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Abstract—Magnetic continuum robots (MCRs) have become
popular owing to their inherent advantages of easy miniatur-
ization without requiring complicated transmission structures.
The evolution of MCRs, from initial designs with one embedded
magnet to current designs with specific magnetization profile
configurations (MPCs), has significantly enhanced their dexterity.
While much progress has been achieved, the quantitative index-
based evaluation of deformability for different MPCs, which can
assist in designing MPCs with enhanced robot deformability,
has not been addressed before. Here we use "deformability"
to describe the capability for body deflection when an MCR
forms different global shapes under an external magnetic field.
Therefore, in this paper, we propose methodologies to design
and control an MCR composed of modular axially magnetized
segments. To guide robot MPC design, for the first time, we
introduce a quantitative index-based evaluation strategy to an-
alyze and optimize robot deformability. Additionally, a control
framework with neural network-based controllers is developed
to endow the robot with two control modes: the robot tip
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position and orientation (M1) and the global shape (M2). The
excellent performance of the learnt controllers in terms of
computation time and accuracy was validated via both simulation
and experimental platforms. In the experimental results, the best
closed-loop control performance metrics, indicated as the mean
absolute errors, were 0.254 mm and 0.626◦ for mode M1 and
1.564 mm and 0.086◦ for mode M2.

Index Terms—Continuum robots, soft robotics, modular axial
magnetization, magnetic actuation, deformability.

I. INTRODUCTION

OVER the past few decades, minimally invasive surgery
(MIS) has emerged as one of the most notable advance-

ments in the field of surgery. Despite its remarkable merits,
such as fewer invasive procedures, decreased pain, and shorter
recovery time [1], MIS has challenges such as time-consuming
upfront training and rapid fatigue for surgeons [2]. Misopera-
tion caused by the fatigue or physiological stress of surgeons
can affect operative accuracy or even trigger MIS failure.
Therefore, robotic assistance, particularly robotic systems with
high control performance, is essential to alleviating the burden
on surgeons and performing accurate operations [3], [4].

Owing to their dexterity potential, continuum robots
(CRs) are a solution for robot-assisted surgeries, such as
bronchoscopy, neurosurgery, eye surgery, and cardiovascular
surgery [5]–[8]. Considerable CRs, functioning as medical
guidewires or catheters, are actuated by cables or tendons
[9], shape memory alloys [10], [11], pneumatic [12], [13]
or hydraulic systems [14], [15], concentric tubes [16], and
parallel mechanisms [17]. However, complicated mechanical
components are required to endow CRs (except for concentric
tubes) with motion transmission capabilities, which impedes
their miniaturization to some extent [18].

Compared with the aforementioned actuation methods, mag-
netic actuation is promising for several aspects: remote and
non-contact actuation, easy penetration of biological tissues,
and safety for living organisms [19]–[26]. One or more
magnets are arranged at the robot tip to endow MCRs with
magnetism [27]–[31]. Under a uniform magnetic field, a torque
occurs on each magnetic element of the robot when the
magnetic moment of the element does not coincide completely
with the external field. Therefore, these magnetic elements
tend to align themselves with the orientation of the external
field to lower the magnetic potential energy. Additionally,
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Fig. 1. Conceptual design of the MAMMCR. (a) The robot is expected to navigate and track by adaptively tuning the global shape. This may increase the
potential of the robot in some medical applications, such as drug delivery or laser ablation. (b) Conceptual design: the robot body primarily contains two
parts: the passive and active bending modules. Specifically, each segment of the active bending module, which contains magnetic silicone (silicone mixed with
NdFeB particles), can be selectively magnetized to have different axial magnetization orientations. The modular MPC enables the robot to adaptively deform
into different shapes during navigation under the feed motion and magnetic actuation. (c) Magnetism features of two MCRs with non-axial and axial MPCs:
(c1) The robot has the same magnetism distribution in different radial directions to show workspace symmetry and potentially benefit the robot magnetic
control. (c2) From different radial directions, the magnetism distribution of the robot with a non-axial magnetization profile shows asymmetry.

the robot deformation caused by this alignment increases the
elastic potential. The final balanced state appears when the
total potential of the system reaches a minimum value. When
the field is nonuniform, the magnetic torque and force function
together to introduce robot deformation. Owing to the remote
actuation, intricate transmission structures are not required
for MCRs, enabling robot miniaturization [19], [32], [33]. To
further miniaturize MCRs and improve safety, researchers have
used magnetic soft materials (silicone or hydrogels mixed with
ferromagnetic microparticles) in robot prototypes [34]–[36].
Compared with conventional permanent-magnet robot designs,
stronger external fields are required for comparable deforma-
tions because magnetic silicone exhibits weaker magnetism
than permanent magnets at the same scale.

Although miniaturization is possible, these MCRs lack
the level of dexterity of CRs actuated using other methods
[19]. MCRs with a traditional one-segment design can hardly
achieve dexterous shape deformation decoupling from the tip
position or orientation. To enhance the dexterity, researchers
have investigated MCRs using magnetization programming
technology [37]–[39], [41]–[44]. Tethered MCRs embedded
with two oppositely magnetized magnets can achieve differ-
ent deformation shapes [37], [38], although more permanent
magnets in an MCR increase the safety risk of being left in
the body when a prototype ruptures [36]. To further improve
the dexterity, we first proposed a new concept of intraop-
erative magnetic moment programming for MCRs actuated
by uniform magnetic fields in our previous papers. Different
magnetic moment combinations can be obtained during robot

navigation using polymer phase-changing technology [39] or
shape memory alloy actuation [40], but it results in a complex
structural design and time-consuming heating and cooling
processes.

Recently, researchers have explored customized and length-
wise distributed MPCs in magnetic silicone MCRs [41]–[44].
Although they lack the capability of intraoperative magnetic
moment programming, these MCRs can deform into specific
shapes, benefiting from preoperative customized non-axial
MPCs [41]. Similarly, theoretical modeling [43], a learnt
method [44], and a Jacobian-based controller [45], [46] have
been introduced to generate a series of asymmetric MPCs to
endow MCRs with time-varying shaping capabilities. These
MCRs adopt non-axial MPCs to enhance their deformability.
As shown in Fig. 1(c), the non-axial MPC exhibits different
magnetism distributions in different radial direction. Although
different non-axial magnetization designs have been demon-
strated to be suitable for different tasks [41], workspace
asymmetry can be observed in Fig. 1(c2). Moreover, the axial
MPC causes MCRs to have an identical magnetism distribution
in different radial directions, which ensures robot workspace
symmetry and potentially facilitates robot control (Fig. 1(c1)).
Except for this, from our perspective, a quantitative eval-
uation of the deformability of different robot MPCs with
indices has not yet been addressed. This is crucial for guiding
MPC design, particularly for axial MPCs. Although different
magnetization combinations in the modular axial MPC can
endow a robot with different deformabilities, according to our
analysis results, the robot deformability does not intuitively
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TABLE I
CONTROL PERFORMANCE OF MAGNETIC CONTINUUM ROBOTS AMONG OUR ROBOT AND TYPICAL PROTOTYPES IN EXISTING WORKS

Reference Robot body Kinematics Controller Computation Magnetic Body length Explored range Control mode Control performance

magnetic method design time [ms] actuating (estimation) (estimation) (Mean absolute error)

component (an iteration) method [mm] [mm2 or mm3] Tip Shape Position Orientation

[mm] [◦]

[31] Magnet Cosserat Rod Jacobian-based 10 8 EMs 130-170 170×40×40 " % 0.42 —–

[48] Magnet PRB Jacobian-based 1.8 6 EMs ∼ 0-70 60×60×60 " % 0.57 —–

[30] Magnet EBB Semi-automatic —– 3 EMs ∼ 0-200 200×40×15 " % 1.79 —–

[37] Two magnets PRB Jacobian-based 6.5 PM 70-120 100×30×30 " " 1.3 2.8

[45] NP + Drag PCC Jacobian-based 3 2 PMs 40 40×40×40 " " 3.8 —–

(wr = 1:1)

[47] NP + Drag —– Learning-based —– HC 0-30 20×10 " % ∼ 1 —–

(vr = 0.25:1) (data from FEM)

Our work* NP + Eco PRB Learning-based 5× 10−6 PM 80-180 172×35 " " 0.254 0.626
(wr = 4:1) (data from model)

[*] To guide the robot body design, for the first time, we introduced and exploited an index-based evaluation strategy to analyze and optimize the robot deformability.

Our learning-based controllers exhibited excellent performances but currently were demonstrated in the plane with gravity counteracted.

[Abbreviations] NP: NdFeB particles; Drag: Dragon Skin 30; Eco: Ecoflex 00-30; wr: weight ratio; vr: volume ratio; EM: electromagnet; PM: permanent magnet;

HC: Helmholtz Coil; PRB: pseudo-rigid body; EBB: Euler Bernoulli beam theory; PCC: piecewise constant curvature; FEM: finite element method;

∼: around; —–: not support or show this functionality or index.

increase with MPC complexity. Furthermore, an optimized
MPC enables accurate robot control and better performance.

To address this, we focus on the design and learning-based
control of a modular axially magnetized magnetic continuum
robot (MAMMCR)(Fig. 1(b)). The robot is actuated using a
robotic arm-based magnetic actuating system (RAMAS). The
control performance of our research and latest typical studies
on MCRs are compared in Table I. In our work, the opti-
mized axial MPC, obtained from the quantitative deformability
evaluation of different magnetization combinations, endowed
our robot with a radially isotropic magnetism distribution and
good deformability. The control algorithms are developed to
achieve accurate two-mode control: the robot tip position and
orientation (M1) and its global shape (M2). In both simulation
and experimental platforms, our robot can navigate and deform
with good control performance compared with other robots.
This may increase the potential for specific medical applica-
tions in body cavities or organs. For example, a robot can
be expected to navigate and follow the surface of abdominal
tissue or organs while maintaining specific tip orientations to
perform drug delivery or laser ablation (Fig. 1(a)). In addition,
because of the nitinol core column inside the robot body, the
higher stiffness compared with MCRs fabricated from pure
soft magnetic silicone might enable the robot to be used in
future intracorporeal palpations.

The two main contributions of this study are as follows:

1) To guide the design of robot MPCs, for the first time,
we propose a quantitative index-based deformability
evaluation strategy. Based on a static pseudo-rigid body
(PRB) model of the robot, it is exploited for optimized
robot deformability.

2) A control framework with neural network (NN)-based
controllers is proposed to achieve high performance in
terms of computation time and accuracy. The mean
computation time of our learnt controllers during each

iteration is ∼ 5 × 10−6 ms, which has significant
potential for real-time control. The experimental results
revealed that the mean absolute errors (MAEs) for the
two designed control modes are 0.254 mm and 0.626◦

for mode M1 and 1.564 mm and 0.086◦ for mode M2.
The remainder of this article is organized as follows:

first, the conceptual design and kinematics modeling of the
MAMMCR are first discussed in detail. Next, a strategy to
quantitatively evaluate the robot deformability is proposed to
optimize the robot MPC. Subsequently, we characterize the
kinematic behavior of the robot using the optimized MPC.
Furthermore, an NN-based control framework is constructed
to provide two control modes. Following that, a prototype
fabrication method is proposed. Finally, simulation and exper-
imental results confirming the effectiveness of the proposed
robot and the corresponding control algorithms are reported.

II. ROBOT CONCEPTUAL DESIGN AND KINEMATICS
MODELING

In this section, we design and model the deformation
kinematics of the proposed MAMMCR under the actuation of
a permanent magnet and feed motion. All symbols, variables,
and explanations defined in this section are listed in Table V
(Appendix A). The modeling facilitates the optimization of
MPCs, deformation behavior characterization, and NN-based
control, as described in the next section.

A. Robot Conceptual Design

As shown in Fig. 1(b), the MAMMCR consists of two
modules: an active bending module (ABM) and a passive
bending module (PBM), which are distributed lengthwise.
The ABM contains numerous magnetic segments containing
the same magnetic soft material, wherein all segments have
the same magnetic dipole intensity but can have different
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axial magnetization orientations towards the distal/proximal
end of the robot. The PBM is non-magnetic. Consequently, the
constructed MPC enables the ABM to form different shapes
under a programmable magnetic field. In addition, the feed
motion and passive deformation of the PBM, as well as the
active deformation of the ABM, are expected to facilitate robot
navigation and deformation as desired.

B. Mapping from the Joint Space to Task Space

The navigation and deformation of our robot under the field
generated by a permanent magnet exhibit high nonlinearity
owing to the continuum characteristic, the nonlinear properties
of soft materials, nonlinear magnetic field generated by an ex-
ternal movable magnetic dipole, and highly nonlinear magnetic
force and torque on each segment dipole. Thus, we propose
approximating robot kinematics as a quasi-static problem.
Three main kinematics modeling methods are available for
MCRs: the Bernoulli–Euler rod theory [19], [39], Cosserat
rod theory [31], and PRB discretization technique [37], [38],
[48]. The first two methods can describe the nonlinear vari-
ation of continuum curvatures by modeling the mechanics
of robot segments, whereas the PRB model approximates
the long slender robot body as finite rigid links connected
individually via flexible joints to accelerate computations. For
the model computation, because the analytical solutions are
demanding to be directly given in highly nonlinear MCR
kinematic problems, numerical approaches, such as the finite
difference method and energy-based method, are leveraged to
obtain the appropriate solutions [37]. In our study, we adopt
the PRB model coupled with a potential-energy-based ap-
proach to model the forward kinematics of an infinite-segment
MAMMCR under feed motion and an external magnet dipole.

We first parameterize the configuration of the infinite-
segment robot (Fig. 2(a)). Here "infinite" refers to the number
of segments that can be magnetized with different mag-
netization orientations in the ABM. We have a total of
(Ns + 1) (Ns ≥ 1) segments, including one PBM segment
(gray) and Ns segments (colors excluding gray) along the
MPC of the ABM. We discretize the PBM segment into Np

rigid links, and Na rigid links are discretized for each ABM
segment. All these links are joined individually via flexible and
revolute joints. For ease of representation in the modeling, the
total (N + 1)(N = Np + NaNs) joints from the proximal
end to the distal tip are labeled sequentially as 0, 1, ..., N . To
describe the relationship between these links and joints, we
first define a series of reference frames {Ci} (i = 0, 1, ..., N).
{Ci} adopts the right-hand coordinate form.

We assume that bending and twisting deformations exist in
the robot and that the shear and axial extensions are ignored.
The link deformation can be described by variable θi ∈ R3

(Figs. 2(c) and (d)):

θi =
[
θi1 θi2 θi3

]T
(i = 1, 2, ..., N) (1)

where θi1, θi2, and θi3 determine the bending plane, bending
angle, and twisting angle of the ith link, respectively, repre-
senting the relative pose of reference frame {Ci} with respect
to reference frame {Ci−1}. Thus, the robot deformation angle

configuration, that is, the joint space vector of robot θ ∈ R3N ,
is expressed as follows:

θ =
[
θT
1 θT

2 ... θT
N

]T
. (2)

To facilitate the following modeling, we specifically denote
the reference frame of proximal base {C0} as {B}. For all
variables described in {B}, the left-hand superscripts denoting
the reference frame are omitted for conciseness. Moreover,
each reference frame {Ci} is located at the position of the ith
flexible joint pi ∈ R3.

Naturally, the pose of {Ci} with respect to {B} can be de-
scribed via a homogeneous transformation B

Ci
H (θ) ∈ SE(3),

which can be expressed as the product of exponentials [49]:

B
Ci
H (θ) =

 i∏
j=1

exp

(
3∑

k=1

ξ̂jk θjk

) B
Ci
H0 (3)

where ξ̂jk ∈ se(3) is the twist at the jth joint. Note that the
symbol (̂.) is the mathematical operator representing the
mapping from a R6 (or R3) vector space to the Lie algebraic
space se(3) (or so(3)). The twist coordinate ξjk ∈ R6

and corresponding twist ξ̂jk can be described as follows,
respectively:

ξjk =
[
ωT

jk (−ωjk × pj)
T
]T (4)

ξ̂jk =

 ω̂jk −ωjk × pj

O1×3 0

 (5)

where ω̂jk ∈ so(3) is the skew-symmetric matrix of unit
vector ωjk ∈ R3. ωjk denotes the rotation axis of the jth
joint: ωj1 = ωj3 =

[
1 0 0

]T
; ωj2 =

[
0 0 1

]T
.

Additionally, B
Ci
H0 interprets the initial pose of {Ci} with

respect to {B} without the actuation of the external magnetic
field. By combining Eqs. (3)–(5), the position and posture of
each robot link can be derived under a determined deformation
angle configuration θ. Hence, we complete the derivation of
the joint-to-task space mapping FJT (.):

t = FJT (θ) (6)

where t ∈ R5N represents the full task space vector, which
can be concretized as

t =
[
tT1 tT2 ... tTN

]T (7)

where ti =
[
pT
i γT

i

]T ∈ R5 denotes the state of the ith
link, for which γli =

[
γi1 γi2

]T ∈ R2 is the link angle
vector, and γi1 and γi2 are two angles that describe the tip
orientation of the ith link (Fig. 2(c)). Note that the positive and
negative signs of the two angles represent counterclockwise
and clockwise rotations, respectively. Thus, the position and
orientation of each link can be obtained for future numerical
analyses and control algorithm designs.

C. Magnetism Parameterization

To model the mapping from the actuation space to the
joint space, we must first parameterize the magnetism of
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Fig. 2. Kinematics modeling of the robot under the actuation of the feed mechanism and RAMAS. (a) RAMAS employs a 6-DoF robotic arm with the base
frame {R} to manipulate a permanent magnet for magnetic field programming. To describe the influence of the generated magnetic field and the feed motion
on the robot, the PRB discretization, expressed in the MAMMCR base frame {B}, is leveraged to represent the continuous navigation and deformation by
connecting N rigid links with the flexible joints. The ith rigid link with the selective magnetization is expressed in its base frame {Ci}. The navigation and
deformation of the robot is observed in the camera framework {O} for closed-loop feedback. Moreover, the feed motion is discretized into the length increase
of each segment in the PBM (grey segments). (b) Modeling of the actuating magnetic dipole with respect to the frame {B}. (c) Twisting of the discretized
robot link. (d) Geometric description of the ith rigid link of the robot and magnetic interaction between this link and the actuating dipole expressed in the
frame {B}.

the actuating magnet and each rigid link in the robot. The
actuating magnet is approximated as a magnet dipole with a
magnetic moment vector mm ∈ R3:

mm = mm om (8)

where om ∈ R3 is the orientation of the magnetic dipole; mm

represents the strength of mm, which can be obtained from

mm = (Br/µ0) π(Dm/2)2 Lm (9)

where Br is the magnet remanence; µ0 is the vacuum per-
meability; Dm and Lm are the diameter and length of the
actuating magnet, respectively.

To describe the robot magnetism, we must discretize the
MPC based on each link of the ABM. Regarding the structure
and material of the robot, the segments of the PBM and ABM
are connected using a nitinol wire passing through them. In
addition, a layer of magnetic silicone exists outside the nitinol
wire of the ABM, which endows the ABM with magnetism to
actively deform under an external magnetic field. The magnetic
moment vector of the ith link mi ∈ R3 is given by

mi = mi
B
Ci
R wi (10)

where mi is the strength of mi, which can be derived from

mi =


0

(i = 1, 2, ..., Np)

χ ρms π
[
(Da/2)

2 − (Dp/2)
2
]
li mp

(i = Np + 1, ..., N)

(11)

where χ is the mass ratio of magnetic particles in the magnetic
silicone; Da and Dp are the diameters of the ABM and PBM,
respectively; li is the length of the ith link; mp is the magnetic
moment strength of the magnetic particles per unit mass; ρms

is the density of the magnetic silicone, which can be estimated
using

ρms = (ρp + ρs)/ [ρp (1− χ) + ρs χ] (12)

where ρp and ρs are the densities of magnetic particles and sil-
icone, respectively; B

Ci
R ∈ SO(3) is the rotation matrix, which

describes the ith link orientation oi ∈ R3; wi ∈ R3 is the unit
vector describing the ith link magnetization orientation. Here,
we denote the entire MPC of the robot as W ∈ R1×3N :

W =
[
wT

1 wT
2 ... wT

N

]
. (13)

D. Mapping from the Actuation Space to Joint Space
Here, we denote the relationship between the robot defor-

mation angle configuration θ and the actuating vector a ∈ R6.
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TABLE II
GEOMETRIC AND PHYSICAL PARAMETERS IN NUMERICAL SIMULATIONS

Notation Brief description Value [Unit]

Ns Segment number of ABM 4

Np Link number of PBM 3

Na Link number of ABM segment 3

Ls Length of ABM 80 [mm]

Br Remanence of NdFeB (N52 grade) 1.4 [T]

µ0 Vacuum permeability 4π × 10−7 [T ·m/A]

Dm Diameter of magnet 68 [mm]

Lm Length of magnet 62.4 [mm]

χ Mass ratio of magnetic particles 0.8

Da Diameter of ABM 2 [mm]

Dp Diameter of PBM 0.2 [mm]

mp Unit magnetic moment of particles 80.68 [emu/g]

ρp Density of particles 7450 [kg/m3]

ρs Density of silicone (Ecoflex 00-30) 1070 [kg/m3]

Actuation-to-joint space mapping FAJ(.) is denoted as

θ = FAJ(a) (14)

where the vector a can be described as follows, including the
feed motion af and magnetic actuating vector am ∈ R5:

a =
[
af aTm

]T (15)

where am =
[
pT
m βT

m

]T
contains the magnet dipole position

pm ∈ R3, and the angle vector βm =
[
βm1 βm2

]T ∈ R2,
where βm1 and βm2 are the angle swept by rotating from the
z axis of {B} to om and the angle swept by rotating from the
x axis of {B} to the vector obtained by projecting om onto
the x-y plane, respectively. Note that βm can be mapped from
the magnet orientation om.

First, the magnetic field Bi ∈ R3 exerted on the ith robot
link by the actuating magnet, and all magnetic segments are
modeled using the magnet dipole model [41]:

Bi = µ0/(4π ∥di∥3) (3di · d
T

i − I3) ·mm

+
N∑
j=1

[
µ0/(4π ∥dji∥3) (3dji · d

T

ji − I3) ·mj

] (16)

where µ0 is the vacuum permeability; di ∈ R3 and dji ∈ R3

are the vector from the magnet position pm to the geometrical
center of the ith link, and the vector from the center of the
jth link to that of the ith link, respectively.

Subsequently, we employ numerical methods to locate the
point of minimum potential energy to determine the quasi-
static equilibrium position of the robot. We estimate the joint
configuration θ corresponding to the given actuation space a.
This process can be formulated as a constrained optimization

problem as

min
θ

(VE + VB + VG)

s.t.



VE =
N∑
i=1

(Ki θ
2
i2 + Ti θ

2
i3)/2

VB = −
N∑

i=Np+1

mi ·Bi

VG =
N∑
i=1

Gi λz (pi + pi−1)/2

(17)

where VE , VB , and VG are the strain, magnetic potential, and
gravitational potential energies of the robot, respectively; Ki

and Ti are the bending and torsional stiffnesses of the ith link,
respectively; λz =

[
0 0 1

]
aids in extracting the coordinate

value in the z-direction of the ith link center; Gi is the gravity
of the ith link.

III. NUMERICAL SIMULATION

Building on the modeling of robot kinematics introduced
above, we propose a quantitative index-based deformability
evaluation strategy to study the impact of different MPCs on
robot deformability, thus guiding the MPC design of the robot.
Subsequently, a deformation behavior characterization of the
robot with the optimized MPC is provided to facilitate the
control algorithm design in the next section. The parameters
used in this section are listed in Table II.

A. Magnetization Profile Optimization

The complicated MPC endows the robot with the ability to
deform into complex shapes under simple external magnetic
conditions. However, note that this does not mean that in-
creasing the complexity of the magnetization profile is always
advisable. Although higher-order deformation shapes can be
obtained with a complicatedly designed MPC, the deformation
of each segment might decrease correspondingly owing to the
mutual constraints of adjacent segments. Thus, we focus on
introducing a deformability evaluation scheme to determine
the optimized MPC for a five-segment (Ns = 4) MAMMCR.
Three links exist in each robot segment (Na = Np = 3).
With the optimized profile, the robot is expected to have good
deformability for shaping into second- or third-order curves
under the combined actuation of a feed mechanism and an
external magnet.

As shown in Fig. 3(a), first, we compare the deformation
curves of MCRs with the axial MPC (1) and non-axial MPCs
(2–5). In this paper, the axes of the magnet and initial-state
robot overlap to effectively leverage the actuating magnetic
field during actuation. That is, it is advisable for the mag-
net to move and rotate in the robot bending plane because
the axial magnetic field of the actuating dipole is stronger
than that in other directions. Thus, the magnet can actuate
at a relatively large and safe distance. From the results in
Figs. 3(a3)–(a5), robot 1 can maintain the same deformation
to ensure workspace symmetry when the magnet rotates.
However, robots 2–5 cannot maintain the shapes when the
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Fig. 3. Deformation curves of the MAMMCR and non-axial magnetized MCRs. (a) Deformation comparison of an MAMMCR and four MCRs with different
non-axial MPCs: (a1) Magnet rotates around the x axis to actuate these MCRs. (a2) Legend describes the magnetization orientations of differently colored
segments. (a3)–(a5) Deformation curves of these MCRs under three magnetic actuating scenarios. MAMMCR (1) can maintain the same deformation to
show workspace symmetry when the magnet rotates; MCRs with non-axial MPCs (2–5) cannot hold the unchanged shapes. (b) Deformation comparison of
MAMMCRs with different axial MPCs: (b1) Four typical actuating scenarios AS1–AS4. (b2) Six axial MPCs. (b3)–(b6) Deformation curves of MAMMCRs
with the six MPCs. Here, the feed motion af = 40 mm. The magnet position and orientation are highlighted in each subgraph.

magnet rotates. Subsequently, we determine the optimal axial
MPC for the robot. Segments magnetized towards +/−x axis
have the magnetizations as w+ or w− ∈ R1×3Na :w+ =

[
1 0 0 1 0 0 ...

]
w− =

[
−1 0 0 −1 0 0 ...

] . (18)

Six different axial MPCs are concretized here (Fig. 3(b2)),
which are denoted as MPC1 to MPC6, respectively. Consider-
ing the configuration symmetry, the other MPCs not listed here
can be made equivalent to one of these six configurations by
actuating the magnet with an opposite orientation. For exam-
ple, configuration W =

[
O1×3Np

w− w− w− w−
]

is
equivalent to MPC1.

We then analyze the deformability differences among robots
with the six aforementioned axial MPCs (Fig. 3(b)). We

specify four scenarios, denoted as AS1 to AS4, to typically
represent the magnetic actuation of the robots. The magnet of
AS1 or AS3 (left side of x = af +Ls) significantly affects the
deformations of both the green and yellow segments, whereas
for AS2 or AS4 (right side of x = af +Ls), the magnet exerts
less magnetic influence on the yellow segments (Fig. 3(b1)).
Note that although we address the robot deformations in the
x-y plane, it is similar to 3D deformations simply by moving
or rotating the magnet in 3D space because our modeling is
applicable in 3D. The robot deformation curves are shown in
Figs. 3(b3)–(b6) and Supplementary Fig. S1. In this analysis,
for each of the four scenarios, the magnet maintains its
posture while synchronously translating along +x with the
advancement of the robot over a distance of 20–60 mm. The
robot with MPC1 or MPC2 can almost only maintain C shapes;
the robot with MPC4 can only deform into S shapes; the robot
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Fig. 4. Deformability analysis of MAMMCRs with different axial MPCs. (a) Deformation angle analysis of robots with MPC1–MPC6: (a1)–(a4) Deformation
angles of each robot link under four actuating scenarios AS1–AS4. Here, the feed motion af = 40 mm. Note that the enclosed region being totally blue
or red represents the C-shape deformation; otherwise, the robot deforms into S or higher-order shapes. (b) Deformability analysis of six robots under four
actuating scenarios: (b1) Deformability index τc analysis. The blue or red region indicates the deformation shape C1 or C2. (b2) Deformability index τh
analysis. Note that in addition to the S-shape deformations, several elements exhibit the higher-order shapes (labeled in red squares). The purple region
indicates the deformation shape S1 or W1; the orange region indicates the deformation shape S2 or W2. Moreover, the darker the element color, the higher
the deformability, and vice versa. (c) Ranking of the robots with different axial MPCs in terms of six dimensions. The results show that the robot with MPC3
exhibits relatively higher deformability than other MPCs.

with MPC5 or MPC6 tends to stay in higher-order shapes but
with slight deformations; however, the robot with MPC3 can
switch between C and S shapes.

To study the deformability of the robot with these six MPCs
intuitively, we record the link angles along the MPC during
deformations. In the four scenarios, the ith link angle γi1 and
γi2 can be obtained:

γi1 = 0

γi2 =
i∑

k=1

θk2

(i = 1, 2, ..., N) . (19)

The results are shown in Fig. 4(a) and Supplementary Fig. S2.
The red and blue regions indicate that the robot link deforms
towards +y and −y, respectively. A completely enclosed blue
or red region indicates a C-shaped robot; an enclosed region
containing two or more color sections suggests that the robot
maintains an S or higher-order shape. Note that the larger the
enclosed region, the greater the deformability of the robot.

Because the total 24 global shapes in Fig. 4(a) can be
divided into two main shapes, C (12) and S (9), and a non-
dominant shape, W (3), we define two deformability indices:
τc evaluates deformability when the robot deforms into a C

shape; τh measures deformability when the robot deforms into
an S or higher-order shape. Furthermore, we formulate the two
deformability indices:τc = γN2

τh = 2γip2 − γN2

. (20)

Here, τc is formulated by the tip link angle γN2 in that the
tip orientation can derive the global body of a C-shape robot
with a determined feed motion af . To reasonably evaluate
the global S or W shape with an additional turning point, τh
is obtained by evaluating the deformations of the two parts
divided by the ipth joint, where the link angle reaches the
first non-zero extremum value. Note that positive and negative
signs for τc indicate the C1 and C2 deformations, respectively.
Similar to τh, the positive value reflects S1 or W1 shape, and
the negative value reflects S2 or W2 (Fig. 4(b)).

Subsequently, we analyze τc and τh of robots with dif-
ferent MPCs under AS1–AS4. The results are shown in
Figs. 4(b1)–(b2) and Supplementary Fig. S3. The darker the
color of the element, the better the deformability of the robot.
Based on the results, we rank the deformability of these
robots in descending order in terms of the six dimensions.
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Fig. 5. Deformation behavior characterization of the robot with MPC3 under the actuation of a permanent magnet and the feed mechanism. (a)–(b) Deformation
curves under the magnet translation. (a) Robot shape transitions from S1 (1–4) to C2 (5–6). Here the feed motion af = 60 mm. (b) Robot deforms from
S2 (1–3) to C1 (4–6). However, this translation exhibits snapping (3–4) owing to the pure translation of the magnet without rotation. Here, the feed motion
af = 60 mm. (c) Deformation curves under the magnet translation and rotation. The robot can smoothly transitions from S1 (1–2), to C2 (3), and then to S2

(4–5). Here, the feed motion af = 60 mm. (d) Deformation curves under the magnet translation, rotation, and the feed motion. The robot can advance with
a stable tip posture. Here, the feed motion af increases from 20 to 100 mm in 20-mm intervals (1–5). The magnet position and orientation are highlighted
in each subgraph.

Each dimension is divided into levels ranging from 6 to
0, where 6 represents the highest and 0 indicates that the
robot cannot form specific shapes. The details are shown in
Fig. 4(c). Robots with MPC1 and MPC2 perform excellently
for C1 and C2 while exhibiting a lack of deformability in S1

and S2. Robots with MPC4 exhibit outstanding performance
for S1 and S2 but incompetence for C1 or C2. MPC5 and
MPC6 enable the robot to deform into higher-older shapes
(W1 and W2); however, the deformations are very weak.
The robots with MPC3 demonstrate a relatively impressive
performance across the four dimensions of the upper half-
circle. This indicates the potential of the robot with MPC3
to control its tip position, orientation, or global shape during
navigation. In addition, although MPC5 and MPC6 have more
complicated magnetizations, their deformability indices appear
to be inferior in terms of τc and τh. Hence, we use MPC3 in
our robot for subsequent studies.

B. Deformation Behavior Characterization

For an MAMMCR with MPC3, the deformations under
the translation and rotation of a magnet and feed motion can
be qualitatively analyzed using Eqs. (3), (8), (10), and (17).
For the magnet translation, when the magnet orienting −y
translates from 1 to 6, the robot shape continuously transitions
from S1 to C2 (Fig. 5(a)). Under the translation of the magnet
orienting +y, the robot deforms from S2 to C1 but with a
snapping (Fig. 5(b)). This transition can be smoothed via
the magnet rotation along with the translation. As shown in
Fig. 5(c), the robot deformation smoothly changes from S1,
to C2, and then to S2. Moreover, when the feed motion is
provided along with the combined magnet translation and ro-
tation, the robot advances with a stable tip posture (Fig. 5(d)).
These results demonstrate the potential for further accurate
control of the robot tip position, orientation, and global shape

under the combined actuation of magnet translation, rotation,
and feed motion.

IV. CONTROL FRAMEWORK

Using the optimized MAMMCR, two control modes are
developed to control the tip position, orientation, and global
shape of the robot. The entire control framework (Fig. 6(a)
and Algorithm 1) is constructed in an end-to-end fashion,
primarily including the actuating system, MAMMCR, and
corresponding software architecture with vision-based closed-
loop control algorithms.

A. Control Mode Design
First, to relate the MAMMCR kinematics modeling to

the entire system, primarily consisting of the RAMAS for
magnetic actuation and the camera for vision-based robot state
feedback, we define two coordinates: {R} and {O} are the
bases of the RAMAS and camera, respectively (Fig. 2).

Two control modes are designed to enhance the functionality
and validate the deformability of the proposed robot. Note that
the robot deformations are in the x-y plane, as mentioned pre-
viously. The first mode controls the tip position and orientation
of the robot. A sequence of robot states S∗ is defined and
obtained from the trajectory planning, which can be described
as

S∗ = [s∗T1 s∗T2 ... s∗Tj ...]T (21)

where s∗j represents the jth ground truth of a desired sequence
S∗. Next, an iterative scheme is employed to make the robot
state converges to the desired s∗j . The real robot state sj(k) ∈
R3 at time step k is defined as follows:

sj(k) = [pNx(k), pNy(k), γN2(k)]
T (22)

where pNx(k) and pNy(k) represent the tip positions, which
are the projections of pN (k) onto the x- and y-axes of {B},
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Fig. 6. Architecture of the MAMMCR robot system. (a) Robot control framework to achieve two-mode control in both simulation and real platforms. The
hardware part primarily contains the actuating system, including the RAMAS and feed mechanism and MAMMCR. In the real platform, the MAMMCR states
are perceived using a camera, whereas in simulation, they are derived from the forward kinematics modeling. The software part primarily contains (b) the
initialization module, (c) the vision-based state recognition algorithm, (d) the NN based control algorithm, and the robotic arm control algorithm. (e) Strategy
of the data exploration for the NN training: (e1) Sampling of the actuating parameters, including pmx, pmy , βm2, and af . (e2)–(e5) For each actuating
parameter, we give fluctuations to detect how the positive and negative variations of each parameter influence the robot behavior. (f) Average MSE loss curves
of the NN trainings. (g) Learning rate curves of the NN trainings. Specifically, the strategy of the cosine annealing with warm starts is used here.
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Algorithm 1: NN-Based control of the system
Input: S∗, a(0)
Output: S, A, Err ▷ S, A, and Err saves the states,

actuating info, and errors during iterations.
1 A(0)← a(0)

2 for j ← 0 to len(S∗) do
3 ▷ Set kmax = 300 as the maximum iteration number.
4 for k ← 0 to kmax do
5 if k is 0 then
6 ▷ Initialize the actuating parameters.
7 a(k) = A(−1)
8 end
9 if current_env is simulation_env then

10 sj(k + 1)← FJT (FAJ(a(k) + ∆a(k + 1)))

11 else if current_env is real_env then
12 ▷ Observe four markers (i = 1, 2, 3, 4) and

convert into the controlled state.
13 Osj(k + 1)← C(Oplix(k + 1),O pliy(k + 1))

14 sj(k + 1)←B
O H sOj (k + 1)

15 end
16 ∆sj(k + 1)← s∗j − sj(k)

17 err = MSE(∆sj(k + 1))
18 Err.append(err)

19 if err ≤ ε then
20 ▷ Set ε = 0.25 as the accuracy threshold.
21 S(j)← sj(k)

22 continue
23 end
24 ∆a(k)←Mn(a(k),∆sj(k))

25 ▷ Two modes: n= 1, 2.
26 a(k + 1)← a(k) + ∆a(k + 1)

27 A.append(a(k + 1))

28 if current_env is real_env then
29 ▷ Input the actuating increments into the

RAMAS and the feed mechanism.
30 ∆q(k + 1) = Jd(k)

R
B H ∆am(k + 1)

31 q(k + 1)← q(k) + ∆q(k + 1)

32 af (k + 1)← af (k) + ∆af (k + 1)

33 end
34 end
35 end
36 return S, A, Err

respectively. The control objective is to generate an actuation
increment ∆a(k + 1) ∈ R6 for a desired state increment
∆sj(k + 1) = s∗j − sj(k) ∈ R3 when the robot is in a
determined state under the current actuation a(k). Thus, the
control mapping for the first mode M1 can be expressed as

∆a(k + 1) = M1(a(k),∆sj(k + 1)). (23)

To further achieve the control of magnetic actuation via the
RAMAS, the joint increment vector ∆q(k + 1) ∈ R6 of a

6-degree-of-freedom (DoF) robotic arm can be mapped from
the actuation increment in terms of magnet ∆am(k + 1) as

∆q(k + 1) = Jd(k)
R
BH ∆am(k + 1). (24)

We construct the damped Jacobian Jd = JT (JJT + λd)
−1

to help avoid divergent behaviors of the robotic arm near
singularities [37]. J = ∂am/∂q ∈ R5×6 is the calculated
Jacobian, and λd = diag(λ2

1 I3, λ
2
2 I2) is the damping

coefficient matrix. Note that λ1 and λ2 are two damping
coefficients for the magnet position and orientation. In this
work, λ1 and λ2 are set to be 6 × 10−2 and 6 × 10−3 to
obtain the solution with a good convergence speed.

Subsequently, by inputting ∆q(k+1) and ∆af (k+1) into
the RAMAS and feed mechanism simultaneously, the state sj
at the next time step (k+1) is expected to be obtained in two
ways: from the simulation and real experimental platforms,
respectively. In the simulation, forward kinematics mapping is
leveraged to estimate state sj(k + 1) by integrating Eqs. (6)
and (14):

sj(k + 1) = FJT (FAJ(a(k) + ∆a(k + 1))). (25)

By contrast, state sj(k + 1) is observed using a camera in an
actual environment and can be described as

sj(k + 1) =B
O H Osj(k + 1) (26)

where B
OH transforms Osj from the description in {O} to that

in {B}. The algorithm used to obtain Osj(k+1) is shown in
Fig. 6(c). Four labels (yellow) are marked lengthwise in order:
two are labeled tightly at the distal end of the PBM, and the
other two are labeled at the distal tip of the ABM. Thus, we
denote the mapping C that obtains the states Osj from the
label positions as
Osj(k + 1) = C(Oplix(k + 1),O pliy(k + 1)) (i = 1, 2, 3, 4)

(27)
where Oplix(k) and Opliy(k) are the projections of the four
markers on the x and y axes of {O}, respectively. Thus, we
have ∆sj(k + 2) = s∗j − sj(k + 1) for the next iteration until
the convergence.

The second mode achieves global shape control. The global
shape includes the orientation angle of the (Np)th link γNp2,
orientation angle of tip link γN2, and position pNx. So, we
define the robot state sj ∈ R3 as

sj(k) = [γNp2(k), γN2(k), pNx(k)]
T . (28)

Moreover, the control mapping for the second mode M2 is
given by

∆a(k + 1) = M2(a(k),∆sj(k + 1)). (29)

B. NN Based Controller Design

Because optimization exists during forward kinematics
modeling and the mapping expressions from the actuation
space to the task space are not completely analytical, we
attempted to adopt data-driven approaches to construct the two
mappings M1 and M2. Data-driven approaches have attracted
much interest in the field of robot control because complex
model relationships are not necessary and the convenience
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Fig. 7. Fabrication of the robot prototype and construction of the validation setup. (a) Preparation of the magnetic silicone. (b) Fabrication of the prototype
via the prepared magnetic silicone: (b1) Molds after the hydrophobic treatment. (b2) Molding of ABM segments. (b3) Magnetization process. (b4) Connecting
of two adjacent ABM segments. (b5) Assembly of all prototype parts. (c) MAMMCR prototype. Four attached yellow labels were designed for the visual
detection. (d) Overview of the validation setup. The hardware system includes the MAMMCR, tank, feed mechanism, RAMAS, camera, and other components
that connect and make the system function together, such as the PC, router, and robot control box. The blue arrows show the mutual connection of these
system components.

TABLE III
NN TRAINING PARAMETERS

Aspect Parameter Value [Unit]

Architecture Layer number 8

Layer neuron number 128 × 256 × 512 × 1024

× 2048 × 512 × 256 × 128

Data pmx -80-240 [mm]

exploration pmy 150-300 [mm]

βm2 -180-180 [◦]

af 0-80 [mm]

δpmx 10 [mm]

δpmy 10 [mm]

δβm2 5 [◦]

δaf 10 [mm]

Training Batch size 512

Maximum epoch number 30000

Early stop number 2000

Maximum learning rate 0.001

Momentum 0.7

Weight decay 0.0001

of fast computation [50]–[53]. Therefore, two NN-based con-
trollers were designed and trained in a supervised manner to
approximate the two mappings (Fig. 6(d)).

The parameters used in NN construction and training are

listed in Table III. For convenience, the two NNs shared the
identical initial architecture but were trained independently.
This was reasonable, considering that equal amounts of train-
ing and validation data were fed to each network during the
training process. Therefore, they did not share network param-
eters and each network obtained its determinate parameters
individually. The constructed NN architecture consisted of
eight hidden layers, with the number of neurons in each layer
following a pyramid pattern of initially increasing and then
decreasing.

For the training data, data pairs, including the input parts,
a and ∆sj , and the output part, ∆a, were sampled via data
exploration in the actuating space shown in Fig. 6(e1). The
data pairs were obtained via the forward kinematics modeling
derived in this study for convenient and fast data collection.
Here, am is sampled in a square region. The projections of
pm on the x- and y-axes of {B}, denoted as pmx and pmy ,
underwent changes in the ranges of -80–240 mm and 150–300
mm with steps of 10 mm, respectively. βm2 underwent changes
in the range of -180–180◦ in 90◦ intervals. Moreover, af
spanned in the range of 0–80 mm in increments of 20
mm. Subsequently, for each sampled actuating vector a, we
provided a fluctuation vector ∆a corresponding to each part
of a under four scenarios or their combinations shown in
Fig. 6(e2)–(e5), where δpmx, δpmy , and δaf were all set to 10
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mm, and δβm2 was set to 5◦. Thus, given a set of samples a
and ∆a, we can further obtain ∆sj to form a complete labeled
data pair via Eq. (25). As a result, ∼ 620,000 sets of training
data were collected.

Model training and validation were conducted on a laptop
with a 12th Gen Intel Core 12900H CPU and an NVIDIA
GeForce RTX 3070Ti GPU (8 GB memory). The hyperpa-
rameters used in the training procedure are listed in Table III.
Specifically, stochastic gradient descent optimization algo-
rithm accounted for iterative updates of the model parameters
[26]. The iterative process continued until convergence to an
optimal set of parameters that best fit the sampled training
data. In addition, several training strategies were used to
optimize and improve the model performance, including batch
normalization, early stopping, momentum, and weight decay.
Note that a special learning rate scheduling method, cosine
annealing with warm starts, was leveraged to enable better
convergence and potential escape from poor local minima by
periodically decreasing the learning rate in a cosine-shaped
manner and then resetting it to its initial value (Fig. 6(g)).

The results are presented as the average mean square errors
(MSEs) of M1 and M2 on the validation set reach their
minimum values of 3.817 in the 339th epoch and 3.678 in
the 387th epoch. Beyond these two epochs, the training loss
continued to gradually decrease, whereas the validation loss no
longer decreased. Thus, the model parameters corresponding
to the minimum average MSEs in the validation set were
selected as the final model parameters (Fig. 6(f)). Note that
the computing speed of our trained models during real-time
tracking was much higher than those in existing studies [31],
[37]. The mean computation time for learnt controllers during
each iteration was ∼ 5× 10−6 ms, which indicates significant
potential in real-time control.

C. Validation Setup

Fig. 7(d) shows an overview of the validation system. The
entire setup was placed on an antivibration bench, and it pri-
marily contained the MAMMCR, RAMAS, feed mechanism,
camera, and other components that connected the main parts
of the system, such as the PC, router, STM32 controller, motor
driver, and power supply.

The MAMMCR was expected to navigate and deform in
a 3D printed tank full with a glycerol aqueous solution (60%
volume glycerol) under feed motion and a programmable mag-
netic field generated by the RAMAS. The liquid medium aided
in simulating the human liquid environment, counteracting the
robot’s gravity, and reducing friction between the robot and its
surroundings. The nitinol wire of the MAMMCR was fixed to
the sliding platform of the feed mechanism using a homemade
fixture. A permanent magnet (N52, dimensions: ϕ68 × 62.4
mm2) was adopted as the end-effector for the RAMAS, and
the real time control of the RAMAS was built upon the Robot
Operating System (ROS) on Ubuntu Linux.

V. VALIDATIONS AND RESULTS

The deformability of our proposed MAMMCR and the
effectiveness of the corresponding control algorithms were

TABLE IV
INITIALIZATION OF ACTUATING PARAMETERS

Actuating modules Parameter Initialization Value [Unit]

RAMAS pmx 80 [mm]

pmy 300 [mm]

q [0 -90 -115 -17 -90 -180] [◦]

Feed mechanism af 0 [mm]

verified using both simulation and experimental platforms
described in the aforementioned control framework. The robot
was expected to navigate and deform under the two designed
control modes. The core controllers of the two mappings
M1 and M2 were obtained in an off-line learning fashion
mentioned in the previous section.

A. Robot Prototype Fabrication

The prototype adopted a magnetically enhanced silicone
with a much higher magnetic particle proportion (80% weight)
than the existing MCRs (Table I). First, the silicone matrix
(Ecoflex 00-30, with Parts A and B mixed in a 1:1 mass ratio)
was obtained. The NdFeB particles (size: 5 µm) and silicone
matrix were mixed in a 4:1 mass ratio (Fig. 7(a)). At this ratio,
the mixture could simultaneously ensure high magnetism of
the cured magnetic silicone and good fluidity for successful
molding processes.

Before molding, we performed a hydrophobic treatment to
graft perfluorohydrocarbon chains onto the resin surface of
mold pairs 3D printed using a photosensitive resin and an
ultraviolet printer (NOVA3D) (Fig. 7(b1)). Thus, the magnetic
silicone injected into the mold cavities could be completely
cured without impediments. The four segments of the ABM
were molded using mold pair A and a pre-placed nitinol
wire with a diameter of 0.2 mm ensured the center of the
hollow cavity of the magnetic silicone segment (Fig. 7(b2)).
The cured segments with no magnetism were then magnetized
with an axial magnetization orientation using a magnetizer
(Fig. 7(b3)). We assembled these axially magnetized segments
along the nitinol wire to program MPC3 (Fig. 7(b4)). The ad-
jacent segments were joined together after the second molding
using the mold pair B. The fabricated prototype is shown in
Fig. 7(c).

B. Control of MAMMCR Tip Position and Orientation

The control performance of mode M1 was tested using
target tracking under two scenarios. For the first scenario
(Fig. 8(a)), the MAMMCR was controlled to track the contour
of a four-leaf clover, where the tracking direction was labeled
with light gray arrows. The entire contour was discretized
into 96 points (red points), and the robot tip scanned each
point sequentially while maintaining orientation angle γN2 of
0 (red arrows) at each point. All the actuating parameters were
initialized according to the values listed in Table IV. To reduce
the influence of the RAMAS on the robot before the tracking
task, we initialized the magnet from a safe distance (pmy =300
mm) away from the robot.
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Fig. 8. Demonstration of the four-leaf clover tracking under the control mode M1. (a) Discretized state trajectory obtained from the prepared path planning.
At each point, the desired γN2 is set as 0. Moreover, the converged deformation curve and states obtained from simulation at each discretized point are
labeled. (b)–(e) Experimental results during the tracking: (b) Variations in the feed distance af . (c) State trajectory. (d) Motion trajectory of the external
magnet. (e1)–(e6) Real time tracking under the visual feedback via the experimental setup.

First, we studied the control performance of the proposed
algorithms in a simulation platform. The tracked tip points
(green points) and the corresponding tip orientations (green
arrows) after each convergence to the desired state are shown
in Fig. 8(a). The real-time tracking process and state trajec-
tory are shown in Supplementary Video S1 and Fig. S4(a),
respectively. The feed motion and magnet trajectory during
the tracking are shown in Supplementary Figs. S4(b) and (c),
respectively. Regarding tracking performance, we analyzed the
variations in three states, pNx, pNy , and γN2, and correspond-
ing errors (Supplementary Fig. S6). MAEs of three states were

0.251 mm, 0.169 mm, and 0.246◦, respectively. To evaluate
error fluctuations, we determined the root MSEs of the three
states as 0.343 mm, 0.235 mm, and 0.382◦. With the designed
algorithms, the magnet in the RAMAS seamlessly adjusted
its position and orientation, enabling continuous motion of
the robot tip and smooth variations in the tip orientation. We
performed this demonstration using an experimental platform.
The real-time tracking process is shown in Supplementary
Video S1 and Figs. 8(b)–(e). In the error analyses (Supple-
mentary Fig. S9), we observed the MAEs (and root MSEs)
for the three states were 0.441 (0.608) mm, 0.254 (0.340) mm,
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Fig. 9. Demonstration of the letter combination "CUHK" tracking under the control mode M1. (a) Discretized state trajectory obtained from the prepared path
planning. The desired γN2 values of points in "C," "U," "H," and "K" were set as 0◦, 5◦, 0◦, and -10◦, respectively. Moreover, the converged deformation
curve and states obtained from simulation at each discretized point were labeled. (b)–(e) Experimental results during the tracking: (b) Variations in the feed
distance af . (c) State trajectory. (d) Motion trajectory of the external magnet. (e1)–(e6) Real time tracking under the visual feedback via the experimental
setup.

and 0.626 (1.001)◦, respectively.
In the second scenario, the MAMMCR was controlled to

track a letter combination "CUHK" arranged in a tilted manner
(Fig. 9(a)). "CUHK" was discretized into 90 points. Unlike
in the first scenario, we expected the robot tip to maintain
different specific orientations when tracking different letters.
The desired γN2 values of discretized points in "C," "U," "H,"
and "K" were set as 0◦, 5◦, 0◦, and -10◦, respectively. The
actuating parameters were initialized in the same manner.

The real-time tracking process, state trajectory, magnet mo-
tion, and feed motion obtained from the simulation are shown
in Supplementary Video S2 and Figs. S5(a)–(c), respectively.
Based on the variations in the three controlled states and
errors (Supplementary Fig. S7), the MAEs (and root MSEs)
for the three states were 0.209 (0.281) mm, 0.198 (0.267) mm,

and 0.192 (0.257)◦, respectively. The experimental validation
results, including the real-time tracking process and error anal-
yses, are shown in Supplementary Video S2, Figs. 9(b)–(e),
and Supplementary Fig. S10. The MAEs (and root MSEs) for
the controlled states were 0.448 (0.591) mm, 0.280 (0.390)
mm, and 0.807◦ (1.086◦), respectively.

C. Control of MAMMCR Global Shape

We tested the control performance of the robot using the
mode M2. Here, the robot was expected to accurately tune
the global shape, determined by γNp2, γN2, and pNx during
navigation. As shown in Fig. 10(a), the robot continuously
modulated its shape while maintaining the tip along the lines
of x = 100 mm. The tracking direction of the robot is
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Fig. 10. Demonstration of the global shape tracking under the control mode M2. (a) Discretized state trajectories. The desired state pNx is 100 mm: (a1)
Desired state γN2 remained at 16◦, and the desired state γNp2 increased from 10 to 18◦ with increments of 2◦; (a2) Desired state γNp2 remained at 18◦,
and the desired state γN2 decreased from 14◦ to -8◦ with increments of -2◦; (a3) Desired state γN2 remained at -10◦, and the desired state γNp2 increased
from 18 to 26◦ with increments of 2◦. (b)–(d): Simulation results during the tracking: (b) State trajectories of the robot, and (b1)–(b3) correspond to (a1)–(a3),
respectively. (c) Variations in the feed distance af . (d) Motion trajectory of the external magnet. (e) Experimental results during the tracking: (e1)–(e3)
Real-time tracking when the desired state γN2 remained at 16◦, and the desired state γNp2 were 10◦, 14◦, 18◦, respectively; (e4)–(e9) Real-time tracking
when the desired state γNp2 remained at 18◦, and the desired state γN2 were 14◦, 10◦, 6◦, 0◦, -4◦, -8◦, respectively; (e10)–(e12) Real-time tracking when
the desired state γN2 remained at -10◦, and the desired state γNp2 are 18◦, 22◦, 26◦, respectively.

indicated by light gray arrows. As shown in Fig. 10(a1),
γN2 was anticipated to remain constant at 16◦, whereas γNp2

progressively increased from 10◦ to 18◦ in 2◦ increments. As
shown in Fig. 10(a2), γNp2 was maintained at a fixed value of
18◦, whereas γN2 decreases from 14◦ to -8◦ with decrements
of 2◦. As shown in Fig. 10(a3), γN2 maintained a constant
value of -10◦, whereas γN2 continued to increase from 18◦ to
26◦ in 2◦ increments.

The simulation data of the real-time tracking process, state
trajectories, feed motion, and magnet motion are shown in
Supplementary Video S3 and Figs. 10(b)–(d), respectively.
Regarding the observations of the three states and the cor-
responding errors (Supplementary Fig. S8), the MAEs (and

root MSEs) for the three states were 0.431◦ (0.646◦), 0.257◦

(0.458◦), and 0.269 (0.354) mm, respectively. We observed
that during shape tracking, the three states were controlled
accurately to smoothly tune the deformation curves between
the C and S shapes. In addition, during shape tracking, the
robot tip was controlled to move in a line simultaneously as
desired. Additionally, the demonstration was validated using
an experimental platform. The experimental results of the
tracking process and error analysis are shown in Supple-
mentary Video S3, Fig. 10(e), and Supplementary Fig. S11.
The MAEs (and root MSEs) for the three states were 0.086◦

(0.099◦), 0.086◦ (0.100◦), and 1.564 (1.695) mm, respectively.
The discrepancies between the simulation and experimental
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TABLE V
NOMENCLATURE

Ns, N,Np, Na Segment number; total link number; link numbers in each segment of the PBM and ABM.

{Ci} , {B} , {R} , {O} Reference frames located at the ith flexible joint, proximal base, base of the robotic arm, and camera base, respectively.

θ,θi, θi1, θi2, θi3 MAMMCR joint configuration; rotation vector of the ith flexible joint; three angles that determine the bending plane, bending

angle, and twisting of the ith link, respectively.

pi, pix, piy,pm, pmx, pmy, Position of the ith flexible joint; projections of pi on the x- and y-axes; position of the external magnet dipole; projections of pm

δpmx, δpmy, plix, pliy on the x- and y-axes; small fluctuations of pmx and pmy; projections of the ith label on the x- and y-axes, respectively.

li, Ls, Lm Length of the ith link; length of the ABM including all the Ns segments; length of the actuating magnet.

af ,∆af , δaf Feed motion; increment of af ; small fluctuation of af .
B
Ci
H (θ) ,BCi

Ri(θ) Homogeneous transformation matrix describing the pose of {Ci}; rotation matrix of {Ci}.

FJT (.), FAJ(.),Mi(.), Joint-to-task space mapping; actuation-to-task space mapping; control mappings from the current state increment to the actuation

C(.) increment for ith control mode; mapping from the label positions to controlled states of two modes.

ξjk Twist coordinate corresponding to the skew-symmetric matrix form ξ̂jk.

ωjk Rotation axis of the jth joint associated with the bending plane (k = 1), bending angle (k = 2), and twisting (k = 3).

t, ti Full task space vector; state of ith link, including the position and orientation of the link tip.

γi, γi1, γi2 Angle vector of the ith link; two angles describing the tip orientation of the ith link.

oi,om Unit vector describing the orientation of the ith link; orientation of the external magnet dipole.

mm,mi,mm,mi,mp Magnetic moment vectors of the external magnet dipole and the ith link; strengths of mm and mi; magnetic moment strength of

the magnetic particles per unit mass.

Bi, Br Magnetic field exerted on the ith link; magnet remanence.

µ0 Vacuum permeability.

Dm, Da, Dp Diameters of the actuating magnet, ABM, and PBM.

χ Mass ratio of magnetic particles in the magnetic silicone.

Mp Magnetic moment strength of the magnetic particles per unit mass.

ρms, ρp, ρs Densities of the magnetic silicone, magnetic particles, and silicone.

W,wi,w+,w− Magnetization profile configuration of the MAMMCR; unit vector describing the magnetization orientation of the ith link;

magnetization vectors for ABM segments with +x or −x magnetization.

a,am,∆a,∆am Actuating vector; magnetic actuating vector; increments of a and am.

βm, βm1, βm2, δβm2 Angle vector of the magnet dipole; Angle swept by rotating from the z-axis to om; angle swept by rotating from the x-axis to the

vector obtained by projecting om onto the x-y plane; small variation of βm2.

di,dji Vector from the magnet position pm to the geometrical center of the ith link; vector from the center of the jth link to that of the ith link.

VE , VB , VG Strain energy, magnetic potential energy, and gravitational potential energy of the robot.

Ki, Ti Bending stiffness and torsional stiffness of the ith link.

Gi Gravity of the ith link.

λz,λd, λ1, λ2 Coefficient matrix extracting the coordinate value in the z-direction of pi; damping coefficient matrix; damping coefficient of the magnet

position; damping coefficient of the magnet orientation.

τc, τh Deformabilities of the MAMMCR under the C and S or higher-order shapes.

ip Link number: the link angle reaches the first non-zero extremum value when the robot deforms into an S or higher-order shapes.

S∗, s∗j , sj ,∆sj Sequence of controlled states of the MAMMCR for ith control mode; jth ground truth of a desired robot state of sequence S∗;

controlled state of the MAMMCR for ith control mode corresponding to s∗j ; increment of sj .

q,∆q Joint vector of the robotic arm in the RAMAS; increment of q.

J,Jd Jacobian matrix of the robotic arm; damped Jacobian of the robotic arm.

errors were primarily due to the inaccuracies of the model,
such as ignoring the friction between the liquid and our robot
during tracking, assembly errors among different parts of
the entire setup, and calibration errors of the intrinsic and
extrinsic parameters of the camera. Although a slightly inferior
convergence performance of the pNx experimental results was
exhibited compared with the simulations, the accurate tracking
of the robot shapes ensured and demonstrated the effectiveness
of the algorithms and good control performance of our robot.

VI. CONCLUSION

In this study, we propose methodologies for designing and
controlling an MAMMCR. First, a static PRB model and an
index-based deformability evaluation strategy are introduced
to analyze the deformability of robots with different MPCs.

Based on the optimized MPC, the kinematic behavior of the
robot is numerically characterized. A control framework with
two learnt controllers is devised to endow the robot with
two control modes: tip and global shape controls. The two
controllers approximate the mapping from the tip pose or
global shape to the actuation increments. They were trained
with data generated using the PRB model and demonstrated
a high performance in terms of the computation time and
accuracy. Finally, a fabrication method is proposed, and three
case demonstrations were performed via simulation and ex-
perimental platforms to validate the good deformability of the
robot and the effectiveness of the algorithms. The experimental
results showed the best control performance with MAEs of
0.254 mm and 0.626◦ for mode M1 and 1.564 mm and 0.086◦

for mode M2. This may provide our robot more potential of
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TABLE VI
ACRONYMS

ABM Active bending module.

CR Continuum robot.

DoF Degree of Freedom.

MAE Mean absolute error.

MAMMCR Modular axially magnetized magnetic continuum robot.

MCR Magnetic continuum robot.

MIS Minimally invasive surgery.

MPC Magnetization profile configuration.

MSE Mean square error.

NN Neural network.

PBM Passive bending module.

PRB Pseudo rigid body.

RAMAS Robotic arm-based magnetic actuating system.

ROS Robot Operating System.

navigation in body cavities or organs to perform ablation or
palpation in the future.

Future research should consider developing an online-
learning error compensator in the control framework to further
improve the tracking performance of the robot. Additionally,
we will consider feedback mechanisms other than visual
detection, such as fiber Bragg gratings and ultrasound. This
endows our robot and control system with a greater potential
for ex vivo or in vivo applications.

APPENDIX A

NOMENCLATURE

All the symbols, variables, and their explanations defined in
this paper are listed in Table V.

APPENDIX B

ACRONYMS

The abbreviations introduced in this paper can be alphabeti-
cally tracked in a glossary (Table VI).
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