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MMP++: Motion Manifold Primitives With
Parametric Curve Models

Yonghyeon Lee , Member, IEEE

Abstract—Motion manifold primitives (MMP), a manifold-based
approach for encoding basic motion skills, can produce diverse
trajectories, enabling the system to adapt to unseen constraints.
Nonetheless, we argue that current MMP models lack crucial
functionalities of movement primitives, such as temporal and via-
points modulation, found in traditional approaches. This shortfall
primarily stems from MMP’s reliance on discrete-time trajecto-
ries. To overcome these limitations, we introduce motion manifold
primitives++ (MMP++), a new model that integrates the strengths
of both MMP and traditional methods by incorporating parametric
curve representations into the MMP framework. Furthermore, we
identify a significant challenge with MMP++: performance degra-
dation due to geometric distortions in the latent space, meaning
that similar motions are not closely positioned. To address this,
isometric motion manifold primitives++ (IMMP++) is proposed to
ensure the latent space accurately preserves the manifold’s geome-
try. Our experimental results across various applications, including
two-DoF planar motions, seven-DoF robot arm motions, and SE(3)
trajectory planning, show that MMP++ and IMMP++ outperform
existing methods in trajectory generation tasks, achieving sub-
stantial improvements in some cases. Moreover, they enable the
modulation of latent coordinates and via-points, thereby allowing
efficient online adaptation to dynamic environments.

Index Terms—Autoencoders, isometric representation learning,
manifold, movement primitives, Riemannian geometry.

I. INTRODUCTION

D EVELOPING “good” mathematical models for represent-
ing basic motion skills continues to be a central focus in

the literature on learning from demonstration [1], [2], [3]. In this
article, we adopt the view that a good model should be capable
of generating diverse trajectories that can complete the given
task. Moreover, it should be easily adaptable to a new, unseen
constraint. For instance, if an unseen obstacle blocks the initially
planned path, the model should enable a robot to avoid that
obstacle while still accomplishing the task. We aim to train such
a model using multiple demonstration trajectories. Challenges
often arise from the small dataset size, high dimensionality of
the trajectory data, and the multimodality of data distribution.
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Fig. 1. MMP++: A latent coordinate space Z is mapped to a subspace of the
curve parameter spaceW ; the parameter spaceW is mapped to a subspace of the
infinite-dimensional trajectory space. The motion manifold and parametric curve
space are visualized as a curve and surface, not because their actual dimensions
are one and two, but only to indicate the relative size relationships of their
dimensions.

Adopting the motion manifold hypothesis [4], [5]—which
assumes that a set of high-dimensional trajectory data lies on
some lower dimensional manifold—recent motion manifold
primitives (MMP) framework provides motion primitive models
that can encode and generate, for a given task, a continuous man-
ifold of trajectories each of which is capable of accomplishing
the task [6], [7]. This framework has demonstrated promising
results in addressing the aforementioned challenges, effectively
reducing the data dimensionality and capturing multimodality.
In particular, adjusting the low-dimensional latent coordinate
values enables the adaptation of trajectories to unseen environ-
ments.

These manifold-based models, however, lack some of the
desired functionalities of movement primitives found in other
conventional methods, such as DMP [8], [9], ProMP [10], and
VMP [11]. These functionalities include: 1) temporal modula-
tion to enable faster or slower execution of the movement and 2)
modulation of via-points (e.g., start and goal points) given new
task constraints. The fundamental reason for the absence of such
functions in the MMP framework is its reliance on discrete-time
trajectory representations. In contrast, conventional movement
primitives often employ parametric models for trajectory rep-
resentation. For example, one of the simplest forms of these
models is the linear basis function model, for a configuration
space Q = Rn, expressed as follows:

q(τ ;w) =

B∑
i=1

φi(τ)wi for τ ∈ [0, 1] (1)
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Fig. 2. Left: There are 15 demonstration trajectories (red, green, and blue trajectories) that travel from the start to the goal, avoiding the obstacle. Middle and
Right: MMP++ and IMMP++ learn 2-D manifolds in the curve parameter space and produce 2-D latent coordinate spaces. Latent values of the demonstration
trajectories are visualized in the latent coordinate spaces, marked as ×. GMMs of three components are fitted in the latent spaces, and the sampled points are
visualized as stars ∗. The corresponding generated trajectories are also visualized.

where {φi(τ)}Bi=1 is a set of some scalar-valued basis functions
in [0,1] and wi ∈ Rn, i = 1, . . . , B are curve parameters. Tem-
poral modulation can be achieved by modifying τ as a function
of time t, and adding some structures to the basis function φi(τ)
can enforce constraint satisfaction [e.g.,φi(τ) := τ(1− τ)bi(τ)
enforces φi(0) = φi(1) = 0 for any function bi(τ)].

In this article, we propose applying the MMP framework to
the parametric curve representations of trajectories, thus simul-
taneously tackling the challenge of dimensionality and achieving
the desired functionalities, denoted as motion manifold primi-
tives++ (MMP++) (see Fig. 1). In addition, parametric curve rep-
resentations in MMP++ lead to several other advantages. First,
motions have bounded accelerations and jerks, avoiding sudden
and abrupt changes. Second, the dimension of the parametric
curve space—which is equal to the dimension of the parameter
space—is generally much smaller than the dimension of the
discrete-time trajectory data space, reducing the complexity of
the subsequent motion manifold learning problem. The vanilla
MMP++, a naive application of the MMP framework to the curve
parameter space, however, sometimes results in a geometrically
distorted latent coordinate space—where similar motion data
are not positioned close to each other—leading to a generation
of motions that violate the task constraint. For example, consider
an example shown in Fig. 2. We learn a 2-D manifold and its
latent coordinate space, by using the red, green, and blue demon-
stration trajectories and their parametric curve representations.
Then, we fit a Gaussian mixture model (GMM) using the latent
values of the trajectories. As illustrated in Fig. 2 (middle), due to
the geometric distortion in the latent coordinate space, the same
color trajectories are not located close enough to each other.
Consequently, the red and green latent points are not correctly
clustered by the GMM, and many of the generated motions
collide with the obstacle, failing to accomplish the task.

In this article, adopting the isometric regularization method
from [12], we propose to learn a geometry-preserving latent co-
ordinate space, so that similar trajectories can be located nearby
in the latent space. To employ this method in our context, we need
to specify a Riemannian metric for the curve parameter space
that serves as the basis for determining the notion of closeness
in the parameter space. We propose a CurveGeom Riemannian

metric for the curve parameter space that reflects the geometry
of the trajectory space, given a parametric curve model that
satisfies some mild regularity conditions. We call this framework
isometric motion manifold primitives++ (IMMP++); see Fig. 2
(right).

In the first part of our experiments, we focus on Euclidean
configuration space cases and use affine curve models, similar
to those in ProMP [10] and VMP [11]. This induces constant
CurveGeom metrics and leads to simpler implementations of
the isometric regularization. Experiments involving two-DoF
planar obstacle-avoiding motions and seven-DoF collision-free
motions of a robot arm confirm that our manifold-based meth-
ods, MMP++ and IMMP++, outperform conventional move-
ment primitives in trajectory generation. Notably, we verify
that the modulation of latent coordinates and via-points leads to
diverse trajectory generation and enables the online adaptation
of trajectories in dynamic environments. In the second part, we
demonstrate how to extend our framework to SE(3) trajectory
data with the water-pouring demonstration trajectory dataset.

II. RELATED WORKS

A. Movement Primitives

Movement Primitives are mathematical models that encode
and generate motions or trajectories. Conventional methods for
movement primitives can be roughly divided into two categories
as follows. 1) Dynamical system-based approaches, such as
dynamic movement primitives [8], [9], [13], [14], [15], [16] and
stable dynamical systems [17], [18], [19], [20], [21], [22]. 2)
Parametric or nonparametric probabilistic modeling of trajecto-
ries [10], [11], [23]. Each of these models possesses its own char-
acteristics. Dynamical system-based methods typically ensure
the stability of the resulting closed-loop systems. Approaches
based on stable autonomous dynamical systems provide tem-
poral and spatial robustness to perturbations. Parametric curve
models offer adaptability in terms of temporal modulation and
changes in constraints (e.g., goal points).

A primary challenge in most of these methods is the lim-
ited adaptability to diverse situations (e.g., when unforeseen
obstacles or new constraints emerge), which is mainly due to
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their design for encoding and producing a single trajectory for
a given task [7]. This becomes problematic when this trajectory
becomes infeasible by unforeseen environmental changes, such
as the sudden appearance of an obstacle. While dynamical
system-based approaches can incorporate mechanisms, such as
obstacle avoidance potential functions [24], [25], [26], [27],
these adaptations may inadvertently breach other task-related
constraints. Therefore, for motion primitives to be truly adapt-
able, a strategy that can encode various trajectories for the same
task is critical. Our work adopts the MMP framework [6], [7]
to encode and generate diverse trajectories or even a continuous
manifold of trajectories, producing highly adaptable primitives,
simultaneously inheriting advantages of the parametric curve
models utilized in [10] and [11].

B. Manifold-Based Movement Primitives

Recently, manifold-based representations of basic motion
skills have shown promising results in encoding diverse motions
and producing adaptable primitives. These approaches can be
categorized into two types. The first approach attempts to learn
a submanifold in the configuration space Q, a manifold of
configurations, where the latent value z maps to a configuration
in Q [28]. To generate a trajectory, this approach computes a
geodesic connecting two points inM.

The second type learns a low-dimensional manifold of tra-
jectories, referred to as a motion manifold, where each point in
the latent space z corresponds to a trajectory q(t) ∈ Q [6], [7].
Our method extends the latter approach. While existing methods
map the latent point z to a discrete-time trajectory representation
(q1, . . . , qT ), we use parametric curve models q(t, w), in which
the latent point z is mapped to the curve parameter w. As a
result, our extended version can also be interpreted as learning a
submanifold inQ, similar to the first type approach, since (t, z)
is now mapped to a point q(t, w(z)) in Q.

MMP can produce diverse trajectories, and their ability to
adapt to unseen obstacles by finding a latent value that generates
a collision-free trajectory has been verified [7]. However, due
to the discrete nature of trajectory representation, they have
limited adaptability to a dynamically changing environment. In
our extended version, trajectories are parameterized by time,
enabling online adaptation to dynamic environments.

C. Manifold Learning and Latent Space Distortion

An autoencoder framework and its variants have received a lot
of attention as effective methods to learn the manifold and its co-
ordinate chart simultaneously, including but not limited to [12],
[29], [30], [31], [32], [33], [34], [35], [36], and [37]. Of particular
relevance to this article, a geometric perspective on autoencoders
has been eloquently presented in [5]. In this article, a significant
aspect of concern is the presence of the geometric distortion
within the latent space of the autoencoder, as highlighted in [4],
[5], [12], [34], and [38]. A recent regularization method [12] has
developed a method to find the one that minimizes the geometric
distortion, i.e., preserves the geometry of the data manifold and
the latent coordinate space. While Euclidean metric is assumed
in [12], in this work, we propose to use a pullback Riemannian

Fig. 3. Local coordinate system for an m-dimensional Riemannian manifold
M. The Riemannian metric at coordinates x, G(x), is visualized as a red
equidistant ellipse that is {y ∈ Rm | (y − x)TG(x)(y − x) = constant}.

metric for the curve parameter space that reflects the geometry
of the curve space.

III. GEOMETRIC PRELIMINARIES

In this section, we review some basic concepts in differential
geometry that serve as cornerstones for our method. We refer to
standard differential geometry textbooks for more details [39],
[40].

A. Riemannian Manifolds

A smooth manifoldM equipped with a positive-definite inner
product on the tangent space at each point is called a Riemannian
manifold, and the family of inner products is called a Riemannian
metric. Given an m-dimensional Riemannian manifoldM and
its local coordinatesx ∈ Rm—when using local coordinates, we
implicitly assume there exists a local coordinate mapψ : Rm →
U ⊂M—the Riemannian metric at x can be expressed as an
m×m positive-definite matrix denoted byG(x) ∈ Rm×m; see
Fig. 3. This defines several geometric notions on M, such as
lengths, angles, and volumes. For example, given an infinitesi-
mal displacement vector dx ∈ Rm, its squared length is defined
as follows:

ds2 = dxTG(x)dx =
m∑

i,j=1

gij(x)dx
idxj (2)

where {gij(x)} is an index notation of the matrix G(x) and
dx = (dx1, . . . , dxm).

B. Immersion and Embedding

Consider two differentiable manifolds, an m-dimensional
manifoldM and n-dimensional manifoldN , with their respec-
tive coordinates x ∈ Rm and y ∈ Rn. A differentiable mapping
f :M→N is an immersion if its differential is an injective
function at every point inM. Representing the mapping in local
coordinates as f : Rm → Rn, equivalently, f is an immersion
if its Jacobian matrix

J(x) :=
∂f

∂x
(x) ∈ Rn×m (3)

has constant rank equal to dim(M) = m at every point. Intu-
itively, for f to be an immersion, the output manifold dimension
n must be greater or equal to the dimension of M. A smooth
embedding is an injective immersion f :M→N such thatM is
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Fig. 4. Illustration of immersion and embedding between two manifoldsM
and N .

Fig. 5. Illustration of Riemannian geometry of the parametric curve
manifold XW .

diffeomorphic to its image f(M) ⊂ N .1 Specifically, when the
domain manifold is compact, a smooth embedding is equivalent
to an injective immersion. Then, f(M) is called an embedded
manifold in N ; see Fig. 4.

C. Riemannian Geometry of Parametric Curves

In this article, we are particularly interested in Riemannian
geometry of manifold of parametric curves. This section intro-
duces how to define a Riemannian metric for the parametric
curve manifold; see Fig. 5.

Let M be an m-dimensional Riemannian manifold with
its local coordinates x ∈ Rm and Riemannian metric G(x).
Consider a smooth curve in M expressed as x : [0, T ]→ Rm

in coordinates, where its velocity norm is defined as ‖ẋ‖ :=√
ẋTG(x)ẋ. The space of all smooth curves is considered an

infinite-dimensional function space X with an inner product
defined as follows: 〈v, w〉x :=

∫ T

0 v(t)TG(x(t))w(t) dt for two
square-integrable functions v, w : [0, T ]→ Rm (i.e., X is a
Hilbert space).

Of particular relevance to this article is a parametric curve
x(t;w) where w ∈ W denotes the parameter of the curve and
W ⊂ Rn. Consider the set of all parametric curves XW :=
{x(·;w) ∈ X | w ∈ W}. This space is a n-dimensional smooth
manifold under the following conditions.

Proposition 1: Suppose a curve x(t;w) is smooth in both
t and w and x(t; ·) :W → X is injective, i.e., if x(t;w1) =
x(t;w2) for all t ∈ [0, T ], thenw1 = w2. Letw = (w1, . . . , wn)

1A manifoldA is diffeomorphic to another manifold B if there exists a differ-
entiable map between A and B such that its inverse exists and is differentiable
as well.

and v = (v1, . . . , vn) ∈ Rn, if

D∑
i=1

∂x(t;w)

∂wi
vi = 0 ⇒ v = 0 (4)

for all w ∈ W andW is compact, then XW is an n-dimensional
smooth manifold.

Proof: A smooth mapx(t; ·) :W → X is an injective immer-
sion by (4). SinceW is compact, the mapping is an embedding
(i.e., XW is an embedded manifold in X ).

�
Given a parametric curve manifold XW embedded in X , the

inner product 〈·, ·〉x in X can be naturally projected into XW .
This leads to—by treating W as a local coordinate space for
XW—the Riemannian metric in XW expressed in the parame-
ter space W , denoted by H(w) = {hij(w)}. Specifically, the
squared length of an infinitesimal displacement dw ∈ Rn is

ds2 =
∑
i,j

hij(w)dw
idwj

=

∫ T

0

〈∑
i

∂x(t;w)

∂wi
dwi,

∑
j

∂x(t;w)

∂wj
dwj

〉
x

dt

=
∑
i,j

(∫ T

0

∂x(t;w)T

∂wi
G(x(t;w))

∂x(t;w)

∂wj
dt

)
dwidwj .

(5)

Therefore

H(w) =

∫ T

0

(
∂x(t;w)

∂w

)T

G(x(t;w))
∂x(t;w)

∂w
dt (6)

where ∂x(t;w)
∂w ∈ Rm×n. This method of metric construction fol-

lows the standard procedure in differential geometry. A similar
procedure can be found in the construction of Fisher information
Riemannian metrics in statistical manifolds [37], [41].

D. Isometry and Coordinate-Invariant Distortion Measure

Consider two Riemannian manifolds, anm-dimensional man-
ifoldMwith local coordinates x ∈ Rm and metricG(x) and an
n-dimensional manifold N with local coordinates y ∈ Rn and
metricH(y). And let f : Rm → Rn be a differentiable mapping
between two manifolds expressed in local coordinates.

We call f an isometry if it preserves geometric structures be-
tween two spaces, i.e., preserves distances, angles, and volumes.
Specifically, let J(x) = ∂f

∂x (x), if

G(x) = J(x)TH(f(x))J(x) (7)

at x, then f is called a local isometry at x (to see why, compare
dxTG(x)dx and dyTH(y)dy where dy = J(x)dx). If this con-
dition is satisfied at all points inM, then f is a (global) isometry;
see Fig. 6.

Sometimes, it is too stringent to find an isometry between
two spaces and better to ignore the scale of distances [12]. A
mapping f that satisfies the relaxed condition

G(x) = cJ(x)TH(f(x))J(x) (8)
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Fig. 6. Illustration of a mapping between two Riemannian manifolds. IfG =
JTHJ , i.e., the red and blue ellipses coincide, at all points in Rm, then the
mapping f is a global isometry.

for allx and for some positive scalar c is called a scaled isometry.
It preserves, angles and scaled distances.

There is a family of coordinate-invariant Riemannian distor-
tion measures, each of which is a functional of a mapping f
that measures how far f from being an isometry [42]. Let λi be
eigenvalues of JTHJG−1. One example is∫

M
‖λi(x)− 1‖2

√
detG(x)dx. (9)

This measure is coordinate-invariant2, and note that if λi(x) = 1
for all x, then the measure is zero and f is an isometry.

A family of relaxed distortion measures quantifies how far f
from being a scaled isometry [12] within the support of a positive
finite measure ν inM. One of them is∫

M
‖ λi(x)

1
ν(M)

∫
M

1
m

∑m
i=1 λi(x)dν(x)

− 1‖2dν(x). (10)

This measure is coordinate-invariant, and note that if λi(x) = c
for all x in the support of ν for some positive scalar c, then
the measure is zero and f is a scaled isometry in ν [i.e., (8) is
satisfied at all points in the support of ν].

Given a probability measure P inM, restricting the relaxed
distortion measure (10) to the support of P and removing the
additive constant, it is proportional to

R(f ;P ) := Ex∼P [Tr
(
(JTHJG−1)2

)
]

Ex∼P [Tr (JTHJG−1)]2
. (11)

Given this trace-based expression, we can employ the Hutchin-
son stochastic trace estimator, i.e., Tr(A) = Ev∼N (0,I)[v

TAv],
which facilitates an efficient implementation of isometric regu-
larization. Further details can be found in [5] and [7].

2To see why, consider a pair of coordinate transformations ψ : x �→ x′ and
φ : y �→ y′. Let Ψ = ∂ψ

∂x and Φ = ∂φ
∂y , then the Riemannian metrics transform

via G �→ Ψ−TGΨ−1 and H �→ Φ−THΦ−1, while the Jacobian transforms
via J �→ ΦJΨ−1. Therefore, JTHJG−1 �→ Ψ−T JTHJG−1ΨT and the
eigenvalues remain unchanged.

IV. ISOMETRIC MOTION MANIFOLD PRIMITIVES++

In this section, we begin with the limitations of the existing
MMP framework that relies on discrete-time trajectory represen-
tations and propose MMP++, applying the MMP framework to
the continuous-time parametric curve representations. Then, we
adopt the isometric regularization technique [12] with our pro-
posed CuveGeom Riemannian metrics, and propose IMMP++.

Throughout, we will consider an n-dimensional Riemannian
configuration manifoldQ with its coordinates q ∈ Q ⊂ Rn and
the metric G(q) = {gij(q)}.

A. Discrete-Time MMPs and Their Limitations

MMP framework learns a continuous manifold of trajectories,
providing a mapping that maps a lower dimensional latent value
to the discrete-time trajectory of a fixed length [6], [7]. A trajec-
tory data are considered as a sequence of configurations denoted
by (q1, . . . , qT ) with a fixed length T and treated as an element
of the high-dimensional trajectory space QT := Q× · · · ×Q.

Assuming the given demonstration trajectory datasetDtraj =
{(qi1, . . . , qiT )}Ni=1 lies on some lower dimensional manifold, an
autoencoder framework is adopted to learn this manifold and its
coordinates. An autoencoder consists of an encoderg : QT → Z
and a decoder f : Z → QT , where Z = Rm is a latent coor-
dinate space. These two mappings are optimized to minimize
the following trajectory reconstruction loss: denoting the recon-
structed trajectory by (q̂i1, . . . , q̂

i
T ) = f(g(qi1, . . . , q

i
T )):

1

N

1

T

N∑
i=1

T∑
t=1

d2Q(q
i
t, q̂

i
t) (12)

where dQ(·, ·) is some distance metric in Q.
Minimizing (12) makesDtraj approximately lie on the image

of the decoder function f . As discussed in Section III-B, if
f is injective, the Jacobian of f is m everywhere, and f is
diffeomorphic to its image, then the image of the decoder can
be considered as an m-dimensional manifold embedded in QT .
Then, the mappings g, f with Z take the role of the coordinate
chart. Consequently, an autoencoder can be interpreted as learn-
ing the motion manifold and its coordinates, simultaneously.

In practice, g and f are approximated using deep neural
networks with smooth activation functions. By setting m suffi-
ciently low, much lower than dim(QT ) = nT , empirical results
imply that f converges to satisfy the above-mentioned condi-
tions without enforcing them. However, choosing a largemmay
drop the rank of the Jacobian of f [5].

However, the nature of discrete-time trajectory representation
leads to multiple limitations, as listed below. First, because
the reconstructed trajectories may not be smooth, additional
smoothness regularization must be added to the reconstruction
loss (12), requiring weight tuning. Second, temporal modulation
is not possible, meaning we cannot modulate the speed of the
trajectory. More importantly, generating a configuration at an
arbitrary specified time is not possible, which makes one of our
key applications—online iterative replanning introduced later in
Algorithm 1—inapplicable where the time variable needs to be
continuously modified. Finally, given some constraints on curves
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(e.g., via-points), generated trajectories cannot be enforced to
satisfy these constraints. We may introduce an additional regu-
larization term to the loss (12); however, this not only requires
additional weight tuning but also does not guarantee the satisfac-
tion of the constraints. Furthermore, smooth modulation of the
trajectory is not allowed, such as by changing via-points, which
limits the model’s adaptability. For example, if we modulate a
configuration at the first time step q1, since there is no continuity
between adjacent points, the other points qt for t > 1will remain
unchanged.

B. Motion Manifold Primitives++

This section proposes MMP++, an extension of the MMP
framework to the continuous-time parametric curve models. We
use a phase variable τ ∈ [0, 1], and our main subject of interest
is a parametric curve model

q : [0, 1]×W → Q s.t. q(τ, w) ∈ Q. (13)

Then, given any monotonically increasing function with time
τ(t), a timed-trajectory q(τ(t);w) can be constructed with a
desired velocity profile d

dtq(τ(t);w) = τ̇t
∂
∂τ q(τ ;w). This is

called a temporal modulation.
Specifically, we focus on a particular class of curve models,

an affine curve model, that is expressed as follows:

q(τ ;w) = ψ(τ) + wφ(τ) (14)

where ψ(τ) ∈ Rn, φ(τ) ∈ RB , and w ∈ Rn×B . This class in-
cludes models from ProMP [10] and VMP [11]. In VMP, ψ(τ)
is referred to as an elementary trajectory, and wφ(τ) is termed
a shape modulation.

We assume that we are provided with multiple demonstration
trajectories for a given task, each of which is a sequence of time-
configuration pairs ((t1, q1), . . . , (tL, qL)). In the preprocessing
step, we fit each demonstration trajectory to the affine curve
model (14) and find w. Specifically, we set τlinear(t) =

t
tL

and
consider Δi := qi − ψ(τlinear(ti)). Then, we want to find w that
best fits the trajectory, i.e., minw

∑L
i=1 ‖Δi − wφ(τlinear(ti))‖.

Assuming L > B, there is a closed-form solution

w∗ = ΔΦT (ΦΦT )−1 (15)

where the data matrix Δ = (Δ1, . . . ,ΔL) ∈ Rn×L and basis
matrix Φ = (φ(τlinear(t1)), . . . , φ(τlinear(tL))) ∈ RB×L.

Suppose we are given curve parameters fitted to the demon-
stration trajectories, denoted by {w1, . . . , wN} where wi ∈
Rn×B is a curve parameter fitted to an ith trajectory. Adopt-
ing [6] and [7], we use an autoencoder framework to learn
the manifold and its coordinates. An autoencoder consists of
an encoder g :W → Z and a decoder f : Z → W , where
W = Rn×B is the curve parameter space and Z = Rm is a
latent coordinate space. These two mappings are optimized
to minimize the following standard autoencoder reconstruction
loss:

1

N

N∑
i=1

‖wi − f(g(wi))‖2F (16)

where ‖ · ‖F is the Frobenius norm.

Minimizing (16) makes {wi}Ni=1 approximately lie on the
image of the decoder function f . As a result, f maps the
latent coordinate space Z to a manifold in the curve parameter
spaceW , and then the parametric curve model q(τ ; ·) maps this
manifold to a manifold of continuous-time trajectories, i.e., the
motion manifold, in the trajectory space, as visualized in Fig. 1.

Once f, g are fitted, we train a latent space distribution using
the encoded data {g(wi)}Ni=1. To capture the multimodality of
the distribution, we use a GMM, yet any other distribution fitting
methods can be used. We call this framework MMP++, where
“++” is added to distinguish it from vanilla MMP that uses
discrete-time trajectory representations.

One might question why, instead of adopting a two-step
approach to learn the autoencoder and latent density separately,
we do not utilize the variational autoencoder (VAE) framework
directly [30]. While using a VAE is a feasible approach, we have
found that separating manifold learning from density learning
proves more effective. This is because, in some instances, the KL
divergence in VAEs—which penalizes differences between prior
and posterior distributions in the latent space—can adversely
affect the quality of reconstructions.

Another question that may arise is why we do not fit a density
model directly in the curve parameter space W . The primary
reason is the high-dimensionality of the curve parameter space.
For example, if the configuration space dimension is 7 and the
number of basis functions B = 30, then the dimensionality of
W is 210. Learning a density directly in this high-dimensional
space is often challenging and, as shown in our later experi-
ments, performs worse than our methods that learn densities
in much lower dimensional latent spaces. More importantly,
the high dimensionality of the curve parameter space makes
it unsuitable for fast adaptation, such as the online iterative
replanning introduced later in Algorithm 1. This is because
the high dimensionality of W 1) requires a lot of data points
for accurate density estimation3, which is not the case in our
situation and 2) makes the optimization insufficiently fast.

C. Isometric Regularization

The MMP++ often produces a geometrically distorted latent
coordinate space Z . Adopting [12], we would like to minimize
the distortion between Z and f(Z) ⊂ W by adding the relaxed
distortion measure (11) of the decoder mapping f : Z → W to
the reconstruction loss function.

We consider the latent space Z as a Riemannian man-
ifold assigned with the identity metric I ∈ Rm×m, i.e., an
m-dimensional Euclidean space. To apply the isometric reg-
ularization [12], we should be able to interpret the output
space W as a local coordinate space for the embedded mani-
foldXW = {ψ(τ) + wφ(τ) ∈ X | w ∈ W} (see Section III-C).
The space XW is an nB-dimensional smooth manifold, if
φ1(τ), . . . , φB(τ) are linearly independent:

Proposition 2: Suppose φ1(τ), . . . , φB(τ) are linearly inde-
pendent, i.e., ifa1φ1(τ) + a2φ2(τ) + · · ·+ adφd(τ) = 0 for all

3Any consistent estimator for p-times differentiable d-dimensional density

functions converges at a rate of at most n−
p

2p+d where n is the number of
samples [43]. Therefore, when d is large, the rate is very slow.
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τ ∈ [0, 1], then (a1, . . . , ad) = 0. Then, the affine curve model
(14) satisfies the injective immersion condition in Proposition 1.

Proof: Suppose ψ(τ) + w1φ(τ) = ψ(τ) + w2φ(τ) for
all τ , which implies that (w1 − w2)φ(τ) =

∑B
j=1(w1 −

w2)
ijφj(τ) = 0 for all τ and i. By the linearity, w1 = w2; the

injectivity is proved. Now, suppose
∑

i,j
∂q(τ ;w)
∂wij vij = 0, which

implies that
∑

j v
ijφj(τ) = 0 for all τ and i. Similarly, by the

linearity, v = 0; thus the mappingw �→ wφ(τ) is an immersion.
�

In existing movement primitives [10], [11], one of the
standard methods for constructing φ(τ) involves normal-
izing scalar-valued functions bi(τ), i = 1, . . . , B: φi(τ) =

bi(τ)/
∑B

j=1 bj(τ). With this construction, if {bi} is linearly
independent and

∑
j bj(τ) > 0 for all τ , then {φi} is linearly

independent as well. We can construct such {bi} with the fol-
lowing proposition.

Proposition 3 ([44, Corollary of Proposition 4.]): Let K :
R×R→ R be a positive function and {c1, c2, . . . , cB} be a
finite set of mutually distinct points. Define bi(τ) = K(τ, ci).
Then, {bi} is linearly independent if and only if the matrix
(K(ci, cj))i,j=1,...,B is positive definite.

Consider the most standard choice of bi(τ) for stroke-
based movements, the Gaussian basis functions bGi (τ) :=

exp(− (τ−ci)2
2h ) where h defines the width of basis and ci

the center for the ith basis. According to Proposition 3, if
{c1, c2, . . . , cB} is mutually distinct, then {bGi } is linearly inde-
pendent, because Gaussian kernel is positive definite.

For a smooth manifoldXW , we can now define a Riemannian
metric expressed in coordinates w ∈ W using (6). Since our
parameterw ∈ Rn×B is a matrix and has two indices {wij}, the
Riemannian metric has four indices hijkl(w) such that

ds2 =

n∑
i,k=1

B∑
j,l=1

hijkl(w)dw
ijdwkl (17)

for dw ∈ Rn×B . Accordingly, we define a CurveGeom Rieman-
nian metric inW as follows.

Definition 1: A CurveGeom Riemannian metric for XW
expressed inW is

hijkl(w) =

∫ 1

0

∂q(τ ;w)T

∂wij
G(q(τ ;w))

∂q(τ ;w)

∂wkl
dτ (18)

for i, k = 1, . . . , n and j, l = 1, . . . , B.
Given an affine curve model, the metric further simplifies to

the following expression.
Proposition 4: Suppose q(τ ;w) = ψ(τ) + wφ(τ), then the

CurveGeom Riemannian metric is

hijkl(w) =

∫ 1

0

φj(τ)gik(q(τ ;w))φl(τ) dτ (19)

for i, k = 1, . . . , n and j, l = 1, . . . , B.
Proof: Let us denote by q = (q1, . . . , qn). Then, ∂qa(τ ;w)

∂wij =
∂

∂wij (
∑

ab w
abφb) =

∑
b δ

a
i δ

b
jφb = δai φj . Therefore, the metric

is hijkl =
∫ ∑

a,b gabδ
a
i φjδ

b
kφl dτ =

∫
gikφjφl dτ . �

Now, we can compute the relaxed distortion measure of the
decoder mapping f : Z → W using (11). Since the metric forZ

is the identity, we only need to compute JTHJ . Unlike the case
in (11), the Jacobian of our decoder f = (f ij)i=1,...,n,j=1,...,B

is not a matrix, but has three indices ∂fij

∂za where a = 1, . . . ,m.
Therefore, instead of JTHJ , we can write it as follows:

h̄ab(z) =

n∑
i,k=1

B∑
j,l=1

(
∂f ij

∂z
(z)

)T

hijkl(f(z))
∂fkl

∂z
(z) (20)

where ∂fij

∂z (z) ∈ R1×m. We let {h̄ab(z)} be an index notation of
an m×m matrix H̄(z). If H̄(z) = cI for some positive scalar
c for all z, then f is a scaled isometry.

We consider a latent space probability measure P and finally
define the relaxed distortion measure as

R(f ;P ) := Ez∼P [Tr
(
H̄(z)2

)
]

Ez∼P [Tr
(
H̄(z)

)
]2
. (21)

Following [12], sampling from P is done by δzi + (1− δ)zj
where δ is uniformly sampled form [−η, 1 + η] (we set η =
0.2 throughout) and zi = g(wi) and zj = g(wj) with wi, wj ∼
{wi}Ni=1. The final loss function is

1

L

L∑
i=1

‖wi − f(g(wi))‖2 + αR(f ;P ) (22)

whereα is a regularization coefficient. Together with the density
model fitted in the latent coordinate space, we call this frame-
work IMMP++.

As a special case, ifQ is Euclidean space, i.e., gij(w) is equal
to the Kronecker delta δij , then the metric formula and isometric
regularization term can be further simplified. Plugging it into
(19), the metric is simplified to

hijkl = δik

∫ 1

0

φj(τ)φl(τ) dτ. (23)

We note that it does not depend on w; therefore, we do not need
to compute it in every iteration of the gradient descent during
autoencoder training. This greatly reduces the computational
cost in isometric regularization. Specifically, the matrix H̄(z)
becomes

h̄ab(z) =

n∑
i=1

(
∂f i

∂z
(z)

)T

Φ
∂f i

∂z
(z) (24)

where f i = (f i1, . . . , f iB) ∈ RB , ∂fi

∂z (z) ∈ RB×m, and Φ =

(
∫ 1

0 φj(τ)φl(τ) dτ)j,l=1,...,B ∈ RB×B is constant.

V. EXPERIMENTS

In Section V-A and V-B, we assume Euclidean configuration
spacesQ and focus on examples with fixed initial and final points
qi, qf ∈ Q, therefore we use the via-point affine curve model
from VMP [11]

q(τ ;w) = (1− τ)qi + τqf + wφ(τ) (25)

where φi(τ) = τ(1− τ) bGi (τ)/
∑

j b
G
j (τ) (it is trivial to show

the linear independence of φi; see Proposition 3). To give hard
constraints of initial and final points to q(τ ;w), we multiply
τ(1− τ) to the original basis term from Zhou et al.’s [11] work.
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Fig. 7. Three environments with training demonstration trajectories.

One might wonder whether it is always necessary to design
parametric curve models in an environment-specific manner.
We note that the parametric curve model (14), with the choice
of ψ(τ) = 0 and φi(τ) = bGi (τ)/

∑
j b

G
j (τ), is sufficiently

expressive to model any smooth, arbitrary complex trajectory
with a sufficiently large B. Thus, no special modeling is re-
quired if we do not enforce any constraints on the curve. If we
have desired constraints, we can, in some cases, design suitable
parametric models that guarantee these constraints are satisfied.
For example, if we want q(τ) to pass through (τi, qi) and (τi, q̇i)
for i = 1, . . . , N , we can design ψ(τ) to be the lowest order
polynomial that satisfies (τi, qi) and (τi, q̇i) for all i, and set
φ(τ) = Πi(τ − τi)2bGj (τ)/

∑
j b

G
j (τ).

We compare MMP++, IMMP++, and VMP [11]. We utilize
GMMs to fit latent density models for MMP++ and IMMP++ un-
less otherwise specified. While the distribution of w is assumed
to be Gaussian in vanilla VMP, it has limitations in capturing
multimodal distributions. To ensure a fair comparison, we also
implement VMP with GMM. When sampling new trajectories
from fitted distributions, we reject the samples with likelihood
values lower than the threshold value η – where η is set to be
the minimum value among the likelihood values of the training
trajectories.

In Section V-C, we consider the position-orientation space

SE(3) := {(p,R) | p ∈ R3, R ∈ SO(3)}
where SO(3) := {R ∈ R3×3 |RTR = I, det(R) = 1} is the
group of rotation matrices; p and R denote the position and ori-
entation, respectively. In the position space R3, we use the affine
curve model p(τ ;w) in (25). In the orientation space SO(3), we
use a tailored parametric curve modelR(τ ;w), of which details
will be given later in the corresponding section. In comparison
to the MMP with discrete-time trajectory representations in [7],
we show that our MMP++ enables additional modulations of
initial and final positions and orientations.

A. Planar Obstacle-Avoiding Motions

We consider three different environments with different num-
bers of obstacles and obstacle-avoiding trajectories; see Env1,
Env2, and Env3 in Fig. 7. The number of total training tra-
jectories for each environment setting is 10, 15, and 20, re-
spectively. The number of basis B = 20 for φ(τ). In MMP++
and IMMP++. The latent space dimension is search among 2,

TABLE I
AVERAGES AND STANDARD DEVIATIONS OF THE SUCCESS RATES WITH FIVE

TIMES RUN WITH DIFFERENT RANDOM SEEDS; THE HIGHER THE BETTER

Fig. 8. Trajectories generated by trained models. The GMM component
numbers are 2, 3, and 4 for Env1, Env2, and Env3, respectively (samples from
the same GMM component are assigned the same color).

3, 4, and 5 The number of GMM components is set to be 2,
3, and 4 for Env1, Env2, and Env3, respectively. A generated
trajectory is considered successful if it does not collide with the
obstacles.

As shown in Table I and Fig. 8, the IMMP++ performs
the best compared to the other methods. Sometimes, MMP++
fails significantly because GMM fits wrong clusters due to the
geometric distortions in the latent coordinate spaces; see Fig. 2
for example latent spaces of MMP+ and IMMP++.

B. Seven-DoF Robot Arm Collision-Free Motions

In this section, we consider collision-free point-to-point mo-
tions of a seven-DoF Franka Emika Panda robot arm in an
environment shown in Fig. 9 (left). Two types of demonstration
trajectories are given, each with ten joint space trajectories—in
Fig. 9 (right), SE(3) and R3 forward kinematics results of
them are visualized for simplicity—where the initial and final
configurations are identical as qi and qf in Fig. 9 (left). In the
demo type 1, there are two clusters of trajectories, whereas in
the demo type 2 a set of trajectories forms an 1-D manifold,
a trajectory manifold embedded in the trajectory space. The
number of basisB = 20 for φ(τ). In MMP++ and IMMP++, the
latent space dimensions are 2. The number of GMM components
is 2. Exceptionally, for MMP++ and IMMP++ applied to the
demo type 2, we use the kernel density estimator (KDE) instead
of the GMM (we will provide the reason later).
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Fig. 9. Left: A seven-DoF robot arm needs to move from the joint configuration qi to qf without colliding to the environment. Right: Two types of demonstration
trajectories, where 7-D joint space trajectories are given as demonstration data (only the end-effector’s SE(3) or R3 trajectories are visualized). In demo type 1,
two clusters of trajectories are given, and, in demo type 2, a 1-D manifold of trajectories is provided.

TABLE II
AVERAGES AND STANDARD DEVIATIONS OF THE SUCCESS RATES WITH FIVE

TIMES RUN WITH DIFFERENT RANDOM SEEDS; THE HIGHER THE BETTER

Fig. 10. 2-D latent spaces of our manifold-based methods (MMP++ and
IMMP++) are illustrated (circular points are encoded points and star-shaped
points are generated samples). Demonstration trajectories in Fig. 9 (right) are
encoded into these latent spaces, with colors indicating correspondence (e.g., a
red trajectory is encoded into a red point).

Table II shows the averages and standard deviations of the
success rates. Overall, MMP++ and IMMP++ show the best
performances. In particular, VMPs show far inferior results than
our manifold-based methods given a manifold of demonstra-
tions in the demo type 2. This is because neither Gaussian nor
GMM models are suitable for capturing the continuous manifold
structure of the density’s support. Fig. 10 shows the 2-D latent
spaces of the manifold-based methods. For demo type 1, the
distance between clusters in the latent space of IMMP+ is greater
than that in the latent space of MMP++. Even though MMP++
successfully captures correct clusters in this particular dataset,
for more complex datasets, it is more likely to fail in capturing
correct clustering structures.

For demo type 2, we note that 2-D encoded latent points form
an 1-D manifold; it should be considered as a single connected
manifold component. Given this manifold support, we found
that it is sub-optimal to use the GMM for fitting a distribution.
Hence, we use a nonparametric method, KDE that can more

accurately estimate our latent space density function

p(z) =
1

N

N∑
i=1

1

2π|Hi|1/2 exp

(
− (z − zi)TH−1i (z − zi)

2

)
(26)

where {zi}Ni=1 is the set of encoded latent points and Hi, i =
1, . . . , N are positive-definite matrices. Let K(zi, zk) =
exp(−‖zi − zk‖2/h); for this example, we construct Hi = Σ2

i

where

Σi =

∑N
k=1K(zi, zk)(zi − zk)(zi − zk)T∑N

k=1K(zi, zk)
. (27)

One may ask if using such a nonparametric method in the curve
parameter space W of VMP directly can lead to a better per-
formance than using GMM. Unfortunately, this is challenging
due to the high-dimensional nature ofW . It is worth noting that
this approach is feasible in MMP++ and IMMP++ because we
utilize sufficiently low-dimensional latent spaces.

Next, we qualitatively show the latent coordinates and via-
points modulation results of IMMP++ trained with the demo
type 2 (manifold) in Fig. 11. Note that we have the model
q(τ ; f(z)) = (1− τ)qi + τqf + f(z)φ(τ) with the trained de-
coder function w = f(z), where modulations in the latent coor-
dinate value z and the initial and final configurations qi and qf
lead to corresponding changes in the resulting trajectory q(τ). In
Fig. 11 (upper), a continuous change in the latent value z leads
to a smooth transition of q(τ) from an upward-moving path
to a downward-moving path. As shown in Fig. 11 (middle and
lower), continuous changes in qi and qf induce smooth changes
of q(τ).

Finally, we show the adaptability of our primitive models in
the presence of unseen constraints and propose a novel online
iterative replanning algorithm. We will consider (z, τ) as a state.
Let T be a total time length. First of all, suppose we do not have
additional unseen constraints. We start with a random initial z ∼
p(z) and τ = 0. Then, as the time δt passes, z remains constant
and τ is updated to min(τ + δt/T, 1). At each time step, we
use q(τ ; f(z)) as a desired joint configuration and run a position
controller with the control frequency fc. This procedure is just
a position tracking control given an initially planned trajectory
q(τ ; f(z)).

Now, consider a situation where an obstacle that blocks the
initially planned trajectory appears and moves as the time flows,



LEE: MMP++: MOTION MANIFOLD PRIMITIVES WITH PARAMETRIC CURVE MODELS 3959

Fig. 11. Modulations of latent coordinates z and initial and final configurations qi and qf in IMMP++ q(τ ; f(z)) = (1− τ)qi + τqf + f(z)φ(τ). Upper: A
continuous change in z results in a smooth transition of q(τ). Middle: Changes in qi induce smooth transitions of q(τ). Lower: Changes in qf induce smooth
transitions of q(τ).

Fig. 12. Upper left: Initially planned trajectory is blocked by the unseen
obstacle during training. Upper right: The robot iteratively replans its trajectory
whenever it is predicted to collide with the obstacle. Lower: ‖z‖ and τ as
functions of time t in online iterative replanning (Upper right), where T = 5,
tw = 1, fc = 1000, and fp = 10.

as shown in Fig. 12. We assume constraints are given as inequal-
ity equations C(q) ≤ 0 in the configuration spaceQ, which can
change dynamically in time. Suppose our current state is (z, τ).
We set a time window tw and if C(q(τ̄ ; f(z)) > 0 for some
τ < τ̄ < τ + tw/T , we re-plan the trajectory, i.e., update and
find a new desired state (z′, τ ′), with the replanning frequency
fp < fc. Given a new desired state (z′, τ ′), we will update
z ←− z + k(z′ − z) and τ ←− τ + k(τ ′ − τ) with positive gain k
at control frequency fc for time 1/fp, and then decide whether
we will re-plan (z, τ) again or not. Considering this update rule,

in the replanning step, we find (z′, τ ′) by solving the following
optimization problem:

min
(z′,τ ′)

‖z − z′‖2 + α‖τ − τ ′‖2

such that (1) C(q(τ̄ ′; f(z′)) ≤ 0

τ ′ < τ̄ ′ < τ ′ + tw/T

(2) log p(z′) ≥ ε
(3) C(q(τη; f(zη)) ≤ 0 & log p(zη) ≥ ε

zη = ηz + (1− η)z′

τη = ητ + (1− η)τ ′

η ∈ [0, 1]

(4) τ ′ ∈ [τ − δ, τ ] (28)

where the weight α > 0 is set to be big enough to prioritize
updating z.

1) Enforces the planned trajectory from (z′, τ ′) to satisfy the
constraints for time tw.

2) Prevents z′ from being out-of-distribution in the latent
space (ε is the log probability density threshold; we set it
to be the minimum value among the log likelihood values
of the training data).

3) Guarantees the linear path connecting the current and next
states from (z, τ) to (z′, τ ′) satisfies the constraints and
lies within the in-distribution region in the latent space.

4) Allows τ ′ ∈ [τ − δ, τ ] – where δ is the max travel-back
time—in case no feasible z′ exists when τ ′ = τ . A pseu-
docode for our online iterative replanning algorithm is
provided in Algorithm 1.

We can efficiently solve the optimization (28) thanks to the
low-dimensionality of the optimization variable (z′, τ ′). In the
example in Fig. 12, we use IMMP++ trained with the demo
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Algorithm 1: Online Iterative Trajectory Re-planning with
MMP++.

type 2 (manifold). As visualized in Fig. 12 (upper right), given
a dynamically changing constraint (i.e., moving spherical ob-
stacle), the robot iteratively replans its trajectory whenever it is
predicted to collide with the obstacle within the time interval
tw. A gradient-free sampling-based optimization approach is
fast enough and shows a successful online iterative replanning
result. Fig. 12 (lower) shows ‖z‖ and τ as functions of time,
indicating when (z, τ) is replanned. It can be confirmed that
at around t = 2 the robot predicted collisions with the obstacle
within tw = 1 and replanned (z, τ) multiple times.

One can reasonably ask, if we have access to the robot kine-
matics and the geometry of the environment, what is the advan-
tage of using our method compared to conventional sampling-
based collision-free path planning methods, such as RRT vari-
ants? Our method offers two important advantages. First, our
MMP already contain paths that are collision-free for a part of
the environment, so only the newly introduced environmental
constraints need to be considered during planning. For example,
in Fig. 11, the paths in the learned motion manifold do not
collide with the shelf. Therefore, when planning within the
motion manifold, exact knowledge of the shelf’s geometry is
unnecessary. While existing sampling-based planning methods
require knowledge of all constraints, we only need to consider
the new environmental constraints, such as obstacles shown in
Fig. 12.

Second, a more significant advantage is that, while conven-
tional RRTs are typically not fast enough for online dynamic

TABLE III
COMPUTATION TIMES FOR PLANNING VIA RRT-CONNECT [45] AND IMMP++

ARE MEASURED WITH THREE TIMES RUN. WE CONSIDER A SHELF-ONLY

ENVIRONMENT, THE SHELF WITH ONE SPHERICAL OBSTACLE, AND THE SHELF

WITH TWO SPHERICAL OBSTACLES; SEE FIG. 13. COMPUTATIONS ARE

PERFORMED USING AN AMD RYZEN 9 5900X 12-CORE PROCESSOR AND AN

NVIDIA GEFORCE RTX 3090. ALL CODE IS IMPLEMENTED IN PYTHON

Fig. 13. Comparison of collision-free paths planned by RRT-connect [45] and
IMMP. Two hypothetical walls, shown as transparent gray, are considered to
limit the robot’s workspace to the area close to the shelf.

Fig. 14. Water-pouring SE(3) trajectory dataset.

planning, our method is very fast. Table III shows the com-
putation times for planning using RRT-connect [45] and our
IMMP++ in the shelf-only environment and with one and two
sphere obstacles, as visualized in Fig. 13. RRT-connect takes
several seconds even in the simple shelf-only environment,
and the time increases significantly as the complexity of the
collision-free configuration space grows due to obstacles. In
contrast, our method is relatively much faster. The trajectory
sampling in the motion manifold itself takes 0.006 s, and the
collision checking for obstacles takes only a few milliseconds.
Our current implementation is in Python and is suboptimal. We
anticipate that implementing it in a more optimal language would
result in even faster performance. Although the RRT algorithm
could also be optimized for speed, it is unlikely to become fast
enough and suitable for online dynamic planning.

However, these advantages of our algorithm do not come for
free. Our method also has limitations. If the learned MMP are
too small, meaning the generated trajectories are not sufficiently
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Fig. 15. Modulation of MMP trained to generate discrete-time trajectories and MMP++ trained to generate curve parameters of the trajectories. We can modulate
latent values for both methods and generate smooth transitions of the SE(3) trajectories. In MMP++ (middle and lower), given continuous changes in the cup
position, the water-pouring trajectories undergo smooth transitions.

diverse, a collision-free path may not exist on the motion man-
ifold when excessive environmental constraints are introduced.
The diversity of the learned motion manifold heavily depends
on the diversity of the demonstration data, making the creation
of good demonstration trajectories a very important issue.

C. MMP++ for SE(3) Trajectory Data

In this section, we show how to extend our MMP++ frame-
work to SE(3) trajectory data. We will denote the position by
p ∈ R3 and the orientation by 3× 3 rotation matrix R ∈ R3×3.
Let φi(τ) = τ(1− τ) bGi (τ)/

∑
j b

G
j (τ) for i = 1, . . . , B. For

the position trajectory, we use the via-point model

p(τ ;wp) = (1− τ)pi + τpf + wpφ(τ) (29)

where wp ∈ R3×B is the position curve parameter and pi, pf ∈
R3 are initial and final points. For the orientation trajectory, we
use the following parametric model:

R(τ ;wR) = Ri exp(τ log(R
T
i Rf )) exp([wRφ(τ)]) (30)

wherewR ∈ R3×B is the orientation curve parameter,Ri, Rf ∈
SO(3) are initial and final orientations, and exp(·), log(·) are
matrix exponential and logarithm, and

[(w1, w2, w3)] =

⎡
⎢⎣ 0 −w3 w2

w3 0 −w1

−w2 w1 0

⎤
⎥⎦

is a skew symmetric matrix [46]. The orientation via-point model
in (30) is constrained to have the initial and final orientationsRi

and Rf .
Consider the water-pouring SE(3) trajectory dataset in Fig. 14.

Our goal is to train an MMP++ with this dataset. First, note that
the five trajectories in the dataset have the same initial SE(3)

pose (pi, Ri) but have different final SE(3) poses (pf , Rf ).
Therefore, in addition to (wp, wR), the final SE(3) pose (pf , Rf )
is added to the curve parameter. To emphasize this, we denote
the parametric curves by p(τ ;wp, pf ) and R(τ ;wR, Rf ). Thus,
our autoencoder g, f is trained by using {(wp, wR, pf , Rf )i}5i=1

where each of these parameters is fitted to the demonstration
trajectory.

To construct neural network encoder and decoder, some cares
need to be taken since Rf ∈ SO(3) is not a vector data. For the
encoder g : (wp, wR, pf , Rf ) �→ z, we can flatten Rf to a 9-D
vector and treat (wp, wR, pf , Rf ) as a 6B + 12-dimensional
vector input. For the decoder f : z �→ (wp, wR, pf , Rf ), the ori-
entation outputRf should satisfy the rotation matrix constraints.
To enforce this condition, we let f : z �→ (wp, wR, pf , wf )
where wf ∈ R3 and map wf �→ exp([wf ]) ∈ SO(3).

For autoencoder training, we may use the L2 reconstruction
loss in the parameter space (wp, wR, pf , Rf ) ∈ R6B+12 as in
(16). However, we found that this loss does not suitably capture
the difference between the training and reconstructed SE(3)
trajectories, resulting in an autoencoder with poor reconstruc-
tion qualities. Therefore, we use the following loss function:
let (ŵp, ŵR, p̂f , R̂f ) = f ◦ g(wp, wR, pf , Rf ) and (pτ , Rτ ) be
the SE(3) demonstration trajectory—where τ denotes the nor-
malized time parameter (i.e., for a total demonstration time
length T , τ = t/T )—, denoting the trajectory dataset by
D = {(pτ , Rτ )i}5i=1, the new reconstruction loss is

∑
(pτ ,Rτ )∈D

∫ 1

0

‖pτ − p(τ ; ŵp, p̂f )‖2

+ β‖ log(RT
τ R(τ ; ŵR, R̂f ))‖2F dτ (31)
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Fig. 16. Upper-left: Initially planned trajectory is blocked by the unseen
obstacle during training. Upper-right: We iteratively replan the bottle’s SE(3)
trajectory whenever it is predicted to collide with the obstacle. Lower: ‖z‖ and τ
as functions of time t in online iterative replanning (Upper-right), where T = 7,
tw = 0.2, fc = 100, and fp = 10.

where β > 0 and the integration over τ is approximately com-
puted by the discrete sum.

Fig. 15 shows the modulation results of the MMP trained
with discrete-time trajectories as in [7] and MMP++ with our
parametric curve models. Both methods enable modulation of
the latent value z, producing continuous transitions of water-
pouring trajectories from left to right. Furthermore, MMP++
enables modulation of the initial and final poses pi, Ri, pf , Rf .
As shown in Fig. 15 (MMP++: middle and lower), MMP++
produces pouring trajectories that adapt to changes in the cup
position.

Finally, we apply the online iterative replanning algorithm
using the water-pouring MMP++ in the presence of unseen ob-
stacle. We use the replanning algorithm in Algorithm 1. Similar
to the robot arm experiment with the demo type 2 (manifold),
we use the KDE density model (26). While the initially planned
SE(3) trajectory of the bottle collides with the purple spherical
obstacle, as shown in Fig. 16 (upper left), the bottle’s SE(3)
trajectory is replanned online when it is predicted to collide
with the obstacle and successfully avoids the collision, as shown
in Fig. 16 (upper right). Fig. 16 (lower) shows ‖z‖ and τ as
functions of time, indicating when (z, τ) is replanned. It can
be confirmed that, from t = 1 to t = 2.5, collisions with the
obstacle within the time interval tw = 0.2 are predicted and
(z, τ) is replanned multiple times.

VI. CONCLUSION AND DISCUSSION

We have proposed a novel model of movement primitives
based on the motion manifold hypothesis, named MMP++. This
model synergizes the strengths of the existing MMP with those

of conventional parametric curve representation-based primitive
models, achieving enhanced motion generation accuracy and
adaptability. Moreover, to overcome the geometric distortion
issue in MMP++, we have introduced a CurveGeom Riemannian
metric for the parametric curve space and presented IMMP++.
This approach ensures that the latent space preserves the geomet-
ric structure of the motion manifold, which, in some instances,
leads to significantly improved density fitting results within the
latent space.

We highlight that the low dimensionality of the latent
parametrization of the motion manifold has led to multiple ad-
vantages. This allows us to exploit nonparametric density fitting
techniques, such as kernel density estimation, in the latent space,
which are typically challenging to apply in high-dimensional
spaces, for example, directly in the curve parameter space W .
In addition, replanning has been easily accomplished by finding
a new latent value z, formulated as an optimization problem
that is efficiently solvable thanks to the low dimensionality of
the latent space.

We have extended MMP++ to accommodate matrix Lie group
data, specifically SO(3), by designing a parametric curve model
that utilizes the exponential map, logarithm map, and group
action. Given that the water-pouring SE(3) trajectory dataset
forms a connected manifold without a clustering structure,
MMP++—even without isometric regularization—has shown
satisfying performance. However, in instances where we en-
counter a dataset with clustering structures, where a distorted
latent space could result in poor density fitting, as verified in the
other two-DoF and seven-DoF robot experiments, employing
isometric regularization alongside an appropriate Riemannian
metric can offer a solution. Although developing isometric regu-
larization for matrix Lie group data falls outside the scope of this
article, it represents an interesting direction for future research.

Although our focus has been on via-point models, we can
adopt other parametric curve models with stronger inductive
biases. Even more sophisticated movement primitives, such as
those based on dynamical systems, can be used, for example,
by making the parameters of the dynamical systems the outputs
of the neural network, as done in [47]. These can potentially
be combined with the autoencoder-based manifold learning
technique. These combinations will yield a variety of manifold-
based motion primitives capable of generating diverse motions,
demonstrating high adaptability in previously unseen dynamic
environments.

Finally, we note that our current MMP are not conditioned
on vision inputs, such as images, point clouds, or sequences of
images, so the learned manifold of trajectories is applicable only
to the trained environment, such as the specific shelf in Fig. 11.
If the MMP model could generalize to environments it has not
encountered during training, it would be extremely powerful.
For example, if arbitrary shelf geometries were given as vision
inputs, and the model could generate a manifold of diverse
trajectories conditioned on those inputs, it would significantly
enhance its applicability. Adopting techniques (e.g., network
architectures) from recent LfD methods for visuomotor policy
learning [48], [49] is a feasible direction to extend our framework
to generate a manifold of trajectories conditioned on vision
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inputs. For example, the decoder can be modified to take a
vision feature y along with the latent variable z, so that the
decoder maps (z, y) to the curve parameter w. Although this
would require a relatively large amount of data paired with visual
observations, our core idea remains applicable.
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