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Abstract—Endowing robots with advanced tactile abilities based
on biomimicry involves designing human-like tactile sensors, com-
putational models, and motor control policies to enhance contact
information retrieval. Here, we consider compliance discrimination
with a soft biomimetic tactile optical sensor (TacTip). In previous
work, we proposed a vision-based approach derived from a compu-
tational model of human tactile perception to discriminate object
compliance with the TacTip, based on contact area spread com-
putation over the indenting force. In this work, we first increased
the robustness of our vision-based method with a more precise esti-
mation of the initial contact area condition, which enables correct
compliance estimation also when the probing direction is other than
normal to the specimen surface. Then, we integrated within our
validated framework the mechanisms of internal muscular regula-
tion (co-contraction) that humans adopt during object compliance
probing, to maximize the information uptake. To this aim, we used

Received 28 September 2024; accepted 11 December 2024. Date of publica-
tion 25 December 2024; date of current version 7 January 2025. This work was
supported in part by the Italian Ministry of University and Research (MUR) -
Fondo Italiano per la Scienza (FIS), with the grant PERCEIVING under Grant
FIS00001153, in part by the European Research Council (ERC) under Grant
810346 (Natural BionicS), in part by the Italian Ministry of Education and
Research (MIUR) in the framework of the ForeLab project (Departments of
Excellence), in part by the European Union by the Next Generation EU project
under Grant ECS00000017, in part by ‘Ecosistema dell’Innovazione’ Tuscany
Health Ecosystem (THE, PNRR, Spoke 9: Robotics and Automation for Health),
and in part by the Università di Pisa under the “PRA – Progetti di Ricerca di
Ateneo” (Institutional Research Grants) under Grant PRA_2022_27 “ART”.
This article was recommended for publication by Associate Editor N. Correll
and Editor J. Xiao upon evaluation of the reviewers’ comments. (Corresponding
author: Giulia Pagnanelli.)

This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by Bioethics of
the University of Pisa under Application No. 30/2020.

Giulia Pagnanelli, Lucia Zinelli, and Matteo Bianchi are with the Centro di
Ricerca “Enrico Piaggio”, Universita‘ di Pisa, 56126 Pisa, Italy, and also with the
Dipartimento di Ingegneria dell’Informazione, Universita‘ di Pisa, 56126 Pisa,
Italy (e-mail: giulia.pagnanelli17@gmail.com, giulia.pagnanelli@phd.unipi.it).

Nathan Lepora is with the Department of Engineering Mathematics, Bristol
Robotics Laboratory, University of Bristol, BS8 1TW Bristol, U.K..

Manuel Catalano is with the Centro di Ricerca “Enrico Piaggio”, Universita‘
di Pisa, 56126 Pisa, Italy, and also with the Soft Robotics for Human Cooperation
and Rehabilitation, Istituto Italiano di Tecnologia, 16163 Genova, Italy.

Antonio Bicchi is with the Centro di Ricerca “Enrico Piaggio”, Univer-
sita‘ di Pisa, 56126 Pisa, Italy, also with the Dipartimento di Ingegneria
dell’Informazione, Universita‘ di Pisa, 56126 Pisa, Italy, and also with the
Soft Robotics for Human Cooperation and Rehabilitation, Istituto Italiano di
Tecnologia, 16163 Genova, Italy.

Digital Object Identifier 10.1109/TRO.2024.3522149

human co-contraction patterns extracted during object softness
probing to control a Variable Stiffness Actuator (that emulates the
agonistic-antagonistic behavior of human muscles), which is used
to actuate the indenter system endowed with the TacTip for object
compliance exploration. We found that our model-based approach
for compliance discrimination, fed with more precisely estimated
initial conditions, significantly improves with the human-inspired
impedance regulation, with respect to the usage of a rigid actuator.

Index Terms—Force and tactile sensing, perception for grasping
and manipulation, soft sensors and actuators.

I. INTRODUCTION

HUMAN touch has remarkable perceptual capabilities due
to a complex interplay of tactile mechanoreceptors, the

human motor system, and the embodied mechanical intelligence
of the human body. It is an active sense, with tactile receptors
contributing to the control and perception of body movements.
Purposeful exploration enhances information uptake through
touch [1], while the mechanics of human skin play a key role in
shaping human tactile perception [2]. Replicating these capabili-
ties in robotic systems remains challenging due to the complex-
ity of biological components. Biomimicry offers a promising
approach to modeling the key elements of human touch through
a mathematical language that can be translated into artificial
systems. To reach this goal, both the computational models and
the embodied intelligence of human touch perception should
be taken into account [3]. The design of soft optical tactile
sensors [4], [5], [6], [7] has marked a significant leap forward
in creating machines capable of experiencing touch akin to
humans. These sensors, often inspired by the human skin’s char-
acteristics, utilize innovative materials like rubber membranes
filled with gel to emulate the biological tactile qualities of human
fingertips. Among them, it is worth mentioning the TacTip,
which is a soft biomimetic optical tactile sensor designed to
mimic the human fingertip’s tactile capabilities [4], [8].

Between the functionalities of touch, the ability to perceive
object compliance–its perceived softness or stiffness–stands out
as particularly important. This skill enables humans to navi-
gate complex environments, manipulate delicate objects, and
interact more naturally with the world. Compliance perception
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is primarily driven by the sense of touch, even though it is
influenced by multiple sensory inputs [9]. Specifically, tactile in-
formation gleaned through the skin’s deformation during touch
interactions emerges as the primary driver in our perception
of object softness [10]. In the pursuit of artificially replicating
the human touch’s ability to distinguish object compliance,
the integration of tactile sensors with deep learning techniques
emerges as a promising methodology in the field. Indeed, the
synergy between optical tactile sensors and deep learning has
led to a new paradigm where machines can interpret tactile
information and adapt their actions based on touch feedback.
This capability extends beyond mere object recognition to the
perception of object softness [11], [12], [13], enabling robots to
handle fragile items delicately or exert appropriate force in var-
ious tasks. The applications of these systems are vast, spanning
various domains such as manufacturing, healthcare, prosthetics,
and telerobotics. However, despite the progress made, machine
learning techniques face challenges. While they successfully
bypass the need for explicit sensor-object interaction models,
they are constrained by the quality and complexity of the data
required for effective training [14]. Furthermore, the way the
information is encoded is usually far from the computational
mechanisms underpinning human tactile perception, making
hard the possibility to convey such information back to the
human operator, e.g., in telerobotics applications, in an easily
understandable manner. These limitations can impede the sys-
tem ability to generalize and comprehend the nuances of tactile
interactions across various scenarios, including human-robot
interaction.

In our previous work [15], we proposed, for the first time, a
model-based strategy based on a computational model of human
tactile perception to estimate object compliance using the TacTip
sensor. Our methodology is rooted in the contact area spread
rate (CASR) paradigm [16], according to which the contact area
growth, (with respect to the indenting force), on the fingertip
during object probing is larger with more compliant objects.

We accounted for two key elements of the biomimetic
pipeline: 1) sensor design; and 2) computational models of
human touch. However, we did not fully grasp and consider the
active role of human embodied intelligence regulation, i.e., the
control of the human muscular skeletal state that actively deter-
mines and shapes our perception. This is evident in several sen-
sory modalities, like vision [17], and in touch, where exploratory
procedures, i.e., purposeful stereotyped hand movements that
humans tend to perform to maximize the information uptake
over given tactile properties [18], represent a notable example.
Other studies also revealed that touch is strongly connected
to an individual’s ability to interpret sensory information and
determine the most appropriate biological motor control strategy
and body state regulation [19].

In [20], the authors reported that humans, when probe soft
deformable objects, tend to control the co-contraction level
of antagonistic muscles to vary the mechanical impedance of
fingers. In this manner the perceptual capabilities are increased
at a kinesthetic level (acting on proprioceptive sensors lo-
cated at muscle spindles) and at a cutaneous ones (acting on
skin mechanoreceptors at different depths). Such an internal

impedance control was proven to play a significant role not only
in biological tactile perception but also in its robotic counter-
part [21], [22]. In these investigations, the focus was on the
flexo-extension of the index finger, which is mainly actuated
via the metacarpophalangeal joint actuated by two antagonistic
forearm muscles, i.e. the Flexor Digitorum Superficialis (FDS),
and the Extensor Digitorum Communis (EDC), In particular, the
impedance of the joint increases with the simultaneous increase
in activity of these two muscles (co-contraction).

Building upon this evidence, we explored the potential to
enhance our biomimetic approach for compliance discrimina-
tion by incorporating the human muscular co-contraction strat-
egy during object exploration, i.e., human-inspired embodied
intelligence regulation. Of note, while with nonoptical tactile
sensors, there are approaches that focus on force distribution
measurements to control sensor deformation by regulating the
exploratory procedure for compliance estimation [23], our ap-
proach focuses on optical contact area spread estimation under
varying indenting force, i.e., the focus is on force variation
(dF). Furthermore, assuming the validity of Hertz’s theory, we
consider homogeneous characteristics at contact.

II. CONTRIBUTION

This article proposes two key improvements to our previous
approach [15] by addressing two main points. First, we gen-
eralize the outcomes of our model-based method during the
exploration of specimens with different slope values with respect
to the indenting direction. In [15], the results of compliance
discrimination significantly deteriorated when the indenting
direction of the probe endowed with the TacTip was different
from the normal to the surface of the explored object. As the
contact area is mathematically represented as the solution of a
differential equation, our intervention involves a more precise
fitting of the initial condition, proposing a new vision algorithm.
It processes the visual information collected via the TacTip to
refine the estimation of the initial contact area condition. Since
the initial condition translates into the value of the area upon
first contact, we improve the vision algorithm proposed in the
previous work to estimate the initial area. The refined algorithm
now accurately estimates the initial contact area for different
angular orientations of the probing axis endowed with the TacTip
with respect to the object surface. Second, and more impor-
tantly, we advance our research by integrating human muscular
co-contraction strategy during object exploration to maximize
object compliance discrimination. To achieve this, we gathered
comprehensive data of human electromyography (EMG) signal
profiles recorded from multiple participants engaged in object
exploration for compliance recognition. Analyzing these EMG
signals allowed us to extract the muscular impedance patterns
employed by participants as they explored objects with vary-
ing degrees of compliance. We mapped the human impedance
profiles onto the control of a variable stiffness actuator (VSA),
which mimics the agonistic–antagonistic behavior of human
muscles [24], to replicate human-like muscular behavior during
specimen indentation with the TacTip sensor, combined with the
model-based approach originally proposed in [15]. The findings
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from our experiments highlight the significant advancements
achieved by integrating the human co-contraction strategy in
our biomimetic approach. The notable improvement is evident
not only in the considerable reduction of compliance estimation
errors, even during contacts along axes not normal to the object
surface, but also in the heightened sensitivity of the mechanism
to distinguish between various levels of object compliance.
The successful replication of the human co-contraction strategy
emerges as a pivotal element, playing a crucial role in enhancing
both the adaptability and precision of our robotic system when
faced with the diverse compliance characteristics encountered
during object exploration. These results affirm the efficacy of
our biomimetic approach and underscore its potential for ad-
dressing the intricacies of real-world applications with greater
finesse. Indeed, although other approaches in the literature rely
on vision-based methods for stiffness estimation, e.g., [25],
they lack biomimicry because they do not take into account
computational models of human tactile perception and their
integration with soft biomimetic sensors. In summary, this article
presents significant advancements in our biomimetic approach
by refining the initial contact area estimation with a novel
vision algorithm and integrating human muscular co-contraction
strategies into robotic control. These improvements address
previous limitations and result in more accurate compliance
discrimination, even for contacts at nonnormal angles. Our find-
ings demonstrate that emulating human-like muscular behavior
enhances the precision and adaptability of robotic systems in
object exploration, underscoring the potential of our approach
for real-world applications.

III. BACKGROUND AND PROBLEM DEFINITION

This research aims to enhance our previous work, where
we introduced a model-based approach grounded in human
perceptual mechanisms for discriminating object compliance
utilizing the TacTip tactile sensor. Our model pries upon the
CASR paradigm [16], which demonstrated that the growth of
the contact area between the fingertip and the probed object
with respect to the indenting force is larger the softer (i.e.,
the more compliant) the object is. CASR stands with respect
to the tactile flow model [26]—see the section below, as the
time-to-contact estimation stands with respect to optical flow.
In our previous work, we estimated CASR by computing the
optical flow from TacTip images collected during the indentation
process of silicone specimens with various compliance levels,
thus enabling the estimation of the compliance characteristics
of unknown objects. Moreover, we demonstrated the capabil-
ity to differentiate between different compliance levels, which
decreases while approaching the object along directions that
deviate from the normal one referred to the specimen surface.

In this work, we present a refined method for more accurately
estimating the initial contact area by improving the CASR
assessment for different indenting directions, and replicating
human co-contraction behavior during object exploration for
softness discrimination.

A. Model-Based Biomimetic Approach

The approach developed for discerning object softness re-
mains the same and relies on the soft biomimetic optical tactile
sensor, the optical flow computation from sensor imagery, and
the CASR.

The TacTip sensor, designed to mimic the layers of glabrous
skin, comprises an outer rubber layer and an inner elastomer
gel filled with rigid nodular marked pins [4], [8], allowing
detecting touch exclusively through shear strain and collecting
information about surface deformation.

The concept of optical flow delineates the apparent motion of
objects in a visual scene due to an observer’s movement relative
to the scene. Representing the distribution of apparent velocities
of brightness patterns in an image [27], [28], it significantly
contributes to locomotion control, perceiving movement, and
distance, in various domains, including robotics [29], [30], [31].
In our previous work, we employed the dense method proposed
by Horn and Schunck [32] to evaluate optical flow from TacTip
camera frames. This method imposes velocity constraints to en-
sure correct optical flow estimation, allowing smooth variation
in brightness pattern motion across the image [33], [34], [35],
[36].

The CASR paradigm proposed in [26] demonstrated that areas
on the fingertip with equal Merkel corpuscle activation, known
as Iso-Strain Energy Density contours, expanded outward as
probing force increases, offering insights into probed objects
compliance. As the apparent motion of iso-brightness contours
can be described by the optical flow model, the expansion of the
iso-strain contours can be accounted by the tactile flow model,
which allows to explain haptic counterparts of common visual
illusions. In [15], we used the optical flow to approximate the
tactile flow, by linking the iso-brightness patterns expansion
due to the pins’ movement to stress-strain distributions over the
TacTip surface during contact.

Furthermore, given the similarity between this expansion
and the radial patterns of brightness contours used in vision
for estimating an object collision time w.r.t. the camera plane,
our work in [15] drew on the time-to-contact theory proposed
in [37]. We applied this theory to assess the area’s rate of
change based on image divergence. Specifically, we redefined
the theory in the force domain, shifting the focus from time to
force. This approach allows us to analyze how the area changes
over increasing indenting force, to devise information on object
compliance.

Based on that, we finally evaluate the contact area correspond-
ing to the probing force Fi at the ith frame as

Aci = Ac0 exp(�cumFi). (1)

Here, Ac0 represents the initial area calculated under the Tac-
Tip’s static condition through a vision algorithm and �cum
is the summation of the divergence of the dense optical flow
in a frame sequence. Note that, as demonstrated in [15], (1)
derives from the results of Cipolla and Blake [37], i.e., from
the definition of the optical flow divergence equal to the cu-
mulative divergence of the optical flow multiplied by the area:
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dAc

dF =
∫∫

Ac
� dA = Ac�cum. After obtaining the contact area

value, we computed the CASR, i.e.,
dAci

dFi
, at frame i using the

equation

dAci

dFi
=

i∑
j=1

Acj −Acj−1

Fj − Fj−1
(2)

considering F0 = 0. Consequently, the computed CASR for
the entire frame sequence was derived using (2) with
i = number of frame. The CASR estimation allows the dif-
ferentiation of softness levels of the explored objects. Higher
CASR values indicated softer materials.

However, the accuracy of the obtained results in terms of
compliance estimation error significantly worsened as the con-
tact direction moved away from being perpendicular to the
object’s surface. Upon a thorough analysis of the prior results,
we noted that employing the same initial condition to solve
the differential equation, irrespective of the approach direction
towards the object, fails to yield optimal solutions. Indeed, the
more inclined the axis defining the approach towards the object
is in relation to the normal axis of the object surface, the smaller
the initial contact area becomes. To establish a more appropriate
initial condition considering the actual sensor surface involved
in the initial contact, within the previously proposed pipeline,
we suggest an enhancement to the vision system.

B. Human Inspired Impedance Regulation

As widely mentioned in [15], the model-based biomimetic
approach only exploits the cutaneous cue. Here, we put forward
delving into the prospect of integrating a kinesthetic element into
our framework to increase the sensitivity of our model. In support
of that, in [20] and [21], authors demonstrated that humans
act on muscle stiffness control to enhance object compliance
perception [38]. Our approach for kinesthetic cues exploitation
aims to replicate the muscular impedance involved by humans
in soft object probing. We propose to substitute the actuation
system used in our previous work [15], based on a dc motor,
commanding the indentation of the TacTip over the compli-
ant specimen, with a suitable variable stiffness actuator, i.e.,
Qbmove [39], [40].

Similar to the case of natural musculoskeletal systems, Qb-
move allows moving the output shaft while also modulating the
mechanical stiffness of the shaft itself. The Qbmove structure
presents two motors connected to the output shaft through linear
springs, implementing a nonlinear elastic transmission. This
configuration results in a mechanical implementation of the
antagonistic principle, where two muscles work on a natural
joint. The system inputs are the semisum and semidifference of
the motor position for r and c, respectively. In order to control
the motors angles θ1 and θ2 according to the reference inputs
r and c, a low-level controller is constructed in the onboard
controller (see Fig. 1). Operatively, the desired position of
the output shaft is defined as (θ1 + θ2)/2 while the desired
stiffness as (θ1 − θ2)/2. When the motors rotate in opposite
directions, the springs become loaded, changing the working
point and, consequently, the resulting stiffness. In the absence of

Fig. 1. Qbmoves actuator design and parameters.

an external load, this movement does not affect the output-shaft
equilibrium position since the two transmission systems have
the same properties. The behavior that arises is consistent with
the widely recognized equilibrium point theory of Feldman [41],
on human motor control. The described work principle can be
used to replicate the human co-contraction activity involved
in several tasks. This is done by mapping onto the actuator
stiffness the muscular impedance profiles defined as the sum
of the agonistic–antagonistic activity [42].

IV. METHODS

A. Improved Vision Algorithm

In this section, we propose a new vision algorithm that aims
to refine the estimation of the initial contact area by leveraging
information from the first two frames captured by the TacTip
sensor.

Initially, in [15], the algorithm considered the area of a circle
with a radius determined by the farthest pin from the central one
as the initial condition to solve (1).

The new algorithm (Algorithm 1) utilizes data from the frame
representing the static condition of the TacTip surface, and from
the initial frame, representing the first contact, to enhance the
accuracy of the definition of the initial contact area. It processes
each frame to extract pixel coordinates corresponding to the
center of each pin. This task was accomplished by applying
shape and color masks to isolate and identify the pins indi-
vidually, allowing for the delineation of their contours and
their respective centroids. The next step involves pairing the
centroids obtained from both frames. This was achieved by
sorting the pin coordinates and matching centroids between the
two images. Then, the algorithm identifies and saves centroid
pairs displaying displacement between the initial and subsequent
frames. For each pair of saved centroids, it exclusively utilizes
the coordinates from the first frame to establish the center point
of a hexagonal shape. The choice of a hexagon was motivated by
the arrangement of the pins on the TacTip surface, as this shape
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Fig. 2. Visualization of the vision algorithm for Ac0 estimation. (a) Frame.
(b) Shape and Color Mask. (c) Contours and Centroids 1. (d) Contours and
Centroids 2. (e) Selected pins. (f) Hexagon for Ac0 .

offered better coverage of the area of interest, as depicted in
Fig. 2(f). To evaluate the area of one hexagon, knowing the radius
rh of the hexagon and the regularity of the defined polygon, we
first evaluate the apothem a and the side l in pixel as

a = rh cos 30
◦

l = 2rh sin 30
◦. (3)

Then, we project the pixel value of the apothem and side to their
actual values in mm by exploiting the distance information from
the depth d sensor expressed in mm and the undistorted camera
matrix (intrinsic parameters)

k =

⎡
⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤
⎥⎦ (4)

with fx and fy focal lengths, and cx and cy the principal point
offsets, all expressed in pixels

amm =
a · depth

fy
lmm =

l · depth
fx

. (5)

Then, the area of one hexagon in mm2 is evaluated as Ahex =
6 · lmm · amm/2 and the total initial area as Ac0 = n ·Ahex, with
n the number of selected pins.

Fig. 2 shows the main result obtained with the new vision
algorithm. In particular, it refers to the case in which the angle
between the axis of contact direction and the normal to the
surface is about 45◦.

B. Human-Like Compliance Exploration

This section describes the experiments conducted on 14 right-
handed subjects (5 Male and 9 Female, Age mean± SD: 30.5±
11.31) without any hand or wrist injuries. The experimental
procedures were approved by the Committee on Bioethics of the

Algorithm 1: Initial Area Estimation.
Step 1: Apply masks to the first and second frames for pins
detection
frame1 ← file.T IFF [0]
frame2 ← file.T IFF [1]
mask_circle = cv.circle(mask)
mask_color =
cv.inRange(frame, low_color, upp_color)
frame← frame+ circle_mask + color_mask

Step 2: Find pins contours and respective centroids for both
frames
contoursframei , hierarchyframei =
cv.findContours(framei)
for i in range (0, len(contoursframei)) do
c = contours[i]
area = cv.contourArea(c)
moments = cv.moments(c)
if moments[“m00”] != 0 then
cX = int(moments[“m10”]/moments[“m00”])
cY = int(moments[“m01”]/moments[“m00”])

else
cX, cY = 0, 0

centroidframei .append(cX, cY )

Step 3: Evaluate pin displacement between two frames
distance = 0
for i in range (len(centroidframe1 )) do

for i in range (len(centroidframe2 )) do
distance = abs(centroidframe1 − centroidframe2)
if distance > 2 then
signpin.append(centroidframe1)

Step 4: Evaluate the initial Area as the sum of the hexagon
area
Ac0 = 0
for i in range (len(signpin)) do
Ahex = area of hexagon centered in signpin[i]
Ac0 = Ac0 +Ahex

University of Pisa—Review No. 30/2020. Participants provided
their informed consent to be enrolled in the study. The sample
size derived from a power analysis we performed, considering
that each participant must perform ten exploratory movements
per specimen, having a power 1− β of around 80%, error
probability α equal to 0.05, and an effect size f equal to 0.25.
The experiments aim to evaluate the human forearm muscular
co-contraction, in terms of muscular impedance, while palpating
five specimens with varying degrees of compliance. In addition,
we outline how we reproduce the muscular impedance with the
Qbmove VSA [39], [40].

Our investigation specifically targets the flexion movements
of the index finger, controlled by the metacarpophalangeal
joint. Previous studies [43], [44] have demonstrated that the
impedance of this joint can be modulated by activating two
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Fig. 3. EDC and FDS EMGs collection during silicon palpation.

opposing forearm muscles, i.e., the FDS and the EDC. Particu-
larly, the impedance of the joint increases with the simultaneous
activation of the two involved muscles. We quantify this phe-
nomenon by analyzing the surface electromyography (EMG)
measurements of the muscles collected during the experimental
phase. During the experimental session, subjects were seated
comfortably, resting their dominant forearm on soft support over
a laboratory desk. The forearm skin was thoroughly cleaned, and
two Delsys Bagnoli EMG electrodes were affixed to capture
the electromyographic signals of the FDS and EDC muscles at
1000 Hz. We asked the participants to palpate several specimens
(two in the training phase and five in the real experiment) with
different compliance levels using the index finger (Fig. 3).

These specimens were created by combining varying amounts
of Sylgard 184 silicone in order to have various softness. The
palpation continued until an indentation force of 7 N, along the
vertical axis of the specimen (Fz), was reached. A F/T sensor ATI
Mini45, running at 1000 Hz with a cutoff frequency of 5 Hz, was
placed under the specimen in order to measure the force applied
during the palpation. Moreover, a suitable graphical interface
was developed to facilitate the correct execution of the exper-
iment. Specifically, this GUI displays “start” and “stop” com-
mands for the participant and a force intensity bar with values
ranging from 0 to 7 N. The intensity bar increases and decreases
respectively with the increase and decrease of the indentation
force applied by the participant. In addition, the bar is colored
green when the force increases and red when it decreases, as
compliance discrimination via CASR requires that the force
monotonically increases. Therefore, the red color serves as a
warning, especially during the training phase. During this phase,
participants practiced applying increasing indentation forces of
up to 7 N on two specimens with varying compliance levels
(different from the five used in the experiments). Exploiting the
same GUI, they were instructed to press on the specimen when
the “start” command appeared on the GUI and to lift their finger
when the “stop” command was given. This phase is really impor-
tant since allows participants to familiarize themselves with the
procedures and equipment, ensuring they understood the correct
starting conditions and preventing premature force application
before the experiment begins. Furthermore, the height of the
chair was adjusted based on the height of the participant to ensure
that their forearm was completely sustained by the soft support.
This condition was verified by the experimenter before each trial.
For each specimen, five trials were conducted.

Throughout the experiment, subjects replicated the same
movement on five specimens, S1, S2, S3, S4, and S5, presented
in a random order, distinct from those used during the training
phase, with stiffness equal to κS1

= 7.63 N/mm > κS2
=

5.32 N/mm > κS3
= 3.35 N/mm > κS4

= 3.12 N/mm >
κ5 = 1.11 N/mm, for each of which they performed ten
repetitions. As described in [15], the stiffness of each specimen
was evaluated by exploiting the previous version of our indenter
apparatus with the TacTip sensor replaced with an ABS
smooth plate as a tactile tool to perform indentation tasks
along the vertical axes. We indented each specimen five times,
recording the indentation force and the tool position. We used
the collected data to estimate the stiffness coefficient of each
specimen through the linear Hooke model by fitting prefiltered
force (a moving average filter with a window of five elements,
a cutoff frequency of around 5 Hz, and a delay of 0.5 s) and
indentation values obtaining a worst adjusted R-squared of
0.882. The raw EMG signals collected from both EDC and
FDS muscles were preprocessed by applying the rectification
and smoothing method with the Root-Mean-Square (RMS)
processing. In particular, we used a second-order Butterworth
band-pass filter with a range of [10− 500] Hz to minimize
high-frequency noise and eliminate steady and slow-changing
behaviors. After, we rectified the resulting signal and extracted
the envelope using a 50th-order FIR low-pass filter with a
cutoff frequency of 20 Hz [45]. For each trial, we considered
contact forces ranging from 0.5 to 7 N [46], and we extracted
the co-contraction activity, e.g., muscular impedance, by
summing the EMG signals from this muscle pair [42]. In the
perspective of mapping this impedance profile onto the VSA for
human co-contraction reproduction, the co-contraction activity
collected for each trial was also fitted using the following
logarithmic equation:

vemg = a+ b · log(Fz) (6)

where vemg represents the electromyographic signal value corre-
sponding to a specific force value Fz , and a and b are parameters
dependent on the fitted data. The worst adjusted R-squared is
equal to 0.832.

Considering having for each subject, a group of ten fitted
curves for each specimen, i.e., 50 curves for each subject, 700
curves in total, for the statistical analysis we took into account
the coefficient b of each curve group, opportunely clustered in
70 clusters, i.e., Bi,j = [b1, . . ., b10], with i = 1 : 14 number of
subjects and j = 1 : 5 number of specimens.

According to the one-sample Kolmogorov-Smirnov test, each
cluster has a Gaussian distribution. Therefore, we employed a
parametric ANOVA test with LSD post-hoc correction for two
purposes: First, to statistically confirm the absence of signifi-
cant differences between subjects’ EMG profiles related to the
same specimen, and second, to assess the differences between
impedance muscular profiles in distinguishing different silicone
specimens, for each subject. The first analysis confirmed the null
hypothesis, indicating that no statistically significant differences
exist between subjects. Otherwise, for all fourteen subjects, the
statistically different muscular profiles were associated with S1,
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Fig. 4. Evaluation of the human muscle co-contraction activity. (a) Average
trend of muscle co-contraction of a random subject. (b) Boxplot of coefficient
b.

S3, and S5, exhibiting a p-value of 0.0391in the most conserva-
tive scenario. For each subject, we examined the average trend of
human co-contraction activity related to each specimen, calcu-
lated as the mean of the ten post-processed signals. Considering
no statistical differences between subjects and that we have ten
repetitions for each specimen and each subject for an amount of
700 sample data, we opted for reporting one figure that shows
the mean EMG behavior obtained for each statistically distinct
specimen across all repetitions of an exemplary participant.
Fig. 4(a) represents the average trend of the fitting of muscle
co-contraction activity for the silicones S1, S3, and S5, whereas
Fig. 4(b) illustrates the boxplot of the fitting coefficients b (the
three considered samples are defined by putting together the 10
b coefficients obtained for each considered specimen across the
ten repetitions). Both plots show that muscular co-contraction
activity is strongest with the harder silicone, S1, and gradually
decreases towards the softer silicone, S5.

Since no difference exists between subjects we considered the
average trends obtained for each specimen from the exemplary
participant and shown in Fig. 4(a), and translated them into the
VSA’s stiffness through

kvsa = p1 · vemgmean
+ p2 (7)

where vemgmean
represents the mean value of the EMG signal

evaluated for force intervals of 0.3 N, and p1 and p2 are pa-
rameters derived from the linear mapping between the range of
vemgmean

values and the stiffness range of kvsa based on the
minimum and maximum values of both variables. This ensures
changing the VSA stiffness opportunely. Equation (7) aligns the
minimum co-contraction value with 20% of the actuator maxi-
mum stiffness and the maximum co-contraction value with 80%
of the actuator maximum stiffness (Fig. 5). These thresholds are
selected to guarantee a safe work range for the VSA. Considering
the principle of work of Qbmove described in Section III-B we
control the actuator by setting the stiffness, at steps of 0.3N, and
the desired output shaft position, respectively, as

θ1 − θ2
2

= kvsa
θ1 + θ2

2
= posdes (8)

where θ1 and θ2 are the positions of motor 1 and motor 2 and
posdes is defined by a linear equation ensuring a velocity along
the vertical axis around 5 mm/s.

Fig. 5. Mapping the muscle co-contraction on the VSA stiffness. The dynamic
trends mapped onto the VSA in the human-like experiment with modular
stiffness referred to each specimen are color-coded, respectively, S1 in blue,
S3 in green, and S5 in yellow. The dotted lines represent the constant values
of minimum, mean, and max stiffness mapped onto the VSA in the human-like
experiment with constant stiffness. Scatter dots represent the stiffness values
mapped onto VSA.

Moreover, for the sake of completeness of analysis, consider-
ing the same linear relationship (7), we extracted the minimum,
mean and maximum values of each muscular impedance curve
and mapped them on the VSA as constant stiffness (Fig. 5).

The first mapping enables the investigation of the efficiency
in fully utilizing the dynamic stiffness range when exploring the
object like humans do in palpation activities.

The second mapping enables exploration of the disparities in
object stiffness discrimination resulting from employing con-
stant impedances set to the minimum, maximum, and mean
values of each curve, respectively. Through this investigation,
we also assess whether utilizing an average muscle impedance
value yields comparable results to those achieved by leveraging
the entire impedance curve.

V. EXPERIMENTS

This section describes the experiment performed as in [15]
with (1) the new vision algorithm and (2) those performed
with the new framework with the human-inspired co-contraction
strategy. We investigated three alternative contact directions 0◦,
30◦, and 45◦, currying out ten repetitions for each specimen and
angle. More precisely, we considered surface angles of 30◦ and
45◦ for (1) and of 0◦, 30◦, and 45◦ for (2). More specifically,
regarding human-inspired impedance regulation, in the case of
the exploration with constant stiffness, we investigate only the
normal contact direction, i.e., 0◦, sufficient for investigating the
differences between the two strategies implemented with VSA.
Indeed, while the improvement of the vision algorithm signifi-
cantly affects the case of the inclined surface, the integration of
the human co-contraction strategy affects all situations. Of note,
the experiments aiming at evaluating VSA-enabled exploration
were conducted using the modified vision algorithm.

A. Experimental Setup

The vision algorithm validation experiment was performed
by using the apparatus outlined in [15]. Briefly, the apparatus
include the following:
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Fig. 6. Modified apparatus with VSA for human-like experiments.

1) a motor-driven cogwheel system that vertically moves a
rigid ABS rapid prototyping printed support to host the
TacTip sensor. The sensor was actuated by a Maxon DCX8
dc brushed motor with a planetary gearbox GPX8 35:1,
power supplied at 12 V and controlled by a qbrobotics
board [39];

2) an Auster Microsystem AS5045 encoder with a 12-bit
resolution was used to compute the motor position;

3) a 3-D printed circular plate fixed under the moving frame
to hold the tested specimen;

4) an ATI Mini45 sensor, with a resolution of 0.0625 N,
for measuring vertical forces, fixed under the plate for
measuring vertical forces.

For the experiment involving the Qbmove, we made slight
modifications to this existing setup (Fig. 6). Specifically, we
designed a VSA support in ABS using rapid prototyping tech-
niques, and a shaft connector through CNC machining, to link
the output shaft of the VSA to the preexisting cogwheel system.
A Oldham joint was used to connect the motor output shaft and
the shaft of the cogwheel system. This allows for avoiding possi-
ble misalignments, enabling a linear transmission of the stiffness
from the VSA to the sensor support. In the experiments with the
VSA, the new vision algorithm was used for the initialization of
the CASR estimation procedure.

B. Experimental Procedure

Experiments consist of indenting with the TacTip sensor,
along the chosen contact direction, specimens with different
levels of compliance by applying incremental probing force. We
performed the experiments considering specimens S1, S3, and
S5, which showed statistically significant differences in muscle
impedance profiles across the subjects. Then we used S2, from
now on denoted as Snew, as a new specimen for the stiffness
estimation error evaluation. Custom-designed and 3-D printed
containers (Fig. 7) [47] were employed to change the surface
inclination of the specimen to test the proposed approach along
different exploration directions.

For each specimen and considered surface, two different
approaches were used: the first one, which we refer to as the

Fig. 7. Support to perform experiments considering several angles between
axis normal to the surface and contact direction. (a) Indentation with 0◦. (b)
Indentation with 30◦. (c) Indentation with 45◦.

high-stiffness approach, exploits the old setup involving a dc
motor, so does not consider the variable stiffness; the second,
which we refer to as the human-like approach, uses the new
framework involving the VSA controlled with human muscular
impedance mapping. Moreover, the human-like approach, in
turn, involved two kinds of approaches. In the first, i.e., modular
stiffness, the indentation task is performed by mapping onto the
VSA the whole experimentally obtained human co-contraction
profile. In the second approach, i.e., constant stiffness, the same
task is carried out by mapping onto the VSA a constant stiffness
equal to the minimum, maximum, and mean values of the human
impedance profile. This resulted in a total of five experimental
conditions for each specimen and each angle.

Each experimental repetition involved indenting the specimen
placed on the rigid circular plate with the TacTip attached to the
proposed mechanical system. During the indentation, which we
can refer to as the loading phase, the speed of the tactile tool
was maintained at 5mm/s to remain within the elastic domain of
contacts, where Hertz’s theory is applicable. Slow loading rates
ensure that stresses are in static equilibrium with external loads
throughout the loading cycle, allowing the neglect of dynamic
effects. Each indentation was carried out remaining in a prede-
fined range of contact forces applied ranging from 0.5 N to a fixed
thresholdFmax chosen to align with normal loads associated with
light touch perception in humans [48]. Indeed, we used the force
information to define the state of the indentation; specifically,
the lower bound reflects the instant at which the tactile tool
comes into contact with the specimen, while the upper bound
denotes the end of the trial. During each test, the tactile tool
moved towards the specimen along the vertical axis until the
top bound was reached, then returned to the starting point and
waited for two seconds before beginning the next trial. Each trial
involved saving raw and filtered contact forces, indices of saved
TacTip camera frame, and the TacTip camera image sequence.
The same custom double-thread C++ presented in [15] was used
to manage the whole experimental procedure and for the data
acquisition. To sum up, the main thread determines the motor
desired position (and stiffness when QBmove was used to act the
TacTip) and saves force data and camera image frame number
at a frequency of 200 Hz. The high-priority thread employs a
moving average filter with a window of five elements, a cutoff
frequency of around 5 Hz, and a delay of 0.5 s for force filtering.
The low-priority thread saves TacTip grey-scale 300× 300 pixel
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camera images at a rate of 20 Hz. It is worth noting that, to
perform the experiment with the human-like method, a position
control strategy is not enough for the Qbmove. So, we applied
the control strategy defined in Section III-B to set both stiffness
and shaft position, according to (8).

Finally, a similar custom Python module [15], opportunely
modified with the new vision algorithm, was used to implement
and test the proposed approach with the new evaluation of the
initial condition. This module used the collected and postprocess
data to evaluate dense optical flow between consecutive frames
(retrieved from the saved image sequence) and its divergence,
estimate the initial area, and compute the CASR. Note that
the hysteresis effects due to the TacTip deformable membrane
are discarded since we considered only the indenting (loading
phase) for CASR computation.

VI. RESULTS

This section presents the results obtained after analyzing
the data collected during the experiments. First, we show the
outcome of the biomimetic model-based approach involving the
indentation enabled by the dc motor (high stiffness) and the im-
proved vision algorithm. Then, we report the results fetched by
integrating the human-like actuation in the biomimetic proposed
method together with the new vision algorithm. This way allows
highlighting the role of both enhancements, i.e., new initial
area estimation and human-like variable stiffness actuation, in
reaching a whole improvement of the model-based approach in
discriminating and estimating the object’s stiffness.

A. Vision Algorithm Validation

To ensure consistency in the results obtained with the new
vision algorithm, it is necessary to verify that the values of
the initial area do not vary significantly with changes in the
specimen and are statistically different with changes in the
contact direction. For this analysis, we collected all the initial
area values returned by the algorithm for each specimen and each
considered contact angle. Considering each angle separately,
we took three samples, each for every specimen, consisting of
the ten initial area values. After confirming the non-Gaussian
distribution of the samples, we applied the Kruskal-Wallis test,
which resulted in accepting the null hypothesis in all three
contact angle cases. The corresponding p-values are 0.51 for
0◦, 0.74 for 30◦, and 0.61 for 45◦. Subsequently, having verified
the nonsignificant difference in the contact area with changes
in the specimen while fixing the contact angle, we created three
samples, each containing all the initial area values obtained for
all three specimens at the same contact angle. We applied the
Kruskal-Wallis test to these samples with subsequent Bonferroni
correction, which resulted in rejecting the null hypothesis with
a p-value of 3.1079e− 05 in the worst case. Fig. 8 shows the
obtained statistical results of both analyses through boxplot
visualization, while Fig. 9 highlights the difference in the initial
area considering different angles and the decreasing of the area
when the angle increases.

As force values are recorded at a frequency of 200 Hz, whereas
TacTip images are captured at 20 Hz, multiple force data are

Fig. 8. Boxplot obtained from statistical analysis for algorithm’s results vali-
dation. (a) Boxplot of Ac0 varying specimen at 0◦. (b) Boxplot of Ac0 varying
specimen at 30◦. (c) Boxplot of Ac0 varying specimen at 45◦. (d) Boxplot of
Ac0 varying angle.

Fig. 9. Visualization of Ac0 correspondent to several angles. (a) Ac0 with 0◦.
(b) Ac0 with 30◦. (c) Ac0 with 45◦.

collected for each saved image frame. Before validating the
entire proposed model-based approach with the new algorithm,
it is essential to resample these values. Due to the straightforward
nature of the data, the chosen method involves considering the
force value associated with each frame as the mean of all the
force values saved relative to that specific frame.

At this stage, the proposed model with the new algorithm
has been applied to all the experimental data to derive CASR
values for each case. Initially, we validated the model through
the Kruskal-Wallis test and Bonferroni correction resulting in a
p-value of 0.0111 in the worst case, confirming that CASR values
exhibit statistically significant differences with variations in the
specimen. In addition, we verified that, for each selected contact
angle, the contact area spread rate increases if the softness of the
specimen increases (Fig. 10).

Later on, we applied the approach to data collected from a
new and unknown specimen Snew performing ten experimental
repetitions, as done for the other specimen, considering all three
cases defined by the contact angles, to assess its CASR as the
mean of the ten CASR values obtained from each collected data
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Fig. 10. Snew CASR discrimination based on the proposed model using
the high-stiffness approach and considering different contact angles. Different
specimens are color-coded, respectively, S1 in blue, Snew in red, S3 in green,
and S5 in yellow. (a) Raw data and fitting of dAc

dF at 30◦. (b) Boxplot of dAc
dF

at 30◦. (c) Raw data and fitting of dAc
dF at 45◦. (d) Boxplot of dAc

dF at 45◦.

TABLE I
ESTIMATION ERRORS MADE IN THE EVALUATION OF KSnew

sequence. We verified that the specimen was correctly classified
within the stiffness and CASR scale (Fig. 10) considering that
we already characterized the objects that resulted in a stiffness
of κSnew = 5.32 N/mm.

Subsequently, we identified the relationship between CASR
and specimens’ stiffness by fitting the previously obtained data.
The resulting relation is described by an exponential equation
with an adjusted R-squared of 0.8963 in the worst case. We
used this relation to estimate the stiffness of Snew considering
knowing only its CASR. The estimation error resulted equal to
7% and 13% for 30◦ and 45◦, respectively (Table I).

B. Validation of Human-Like Approach

For a proper analysis of the exploration performed considering
mapping the whole human co-contraction profile, we first need
to resample the data collected during the experiment performed
on S1, S3, and S5. Indeed, since force values are recorded at
200 Hz while TacTip pictures are recorded at 20 Hz, we had
many force data points per image frame. The strategy used is
to consider the average force value for each frame. Then, to
obtain the CASR values, we applied our proposed method with
the data collected in each trial, considering the new estimation

Fig. 11. Interpolated EMG profile for Snew (red dotted line) in comparison
with EMG profiles from measurements.

area strategy. After verifying that our samples do not have a
Gaussian distribution, we tested the three specimens, for each
indentation angle, with the nonparametric Kruskal-Wallis test
and subsequent Bonferroni correction to determine whether the
CASR values showed statistically significant differences. The
results revealed a rejection of the null hypotheses, with the worst
p-value = 0.0034 for the surface at angles 0◦ and 30◦ and the
worst p-value = 0.0018 for the surface at 45◦.

Then, we evaluated also the CASR related to specimen Snew.
In this case, the EMG profile mapped onto VSA is obtained
through interpolation method that linearly combines the data
from the original curves. First, we consider the coefficient
of obtained logarithmic curves to evaluate the EMG profiles
related to S1, S2, S3 w.r.t. the same vector of force (generated
considering 100 points between 0 and 7 N) to ensure uniformity.
After aligning the curves, we introduced an interpolation factor,
α ∈ [0, 1], which determines the relative contribution of each
curve to the final result. Specifically, we considered a stiffness
range of [0− 10] N/m, corresponding to 0% and 100%, respec-
tively, mapped each specimen stiffness to its percentage value,
and then normalized it within the range [0, 1]. Subsequently,
we set α = 0.532, i.e., the normalized percentage stiffness of
Snew. With α determined, we generated the EMG profile for
Snew by computing a weighted average between the EMG
profiles of S1 and S3, that ensure Snew ling in between, with
the weighting based on 1− α for S1 and α for S5. To enhance
the robustness of our approach and increase confidence in the
results, we compared the interpolated profile with real EMG
data obtained from experimental measurements conducted with
participants. The comparison resulted in an RMSE equal to
0.0002 V (Fig. 11).

Based on our prior knowledge that KSnew is less than KS3

and higher than KS1
, we verified that its CASR curve remains

correctly between S1 and S3 curves. Fig. 12 illustrates the
CASR trend for each specimen and the respective boxplot across
all indentation angles. Plots highlight that the specimens are
correctly discriminated based on the fact that the CASR values
are higher the softer the object is. Moreover, both plots show the
correct discrimination of the new specimen compliance level.

Based on the results, as done before, we derived the rela-
tionship between the evaluated CASR and known stiffness of
S1, S3, and S5 through exponential fitting that results in an
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Fig. 12. Snew CASR discrimination based on the proposed model using
the human-like approach and considering different contact angles. Different
specimens are color-coded, respectively, S1 in blue, Snew in red, S3 in green,
and S5 in yellow. (a) Raw data and fitting of dAc

dF at 0◦. (b) Boxplot of dAc
dF at

0◦. (c) Raw data and fitting of dAc
dF at 30◦. (d) Boxplot of dAc

dF at 30◦. (e) Raw

data and fitting of dAc
dF at 45◦. (f) Boxplot of dAc

dF at 45◦.

adjusted R-squared of 0.9753 in the worst case. Specifically,
we obtained three fitted curves, one for each considered angle,
equal to 10.21e−1.567x, 14.76e−23.94x, and 8.639e−58.67x, for
0◦, 30◦, and 45◦, respectively, where x is the CASR value.
Through this relation, we estimated KSnew obtaining an esti-
mation error equal to 3%, 3%, and 4% for 0◦ 30◦, and 45◦,
respectively.

We used the same methodology to analyze the data collected
during the experiments conducted under constant stiffness con-
ditions, i.e., MinxEMG, MaxStiff , and MeanStiff . The
statistical analysis through Bonferroni correction resulted in a
p-value equal to 0.0037in the worst case of minimum stiffness,
0.0018in the worst case of maximum and mean stiffness. After
that, we computed the CASR of Snew verifying that, different
from cases with maximum and mean stiffness, using minimum
stiffness does not allow discriminating Snew from S1 (p-value
= 0.3799) (Fig. 13). So, we extracted the relationship between
CASR and specimens stiffness through exponential fitting in
the cases of maximum and mean stiffness that resulted in an
adjusted R-squared of 0.9849 and 0.9996, respectively. Exploit-
ing the relations, we estimated KSnew obtaining an estimation
error equal to 4.72% and 5% for MaxStiff and MeanStiff

respectively.

Fig. 13. Snew CASR discrimination based on the proposed model using
constant muscular impedance values equal to the minimum, maximum, and mean
values of each EMG profile. Different specimens are color-coded, respectively,
S1 in blue, Snew in red, S3 in green, and S5 in yellow. (a) Raw data and fitting
of dAc

dF at 0◦ with MinStiff . (b) Boxplot of dAc
dF at 0◦ with MinStiff . (c)

Raw data and fitting of dAc
dF at 0◦ with MaxStiff . (d) Boxplot of dAc

dF at 0◦

with MaxStiff . (e) Raw data and fitting of dAc
dF at 0◦ with MeanStiff . (f)

Boxplot of dAc
dF at 0◦ with MeanStiff .

VII. DISCUSSION

In our previous work [15], we presented results obtained
considering indentation angles equal to 30◦ and 45◦. For the
same new specimen Snew, we obtained an estimation error
equal to 25% and 28%, respectively, for 30◦ and 45◦. The new
results, as indicated in Table I, demonstrate that the new vision
algorithm significantly improves estimating the stiffness of new
and unknown objects. Indeed, the error is reduced by 18% and
15% for the two cases, respectively, making the new estimation
error comparable to the one obtained in the case of indentation
along the axis perpendicular to the specimen’s surface. This
underscores the substantial enhancement that the new algorithm
provides to the proposed model-based biomimetic approach in
evaluating the initial condition.

A greater improvement in estimation accuracy was achieved
through the exploitation of variable stiffness palpation imple-
mented by leveraging the studied human muscular impedance.
Indeed, as shown in Table I, merging the human-like approach
with the new vision algorithm, resulted in an additional reduc-
tion in the estimation error equal to 4%, and 9% for 30◦ and
45◦, respectively, surpassing the improvement achieved solely
through the application of the new algorithm.
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Fig. 14. Comparison of CASR discrimination obtained with both high-stiff
and human-like approaches. Concerning the results that involve high-stiff pal-
pation, we considered for 0◦ the result obtained in [15], while for 30◦ and 45◦,
we reported the ones obtained with new vision algorithm and the high-stiff
palpation. Different specimens are color-coded, respectively S1 in blue, Snew

in red, S3 in green, and S5 in yellow. (a) Boxplot of dAc
dF at 0◦. (b) Boxplot of

dAc
dF at 30◦. (c) Boxplot of dAc

dF at 45◦.

If we compare the improvements achieved with both advance-
ments on the model-based biomimetic approach, with the results
obtained through the first approach proposed in [15], we observe
an estimation error reduction of 3% (reduction of 50%), 22%,
24% for the three considered indentation angles.

Moreover, Fig. 14 shows a graphical representation through
boxplots of the difference between results obtained with the
high-stiffness approach and the human-like one in terms of
values of dA

dF obtained for each of the five examined specimens.
It is evident that the human-like approach allows for a marked
distinction in the values of dA

dF with respect to the high-stiffness
one. In addition, upon examining the outcomes obtained from
considering the minimum, maximum, and mean values of human
muscular impedance during silicone palpation, we observed the
following: 1) the minimum human impedance is insufficient
for effectively capturing softness information; 2) utilizing the
maximum human impedance yields discrimination and stiffness
estimation errors comparable to those obtained with the high-
stiffness approach; and 3) while the mean human impedance
ensures adequate discrimination and stiffness estimation, it falls
short of the performance achieved by incorporating the entire
human co-contraction profile during silicone exploration. This
result suggests that humans tend to implement a dynamical
adaptation of their mechanical impedance to maximize the in-
formation uptake. This highlight that incorporating an integral
human muscle co-contraction strategy during specimen explo-
ration facilitates more accurate identification of multiple object
compliance levels, enhancing the device sensitivity. This demon-
strates a definite improvement in our biomimetic approach.

The presented results, particularly in compliance discrimi-
nation and stiffness estimation errors, show that proposed im-
provements, i.e., the new vision algorithm and variable stiffness
actuation, contribute significantly to the system performance,

even if in distinct ways. The new vision algorithm improves
the biomimetic model by enhancing the initial condition of the
differential equation, enabling better compliance discrimination,
especially in the case of inclined surfaces. The new variable
stiffness actuation improves the exploratory process, aligning
more closely with human kinesthetic input and allowing the
implementation of impedance control laws for various robotic
platforms. To conclude, it is worth noting that even if the new
vision algorithm offers limited improvement for surfaces per-
pendicular to the sensor–where the previous approach already
performed well–both enhancements are essential for ensuring
robust, adaptable performance across different conditions, mak-
ing the combination of both contributions fundamental.

VIII. CONCLUSION

In this work, we built upon our previous results, where we
used a computational model of human tactile perception with
the TacTip sensor for object compliance discrimination. More
specifically, we strengthen our approach by proposing a new
vision algorithm for a more precise estimation of the initial
contact area condition, which enables correct compliance es-
timation also when the probing direction is other than normal to
the specimen surface. More importantly, looking at the human
example, we mapped human muscular co-contraction patterns
extracted during object probing for softness onto a variable stiff-
ness actuator that mimics the behavior of agonistic–antagonistic
muscle. We found significant improvements with respect to our
previous results obtained using a rigid actuator to indent the
external items with TacTip, demonstrating that the new vision
algorithm and variable stiffness actuation significantly enhance
system performance.

However, our method has certain limitations, many of which
we aim to address in future work. First, it relies on cutaneous
sensing, which is related to soft tactile sensor surface deforma-
tion. While this allows for the estimation of softness, when prob-
ing for softness specimens that have the same CASR behavior,
humans rely also on the kinesthetic perceptual component (i.e.,
classical force-indentation processing), whose integration with
CASR computation was proven to improve the discrimination
performance [49]. In addition, our approach should be tested on
specimens with different elastic and hyper-elastic properties,
and in conditions beyond quasi-static scenarios. To address
these points, an integration of our model-based approach with
data-driven methods is currently under investigation. Moreover,
from the results, it is evident that higher exploration forces
enhance the model performance, while lower forces result in
decreased accuracy, a limitation inherent to CASR-based esti-
mation. However, it is worth noting that these values are aligned
with the force range used by humans for softness perception [48],
which support the biomimicry of our approach. Nonetheless,
we acknowledge that this is a limitation of our method from a
mathematical and technical point of view, as well as the need
for the monotonic increase of the indenting force for CASR es-
timation. Despite this, the results of the new model demonstrate
enhanced robustness and adaptability across various exploration
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conditions, opening promising scenarios for the integrated per-
ception and grasping control of soft deformable objects with
miniaturized versions of the TacTip and variable impedance
human-inspired robotic hands [50]. Moreover, in the future, the
integration of our method with soft optical sensor compliance
control, e.g., taking inspiration from pressure-modulated opti-
cal tracking sensors for quantifying specimen stiffness during
dynamic palpation [7], will also be considered.
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