generic element in F23 can be computed as:

7a = ρ5a = (a1 + a0)ρ
2
+ a0ρ + (a2 + a1 + a0) (5)

6a = ρ4a = (a2 + a1 + a0)ρ
2
+ (a1 + a0)ρ + (a2 + a1) (6)

5a = ρ6a = a0ρ
2
+ a2ρ + (a1 + a0) (7)

Figure 6 shows the architecture of the keyed permutation
T0 = 6x6

+ 7x5
+ 1x4

+ 6x3
+ 5x2

+ 0x + 0 = 6x6
+ 7x5

+

x4
+ 6x3

+ 5x2
= ρ4x6

+ ρ5x5
+ x4

+ ρ4x3
+ ρ6x2, where

the key-independent addition 6x6
+ 7x5

+ 6x3 (common to
every Ti ) is previously XORed in order to be shared with the
remaining Ti , i = 1, . . . , 7 permutations.

C. Keyed Permutation U

In a similar way as in Subsection V-B, univariate polyno-
mials over F23 using Lagrange interpolation can be computed
for the keyed permutations Ui , with i ∈ {0, . . . , 7}, of U given
in Table IV. These expressions (with algebraic degree 2) are
given in Table VI, where it can also be observed that the
terms 2x6

+ 5x5
+ 4x3 are common to every Ui and therefore

key-independent. The selection of each of the permutations Ui
depends on the key i , so a vectorial multiplexer can also be
used for their selection as shown in Figure 5(b).

The hardware architecture of the keyed permutations Ui can
be determined in a similar way as shown in subsection V-B
for the Ti permutations.

D. Inverse Permutation η−1

The inverse permutation η−1 has a 6-bit input y and the
6-bit output η−1(y). As shown in Figure 3, this block supplies

TABLE VI
POLYNOMIAL REPRESENTATION OF KEYED Ui PERMUTATIONS

Fig. 7. Inverse permutation η−1.

the output of Dillon’s permutation g(x), so η−1(y) = g(x).
The inputs and outputs can be represented by their coefficients
(y5, y4, y3, y2, y1, y0) and (g5, g4, g3, g2, g1, g0), respectively.
The inverse permutation η−1 can be determined by simply
computing the inverse of the binary matrix of η given in
equation (1). The inverse matrix is as follows:

η−1
=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0

 (8)

and therefore the outputs are given as g0 = y3, g1 = y4,
g2 = y5, g3 = y0, g4 = y1 ⊕ y5 and g5 = y2 ⊕ y4 ⊕ y5. The
hardware architecture of the block implementing the inverse
permutation η−1 is shown in Figure 7.

VI. THEORETICAL COMPLEXITY ANALYSIS

Area and time theoretical complexities of Dillon’s APN Per-
mutation g(x) using the T U -decomposition can be obtained
from the complexities of the modules described in Section V.
Area complexity is determined by the number of 2-input logic
gates (AND, OR, XOR) and time complexity corresponds to
the maximum number of 2-input logic gates that a signal
must traverse from input to output, given in terms of TAN D ,
TO R and TX O R (delay of 2-input AND, OR and XOR gates,
respectively).

A. Area Complexity

Using the modules described in Section V, the area com-
plexity can be computed as follows:
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TABLE VII
THEORETICAL COMPLEXITIES OF DILLON’S PERMUTATION

• The permutation block η shown in Figure 4 involves the
use of one 3-input XOR and one 2-input XOR gates,
so the area complexity will be three 2-input XOR gates.

• The keyed permutation T block given in Subsection V-B
involves the implementation of the eight permutations Ti
and a vectorial multiplexer with three control inputs, eight
3-bit data inputs and one 3-bit output.
The area complexity of T0 can be computed using equa-
tions (3)–(7) and Figure 6.
For a generic a = a2ρ

2
+ a1ρ + a0, ai ∈ F2, in F23

and in a similar way as given in Subsection V-B, the
following expression is also needed for the computation
of the remaining Ti , i = 1, . . . , 7, permutations:

2a = ρa = a1ρ
2
+ (a2 + a0)ρ + a2 (9)

Furthermore, it can be observed that the implementation
of Ti permutations require the use of three F23 multipliers
(for the computation of x3

= x · x2, x5
= x · x4 and

x6
= x2

· x4). From equations (2), a finite field mul-
tipler requires 9 AND and 8 XOR gates, so 27 AND
and 24 XOR gates are needed for the three multipliers.
Using the expressions given in Table V, it can be observed
that the key-independent addition 6x6

+ 7x5
+ 6x3 can

be shared among all the Ti permutations.
It can also be observed that the addition of the last term
in expressions given in Table V is simply given by the
3-bit bitwise XOR of the corresponding terms 1 = “001”,
2 = ρ = “010”, 3 = ρ + 1 = “011”, 4 = ρ2

= “100”,
6 = ρ2

+ ρ = “110” and 7 = ρ2
+ ρ + 1 = “111”.

With respect to the vectorial multiplexer with three con-
trol inputs, eight 3-bit data inputs and one 3-bit output,
it is implemented with three MUXs 8:1 in parallel, with
a total complexity of 72 AND and 21 OR 2-input gates.
Finally, using the above considerations, it can be proven
that the area complexity of the keyed permutation T block
is given by 99 AND, 21 OR and 101 XOR gates.

• The keyed permutation U block given in Subsection V-C
involves the implementation of the eight permutations Ui
and a vectorial multiplexer with three control inputs, eight
3-bit data inputs and one 3-bit output.
From Table VI, it can be observed that the key-
independent addition 2x6

+ 5x5
+ 4x3 can be shared

among all the Ui permutations. Furthermore, using the
following expressions for a generic a ∈ F23

3a = (a2 + a1)ρ
2
+ (a2 + a1 + a0)ρ + (a2 + a0) (10)

4a = (a2 + a0)ρ
2
+ (a2 + a1)ρ + a1 (11)

and using similar considerations as for the keyed permu-
tation T block, it can be proven that the area complexity

of the keyed permutation U block is given by 99 AND,
21 OR and 112 XOR gates.

• The inverse permutation block η−1 shown in Figure 7
requires the use of one 3-input XOR and one 2-input
XOR gates, so the area complexity is three 2-input XOR
gates.

The combination of the above complexities gives a total
area complexity of 198 AND, 42 OR and 219 XOR gates for
Dillon’s APN Permutation g(x) using the T U -decomposition
as shown in Table VII.

B. Time Complexity

From the previous descriptions of the different modules, the
time complexity can be determined as follows:

• The delay of the permutation block η is given by 2TX O R .
• The time complexity of the keyed permutation T block is

given by the maximum delay of the Ti , i = 0, . . . , 7, per-
mutations and the delay of the vectorial multiplexer. It can
be proven that the maximum delay corresponds to the
permutations T1, T2, T5 and is given by TAN D +11TX O R .
Furthermore, the delay of the vectorial multiplexer is
2TAN D + 3TO R . Therefore, the time complexity of the
keyed permutation T block is 3TAN D +3TO R +11TX O R .

• The time complexity of the keyed permutation U block is
determined in a similar way as the previously computed
keyed permutation T . It can be proven that the maximum
delay of the Ui , i = 0, . . . , 7, permutations corresponds
to U1, U2, U3, U4, U6 and is given by TAN D + 10TX O R .
Therefore, the time complexity of the keyed permutation
U block is 3TAN D + 3TO R + 11TX O R .

• The delay of the inverse permutation block η−1 is given
by 2TX O R .

It can be observed that the keyed permutations Ti and
Ui from blocks T and U , respectively, can be computed in
parallel. However, as shown in the hardware architecture of
the T U -decomposition given in Figure 3, there is a depen-
dency for the computation of the U block: the control inputs
to the vectorial multiplexer in the U block are the outputs
of the T block. Therefore, in order to determine the delay
of the T U -decomposition, the time complexity of the keyed
permutation T block (3TAN D + 3TO R + 11TX O R) must be
added with the delay of the U block vectorial multiplexer
(2TAN D + 3TO R). Finally, the overall time complexity of the
Dillon’s APN Permutation g(x) using the T U -decomposition
is 5TAN D + 6TO R + 11TX O R , as shown in Table VII.

C. Previous Architectures

Hardware architectures and implementations of the Dillon’s
6-bit APN Permutation g(x) in Table I were given in [14],
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where the univariate polynomial representation of g(x) and
the composition of two functions f1(x) and f −1

2 (x) were
considered. As given in Section III, it was shown in [14]
that the univariate representation of Dillon’s permutation g(x)

has algebraic degree 4, while the functions f1(x) and f −1
2 (x)

used to express g(x) = f1( f −1
2 (x)) have algebraic degrees

2 and 3, respectively. In both cases, the primitive pentanomial
f (y) = y6

+ y4
+ y3

+ y + 1 over F2 was used. In [14],
the total number of 2-input AND gates and time delays were
theoretically computed using the complexities of the modules
that constitute the different architectures while that the total
number of 2-input XOR gates was given by the synthesis tool
used for the implementation. The theoretical complexities and
hardware FPGA implementations given in [14] show that the
reduction of the algebraic degree of the functions involved in
the representation implies a reduction of the complexity of the
hardware implementation.

Another univariate representation of Dillon’s 6-bit APN
permutation with algebraic degree 4 was given in [13] for the
primitive pentanomial f (y) = y6

+y4
+y3

+y+1. In this case,
the total number of 2-input AND and XOR gates and time
delays were theoretically computed using the complexities
of the modules that constitute the different architectures.
Theoretical complexities and hardware implementation results
were also given in [13]. To the best of our knowledge, no other
hardware architectures of 6-bit Dillon’s APN permutation have
been given in the literature. For this reason, although Dillon’s
univariate representation given in [13] is different from the one
used in this work and in [14], it is included for comparison in
Subsection VI-D and in Section VII.

Other low-complexity architectures of S-boxes considering
security properties as differential uniformity and nonlinearity,
among others, have been reported in the literature. In [31]
and [32], low area and highly secure lightweight 8-bit S-boxes
based on field inversion over F28 were presented. Lighweight
cryptographic 8-bit S-boxes based on the use of two low-
complexity 4-bit S-boxes were also given in [33]. Optimized
fault-tolerant and error-correcting non-APN 4-bit S-boxes for
cryptographic applications with multiple errors detection were
also given in [34]. As the above highly efficient S-boxes
exhibit differential uniformities greater than 2 (i.e. they are
non-APN permutations) and they are not 6-bit S-boxes, they
have not been compared with the 6-bit Dillon’s APN S-boxes
in Subsection VI-D and Section VII.

D. Comparison of Theoretical Complexities

Table VII shows the theoretical complexities of the different
hardware architectures of 6-bit Dillon’s APN Permutation g(x)

given in [13] and [14] and those presented in this paper.
From Table VII, it can be observed that the T U -

decomposition architecture here presented exhibits a reduction
in the number of 2-input AND gates of 73.8% and 82.81%
with respect to the composition and univariate architectures
given in [14], respectively, and a reduction of 81.2% and
86.36% in the number of XOR gates with respect to the
composition and univariate architectures, respectively. How-
ever, the T U -decomposition includes 42 OR gates that are
not needed in the other architectures.

TABLE VIII
FPGA EXPERIMENTAL RESULTS

With respect to the theoretical delay, the T U -decomposition
has increases of 67% and 150% in TAN D and reductions of
73.81% and 54.17% in TX O R with respect to the composi-
tion and univariate architectures given in [14], respectively.
T U -decomposition also has an additional delay 6TO R not
included in the other architectures. However, 2-input XOR
gates have approximately double delay compared to AND and
OR gates, so the T U -decomposition architecture also exhibits
a reduced time complexity.

Table VII also includes the theoretical complexities of the
different univariate representation of Dillon’s APN permuta-
tion given in [13] for the primitive pentanomial f (y) = y6

+

y4
+y3

+y+1. In this case, the T U -decomposition architecture
presented in this paper exhibits a reduction in the number
of AND and XOR gates of 88.8% and 91.9%, respectively,
with respect to the univariate architecture given in [13]. With
respect to the theoretical delay, the T U -decomposition exhibits
the same results for [13] as those given for [14].

VII. HARDWARE IMPLEMENTATIONS

In order to compare the new T U -decomposition architec-
ture with the other two architectures of Dillon’s permutation
given in [14] (univariate polynomial and composition of two
functions) and with the different univariate representation of
Dillon’s APN permutation given in [13], we have performed
FPGA implementations of the hardware architecture presented
in Section V using the univariate polynomials for the Ti and
Ui permutations (referred to as T U -decomposition in Table V)
given in Table V and Table VI, respectively.

The architectures have been described in VHDL, synthe-
sized and implemented on Xilinx FPGA Artix-7 XC7A12T-3-
CPG238 using VIVADO 2021.2. The experimental post-place
and route results obtained are shown in Table VIII, where it
can be observed that due to the small size of the Dillon’s
6-bit permutation, the synthesis tool can optimize the designs
and therefore all the implementations fit in only 6 LUTs
(Lookup Tables). Furthermore, the delay (in nanoseconds)
and the area × delay metrics are quite similar for all the
implementations.

For this reason, and in order to highlight the differences
shown in Table VII between the different architectures, the
VHDL hardware descriptions have also been synthesized for
ASIC with Synopsys Design Compiler [30] using the TSMC
(Taiwan Semiconductor Manufacturing Company) 45 nm.
CMOS library “tcbn45gsbwp12tml.db”. Design Compiler tool
enables concurrent optimization of timing, area, power and
test, and its results are correlated within 10% of ASIC physical
implementation [30]. Table IX compares the experimental
results obtained with Synopsys DC, where Cells stands for
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TABLE IX
SYNOPSYS EXPERIMENTAL RESULTS

the number of cells used for the implementation, GE stands
for the number of Gate Equivalent 2-input NAND gates, Area
represents the combinational area in µm2, Delay is the propa-
gation delay in ns, A × D represents the Area × Delay given
in µm2

· ns, and Power represents the energy consumption in
mW . From the results obtained in Table IX, it can be observed
that the T U -decomposition hardware architecture greatly out-
performs the area and time complexities of the univariate
polynomial and composition of two functions architectures of
Dillon’s permutation given in [14]. Considering the number of
cells, the T U -decomposition architecture exhibits reductions
of 84.1% and 88.9% with respect to the composition f1 ◦

f −1
2 and univariate architectures, respectively. Considering the

number of GE, the T U -decomposition architecture exhibits
reductions of 84.6% and 88.7% with respect to the com-
position f1 ◦ f −1

2 and univariate architectures, respectively.
Considering the area, the T U -decomposition architecture
presents reductions of 84.6% and 88.7% with respect to the
composition and univariate architectures, respectively. With
respect to the delay, the T U -decomposition exhibits reductions
of 52.0% and 32.4% with respect to the composition f1 ◦ f −1

2
and univariate architectures, respectively. For the Area ×

Delay metrics, the T U -decomposition presents reductions
of 92.6% and 92.4% in comparison with the composition
f1◦ f −1

2 and univariate architectures, respectively. Considering
the power consumption, the T U -decomposition architecture
presents reductions of 83.0% and 88.2% with respect to the
composition and univariate architectures in [14], respectively.

With respect to the comparison of the T U -decomposition
with the different univariate representation of Dillon’s per-
mutation given in [13], the reductions in number of cells,
area, delay, Area× Delay and power consumption are 93.1%,
92.9%, 44.2%, 96.1% and 92.8%, respectively.

Therefore the use of the T U -decomposition for Dillon’s
APN Permutation can provide hardware implementations with
very low complexities in comparison with other approaches.

VIII. CONCLUSION

In this paper, we have presented a low-complexity hardware
architecture for the T U -decomposition of APN permuta-
tions, using Dillon’s APN as a target for this approach. The
T U -decomposition can produce significant reductions on the
hardware implementation complexity of APN permutations.
A detailed description of the different components for the
Dillon’s APN permutation based on its decomposition into
3-bit keyed permutations (T, U ) over F23 has been given.
We have also presented hardware theoretical complexities and
results obtained from FPGA and ASIC implementations for
the T U -decomposition hardware proposed architecture. From

the results obtained and their comparison with other hardware
architectures given in the literature, we have observed that
the T U -decomposition architecture presented here greatly
outperforms all other hardware approaches in terms of area,
delay and area×delay complexities. Furthermore, the hardware
architecture presented here can easily be generalized to any
permutation on an even number of bits, and is not restricted
to just Dillon’s permutation; the latter is merely chosen as
a particularly relevant practical example for demonstrating
our method. The decomposition of Dillon’s APN permutation
can lead to important reductions of hardware complexity,
so our future work will be focused on further study the T U -
decomposition of this and other S-boxes.
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