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Abstract—Traversing terrain with good traction is crucial for
achieving fast off-road navigation. Instead of manually designing
costs based on terrain features, existing methods learn terrain
properties directly from data via self-supervision to automatically
penalize trajectories moving through undesirable terrain, but chal-
lenges remain in properly quantifying and mitigating the risk due
to uncertainty in the learned models. To this end, we present
evidential off-road autonomy (EVORA), a unified framework to
learn uncertainty-aware traction model and plan risk-aware tra-
jectories. For uncertainty quantification, we efficiently model both
aleatoric and epistemic uncertainty by learning discrete traction
distributions and probability densities of the traction predictor’s
latent features. Leveraging evidential deep learning, we parame-
terize Dirichlet distributions with the network outputs and propose
a novel uncertainty-aware squared Earth Mover’s Distance loss
with a closed-form expression that improves learning accuracy and
navigation performance. For risk-aware navigation, the proposed
planner simulates state trajectories with the worst-case expected
traction to handle aleatoric uncertainty and penalizes trajecto-
ries moving through terrain with high epistemic uncertainty. Our
approach is extensively validated in simulation and on wheeled
and quadruped robots, showing improved navigation performance
compared to methods that assume no slip, assume the expected
traction, or optimize for the worst-case expected cost.

Index Terms—Autonomous robots, self-supervised learning,
uncertainty quantification, off-road navigation.
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Fig. 1. EVORA captures both aleatoric and epistemic uncertainty when learn-
ing a terrain traction model, where traction is defined as the ratio between
achieved and commanded velocities. (a) Aleatoric uncertainty is the inherent and
irreducible uncertainty due to partial observability. For example, visually similar
terrain may have different traction values due to complex interactions between
the robot and vegetation. (b) Epistemic uncertainty is the model uncertainty
due to the distribution shift between training and test environments, limiting the
reliability of the learned model at test time.

I. INTRODUCTION

AUTONOMOUS robots are increasingly being deployed
in harsh off-road environments like mines, forests, and

deserts [1], [2], [3], where both geometric and semantic under-
standing of the environments is required to identify nongeomet-
ric hazards (e.g., mud puddles, slippery surfaces) and geometric
nonhazards (e.g., tall grass and foliage) in order to achieve
reliable navigation. To this end, recent approaches manually
assign navigation costs based on the semantic classification of
the terrain [4], [5], [6], requiring significant human expertise to
label and train a classifier sufficiently accurate and rich in or-
der to achieve desired risk-aware behaviors. Alternatively, self-
supervised learning can be used to learn a model of traversability
directly from navigation data [7], [8], [9] to automatically assign
higher costs for undesirable terrain during planning. Because
self-supervised data collection in the real world can be slow
and expensive, collecting more data is not beneficial unless
we properly quantify and mitigate the risk due to uncertainty
in the learned models. Uncertainty manifests in two forms,
as illustrated in Fig. 1 in the context of off-road navigation.
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Fig. 2. Overview of the proposed uncertainty-aware traversability learning and risk-aware navigation methods. (a) For data collection, we drive the robot over
interesting terrain to record traction values, robot positions, and build a semantic elevation map. We generate the training dataset offline by extracting semantic
and elevation features of the terrain and estimating empirical traction distributions along the traversed path. (b) Leveraging evidential deep learning [16], we
learn categorical distributions over discretized traction values to capture aleatoric uncertainty and estimate epistemic uncertainty by using a normalizing flow
network [17] to learn the densities of the traction predictor’s latent features. The overall architecture is trained with the proposed uncertainty-aware loss defined for
the Dirichlet distribution parameterized by the network outputs. (c) To handle aleatoric uncertainty, we propose a risk-aware planner that uses the left-tail CVaR
of the traction distribution to forward simulate the robot states when using the sampling-based model predictive control (MPC) method [18]. To handle epistemic
uncertainty, we threshold the densities of the traction predictor’s latent features in order to identify and avoid OOD terrain with unreliable traction predictions via
auxiliary planning costs.

Aleatoric uncertainty is the inherent and irreducible uncertainty
due to partial observability. For example, two patches of terrain
may be indistinguishable to the onboard sensors but lead to
different vehicle behaviors—such uncertainty cannot be reduced
by collecting more data. Epistemic uncertainty is due to out-
of-distribution (OOD) inputs encountered at test time that are
not well represented in the training data. Because it is often
undesirable to collect OOD data in dangerous situations such as
collisions and falling at the edge of a cliff, there can exist a large
gap between training datasets and the various real-world sce-
narios encountered by the robot. Most existing work in off-road
navigation has focused on either aleatoric uncertainty [10], [11]
by learning distributions of system parameters instead of point
estimates, or epistemic uncertainty [12], [13], [14], [15] by iden-
tifying OOD terrain, but limited effort has been made to quantify
both types of uncertainty and mitigate the associated risk during
planning.

To achieve fast and reliable off-road navigation, this work
considers both the upstream uncertainty-aware traversability
learning problem and the downstream risk-aware navigation
problem. Recognizing the interdependence of the two problems,
our proposed pipeline evidential off-road autonomy (EVORA),
tightly integrates the proposed uncertainty-aware traversability
model into the proposed risk-aware planner (see Fig. 2 for an
overview). To plan fast trajectories, we model traversability
with terrain traction that captures the “slip” or the ratio be-
tween achieved and commanded velocities (for example, wet

terrain that causes the robot’s wheels to slip and reduce its
intended velocity has low traction). Moreover, we efficiently
quantify both aleatoric and epistemic uncertainty by learning the
empirical traction distributions and probability densities of the
traction predictor’s latent features. Because real-world traction
distributions may be multimodal, as shown in Fig. 1(a) where
vegetation with similar appearance may lead to different trac-
tion values, we learn categorical distributions over discretized
traction values to capture multimodality. By leveraging the evi-
dential deep learning technique proposed in [16], we parametrize
Dirichlet distributions (the conjugate priors for the categorical
distributions) with neural network (NN) outputs, and propose a
novel uncertainty-aware loss based on the squared Earth Mover’s
Distance (EMD) [19]. Our loss, which can be computed effi-
ciently in closed-form, better captures the relationship among
discretized traction values than the conventional cross-entropy
(CE)-based losses [20]. To handle aleatoric uncertainty, we pro-
pose a risk-aware planner that simulates state trajectories using
the worst-case expected traction, which is shown to achieve im-
proved or competitive performance compared to state-of-the-art
methods that rely on the nominal traction [11], the expected trac-
tion [21] or that optimize for the worst-case expected cost [22].
To mitigate the risk due to epistemic uncertainty, the proposed
method imposes a confidence threshold on the densities of
the traction predictor’s latent space features to identify OOD
terrain and avoid moving through it using auxiliary planning
costs. The overall approach is extensively analyzed in simulation
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and hardware with wheeled and quadruped robots, demon-
strating feasibility and improved navigation performance in
practice.

A. Related Work

1) Traversability Analysis: Suitability of terrain for naviga-
tion can be assessed in various ways, e.g., based on proprio-
ceptive measurements [23], [24], geometric features [1], [2],
[25] and combinations of geometric and semantic features [3],
[4], [26] (see the survey in [27]). Due to the difficulty of hand-
crafting planning costs based on terrain features, self-supervised
learning is increasingly being adopted to learn task-relevant
traversability representations. For example, Li et al. [28] pro-
posed learning the support surfaces underneath dense vegetation
for legged robot locomotion, and Gasparino et al. [21] modeled
terrain traction that captures how well the robot can follow the
desired velocities. However, these methods do not account for
the aleatoric and epistemic uncertainty due to the noisiness and
scarcity of real-world data. To capture aleatoric uncertainty,
Ewen et al. [10] and Cai et al. [11] learned multimodal terrain
properties via Gaussian mixture models or categorical distri-
butions. To capture epistemic uncertainty, Frey et al. [12] and
Schmid et al. [13] measured the trained NNs’ ability to recon-
struct terrain similar to the terrain types traversed in the past, and
Seo et al. [29] trained a binary classifier for unfamiliar terrain.
In comparison, Endo et al. [15] and Lee et al. [14] leveraged
Gaussian process (GP) regression to quantify epistemic uncer-
tainty, but they used a homoscedastic noise model that assumes
the noise variance is globally constant. While Murphy et al. [30]
adopted heteroscedastic GPs that can handle input-dependent
noise, the predictive distributions are not analytically tractable
and require approximations.

In contrast, our work explicitly quantifies both the aleatoric
and epistemic uncertainty in the learned traction model that
predicts the ratio between achieved and commanded velocities.
While we learn traction just like Gasparino et al. [21], our model
is uncertainty-aware and can be used to achieve risk-aware
navigation. In comparison, Frey et al. [12] used the difference
between achieved and commanded velocities in the planning
objective, but they assumed no slip when simulating the state
rollouts. In contrast, our traction model can be used to simulate
state rollouts under the worst-case expected traction condition,
which is shown by our results to achieve better performance than
methods that assume nominal traction.

2) Uncertainty Quantification and OOD Detection: Uncer-
tainty quantification is well studied in the machine learning
literature (see the survey in [31]) with effective techniques
such as Bayesian dropout [32], model ensembles [33], and
evidential methods [34]. In the off-road navigation literature,
ensemble methods have been a popular choice [35], [36], [37],
because they typically outperform methods based on Bayesian
dropout [38]. In comparison, evidential methods are better suited
for real-world deployment, because they only require a single
network evaluation without imposing high computation or mem-
ory requirements. Therefore, we leverage the evidential method
proposed by Charpentier et al. [16] to directly parameterize the

conjugate prior distribution of the target distribution with NN
outputs in order to quantify both aleatoric and epistemic uncer-
tainty. Moreover, we propose an uncertainty-aware loss based on
the squared EMD proposed by Hou et al. [19] to better capture
the relationship among the discrete traction values, resulting
in more accurate traction predictions that in turn improve the
downstream risk-aware planner’s navigation performance.

When deploying the learned traction model, we explicitly
identify OOD terrain based on the estimated epistemic uncer-
tainty, which is an instance of the general OOD detection prob-
lem (see the survey in [39]). For example, reconstruction-based
method adopted by Seo et al. [40] and density-based method
adopted by Ancha et al. [41] have shown promising results
for off-road navigation to identify unsafe terrain. Similar to
Ancha et al. [41], our approach is a density-based approach
that explicitly captures the normalized probability density un-
der the training data distribution. Alternatively, energy-based
approaches proposed by Liu et al. [42] and Grathwohl et al. [43]
do not require explicit density normalization, and similar ideas
have been adopted by Castaneda et al. [44] to avoid OOD states.
Instead of solely focusing on OOD detection and mitigation, this
work quantifies and mitigates the risk due to both aleatoric and
epistemic uncertainty. While OOD terrain with high epistemic
uncertainty should be avoided at test time, in-distribution terrain
may still lead to high aleatoric uncertainty in the predicted trac-
tion due to complex vehicle-terrain interactions. Therefore, the
risk due to aleatoric uncertainty should be mitigated separately
to improve navigation performance by allowing the robot to
tradeoff the likelihood of experiencing low traction with the
potential time savings from traversing terrain with uncertain
traction.

3) Risk-Aware Planning: The risk of traversing terrain with
uncertain traversability values has been represented as costmaps
by Fan et al. [45] and Triest et al. [35], where conditional value
at risk (CVaR) can be used to measure the cost of encountering
worst-case expected failures, which satisfies a group of axioms
important for rational risk assessment [46]. Instead of costmaps,
navigation performance has also been assessed based on the
expected future states by Gibson et al. [47] or the expected
terrain traction by Gasparino et al. [21]. However, these methods
rely on either the nominal or the expected system behavior,
which may provide a poor indication of the actual performance
when the vehicle-terrain interaction is noisy (i.e., high aleatoric
uncertainty). Alternatively, Wang et al. [22] proposed to directly
optimize the CVaR of the planning objective, which can be
estimated by evaluating each control sequence over samples
of uncertain parameters, but this approach is computationally
expensive. Similar to our approach, the recent work of Lee
et al. [36] quantified both aleatoric and epistemic uncertainty
using probabilistic ensembles [48] and planned risk-aware tra-
jectories by penalizing both types of uncertainty, but it relied on
the expected system behaviors.

While we adopt a similar strategy used by Lee et al. [36]
for handling epistemic uncertainty via auxiliary penalties, we
use the worst-case expected system parameters for forward
simulation to assess the risk due to aleatoric uncertainty. Our
approach is computationally more efficient than the method
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Fig. 3. Example ground robots that can be modeled with unicycle or bicycle
dynamics models. (a) RC car. (b) Differential-drive robot. (c) Legged robot.

proposed by Wang et al. [22] and produces behaviors more
robust to multimodal terrain properties observed in the real world
compared to methods proposed by Lee et al. [36] and Gasparino
et al. [21] based on the expected system behaviors.

B. Contributions

We present EVORA, an off-road navigation pipeline that
tightly integrates the solutions to the uncertainty-aware
traversability learning problem and the risk-aware motion plan-
ning problem. We explicitly quantify both the epistemic un-
certainty to understand when the predicted traction values are
unreliable due to novel terrain and the aleatoric uncertainty to
enable the downstream planner to mitigate risk due to noisy
traction estimates. The main contributions of this work are as
follows.

1) A probabilistic traversability model based on traction
distributions (aleatoric uncertainty), with the ability to
identify unreliable predictions via the densities of the
traction predictor’s latent features (epistemic uncertainty).

2) A novel uncertainty-aware loss based on the squared EMD
loss [19] with a closed-form expression derived in this
work that improves traction prediction accuracy, OOD
detection performance, and downstream navigation per-
formance when used together with the uncertainty-aware
cross entropy (UCE) loss [16].

3) A risk-aware planner based on the CVaR of traction to
handle aleatoric uncertainty. Our planner outperforms
methods that assume the nominal traction [11] or the ex-
pected traction [21], and achieves improved or competitive
performance compared to the method optimizing for the
CVaR of cost [22] in both simulation and hardware.

4) A further extension of the risk-aware planner to handle
epistemic uncertainty by avoiding OOD terrain, which
improves the navigation success rate in simulation and
reduces human interventions in hardware experiments.

The preliminary conference version of this work appeared
in [49], which proposed to learn traction distributions and use
CVaR of traction for planning. This work extends the prior work
by using the evidential learning technique proposed in [16] for
model training, and deriving a new uncertainty-aware EMD2

loss based on [19] to improve learning performance. The new
methods introduced in this work not only improve the accu-
racy of traction prediction and OOD detection but also lead to
faster navigation. By adding extensive hardware experiments,
this work provides stronger evidence of the performance im-
provements provided by the risk-aware planner proposed in

the conference version [49] compared to the state-of-the-art
methods [11], [21], [22].

II. PROBLEM OVERVIEW

We consider the problem of fast navigation to a goal for a
ground vehicle whose dynamics depend on the terrain trac-
tion. Because traction values can be uncertain, we introduce
dynamical models whose traction values are random variables
in Section II-A. Moreover, we introduce the planning objective
that measures the time-to-goal in Section II-B and discuss the
challenges of minimizing the time-to-goal in Section II-C.

A. Dynamical Models With Traction Parameters

Consider the discrete time system

xt+1 = F (xt,ut,ψt) (1)

where xt ∈ X ⊆ Rn is the state vector such as the position and
orientation of the robot, ut ∈ Rm is the control input provided
to the robot, and ψt ∈ Ψ ⊆ Rr is the parameter vector that
captures terrain traction. We consider two models that are useful
approximations of the dynamics of a wide range of robots, as
shown in Fig. 3. Applicable to both differential-drive and legged
robots, the unicycle model is defined as⎡⎢⎣p

x
t+1

pyt+1

θt+1

⎤⎥⎦ =

⎡⎢⎣p
x
t

pyt
θt

⎤⎥⎦+Δ ·

⎡⎢⎣ψ1,t · vt · sin (θt)
ψ1,t · vt · cos (θt)

ψ2,t · ωt

⎤⎥⎦ (2)

where xt = [pxt , p
y
t , θt]

� contains the X, Y positions and yaw,
ut = [vt, ωt]

� contains the commanded linear and angular ve-
locities, ψt = [ψ1,t, ψ2,t]

� contains the linear and angular trac-
tion values 0 ≤ ψ1,t, ψ2,t ≤ 1, and Δ > 0 is the time interval.
Intuitively, traction captures the “slip,” or the ratio between
achieved and commanded velocities. The bicycle model is ap-
plicable for Ackermann-steering robots and is defined as⎡⎢⎣p

x
t+1

pyt+1

θt+1

⎤⎥⎦ =

⎡⎢⎣p
x
t

pyt
θt

⎤⎥⎦+Δ ·

⎡⎢⎣ ψ1,t · vt · cos (θt)
ψ1,t · vt · sin (θt)
ψ2,t · vt · tan(δt)/L

⎤⎥⎦ (3)

where L is the wheelbase, ut = [vt, δt]
� contains the com-

manded linear velocity and steering angle, and ψt plays the
same role as in the unicycle model. The reference point for the
bicycle model in (3) is located at the center between the two rear
wheels.

B. Planning Objective

We adopt the minimum-time objective proposed in [11], but
other objectives for goal reaching could also be used. Intuitively,
the objective only assigns stage costs by accumulating the
elapsed time before any state falls in the goal region. If the state
trajectory does not intersect the goal region, the terminal cost
further penalizes the estimated time-to-goal. Given a function
Cdist(xt) that measures the Euclidean distance between xt and
the goal, the minimum-time objective is defined over a state
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Fig. 4. Proposed traversability pipeline maps elevation and semantic features to traction distributions that capture aleatoric uncertainty, and densities for latent
features that capture epistemic uncertainty. Terrain regions are deemed OOD and later avoided during planning if the densities for the latent features are below a
threshold. When the densities for latent features are above the threshold, the predicted traction distributions are reliable and inform downstream risk-aware planners
(Section IV) to tradeoff the risk of immobilization with the time savings of traversing regions with uncertain traction.

trajectory x0:T from time 0 to T

C(x0:T ) := C term(x0:T ) +

T−1∑
t=0

Cstage(x0:t) (4)

where the total cost consists of terminal and stage costs

C term(x0:T ) =
Cdist(xT )

sdefault

(
1− 1done(x0:T )

)
(5)

Cstage(x0:t) = Δ
(
1− 1done(x0:t)

)
(6)

where sdefault > 0 is the default speed for estimating time-to-go
and Δ > 0 is the constant time interval. To avoid accumulating
costs after arriving at the goal, we use an indicator function
1done(x0:t) that equals 1 if any state in x0:t has reached the goal,
and equals 0 otherwise. Although Δ is a constant, the number
of time steps required to reach the goal changes according to the
robot speed. Intuitively, this objective encourages the robot to
reach the goal as quickly as possible.

C. Key Challenges

While objective (4) can be optimized by finding an optimal
control sequence via nonlinear optimization techniques such
as model predictive path integral control (MPPI [18, Algo-
rithm 2]), the terrain traction varies across terrain types and
needs to be learned from real-world data. However, real-world
terrain traction is uncertain since visually and geometrically
similar terrain may have different traction properties (aleatoric
uncertainty), and the traction models can only be trained on
limited data (epistemic uncertainty). Even if uncertainty in
terrain traction is quantified accurately, designing risk-aware
planners that mitigate the risk of failure under this uncertainty
is still challenging. To address these challenges, we introduce
our proposed uncertainty-aware traversability model and the
risk-aware planner in Sections III and IV, respectively.

III. UNCERTAINTY-AWARE TRAVERSABILITY MODEL

In this section, we first introduce the traction distribution
predictor that captures aleatoric uncertainty, and the latent
space density estimator that captures epistemic uncertainty. An
overview of the traversability analysis pipeline is shown in Fig. 4.

Then, we review the evidential method proposed by [16] in the
context of traction learning, and propose a new uncertainty-
aware loss to improve learning performance.

A. Aleatoric Uncertainty Captured in Traction Distribution

LetΨ = {ψ1, . . . ,ψB} be a set ofB > 0 discretized traction
values (ratios between achieved and commanded velocities), and
O be a set of terrain features containing elevation values and one-
hot vectors of semantic labels. We want to model the distribution
over Ψ given an input terrain feature vector o ∈ O

pφ(o) : O → RB
≥0. (7)

We use Cat(pφ(o)) to denote a categorical distribution over
Ψ that captures the aleatoric uncertainty due to environment
factors that affect traction but are not captured in the terrain
features o. Note that (7) can be learned by an NN parameterized
by φ that can be trained using an empirically collected dataset
{(o,ψ)k}Kk=1 whereK > 0. While we do not explicitly account
for the uncertainty in the terrain features (e.g., noisy elevation
estimates, or misclassification of terrain types due to visual
similarity) or other factors such as the design of the low-level
velocity controller, these unmodeled effects will manifest in
the empirical dataset and can still be implicitly captured in the
learned traction distributions.

We use categorical distributions as convenient alternatives
to Gaussian mixture models and normalizing flows [17] for
learning multimodal traction distributions observed in practice,
because they do not require tuning the number of clusters,
generate bounded distributions by construction, and converge
faster than normalizing flows based on our empirical experi-
ence while achieving similar accuracy. Since we only need to
discretize 1-D linear and angular traction values, we avoid the
common problem of an exponentially increasing number of bins
when discretizing high-dimensional spaces. Therefore, categor-
ical distributions with a relatively small number of discrete bins
suffice for our task.

Examples of real-world data collection and offline dataset
generation can be found in Fig. 5. The semantic and geometric
information about the environment can be built by using a
semantic octomap [50] that temporally fuses semantic point
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Fig. 5. Data collection and offline dataset generation. (a) Example of real-world data collection using a Clearpath Husky. The robot is manually driven for 10
min while recording the traversed path, traction values, and building semantic and elevation maps of the environment. The traction values are recorded at 20 Hz
and only a subset of the collected traction values are shown for clarity, where the discontinuity in traction values occurs when linear or angular commands are not
sent. (b) During offline dataset generation, traction values are discretized and accumulated via histograms stored in traversed map cells. The input to the traction
predictor consists of semantic and elevation patches. Example terrain types include vegetation (light green), grass (dark green), dirt (light brown), and mulch (dark
brown). The predicted and empirical traction distributions are used to compute the training loss, and the associated measurement counts used to obtain the empirical
traction distributions can be used to weight the training loss to discount rarely visited terrain. (a) Data collection. (b) Offline datatset generation.

clouds. We use PointRend [51] trained on the RUGD off-road
navigation dataset [52] with 24 semantic categories to segment
RGB images and subsequently project the semantics onto lidar
point clouds. During offline dataset generation, we obtain the
empirical linear and angular traction distributions by accumu-
lating discretized traction measurements in histograms stored
in every terrain cell traversed by the robot. The measurement
counts are also stored so that, during training, we can weight
the loss for each cell by the measurement counts to discount
rarely visited terrain. In practice, we learn the linear and angular
traction distributions separately. We use a shared encoder (con-
volutional layers followed by fully connected layers) to process
the semantic and elevation patches of the terrain. The shared
encoder is followed by two fully connected decoder heads with
soft-max outputs for predicting the linear and angular traction
distributions.

B. Epistemic Uncertainty Captured in Latent Space Density

Due to limited training data, the predicted traction distribu-
tions for novel parts of the terrain may be unreliable and lead to
degraded navigation performance in those regions. To measure
epistemic uncertainty, we want to estimate the density of the
latent feature zo ∈ RH obtained from an intermediate layer of
the traction predictor pφ (7) based on the terrain feature o. The
density estimator is defined as

pλ(z
o) : RH → R≥0 (8)

where we use a normalizing flow parameterized by λ to learn (8).
At a high level, a normalizing flow works by transforming
an arbitrary target distribution into a simple base distribution,
such as a standard normal, via a sequence of invertible and
differentiable mappings. Then, the density of a sample zo

can be computed by the change of variable formula [17]—it
is the product of the density of the transformed sample under
the base distribution, and the change in volume measured by
the determinant of the Jacobian of the transformation. When

selecting the latent space features, it is crucial to ensure that they
contain task-relevant information. To this end, we use the latent
features produced by the shared terrain feature encoder, because
they contain information useful for predicting both linear and
angular traction distributions.

For interpretation purposes, we design a simple confidence
score g(zo) for input feature o based on the maximum density
pmax ∈ R≥0 and minimum density pmin ∈ R≥0 observed for the
latent features of terrain in the training dataset

g(zo) =
pλ(z

o)− pmin

pmax − pmin
. (9)

During deployment, terrain features with a confidence score
below some threshold gthres ∈ R are deemed OOD; these regions
with OOD terrain features can be explicitly avoided during
planning via auxiliary penalties. A principled way to set gthres is
to use the κth percentile of the densities obtained from all the
terrain features in the training dataset, where a higher value of
κ ∈ [0, 100] will cause more terrain features to be classified as
OOD at test time. Because of the normalization in (9), gthres = 0
and gthres = 1 conveniently correspond to the 0th and 100th
percentiles. Note that the threshold can be selected offline, and
gthres = 0 can be used if the robot should only avoid terrain
features with densities lower than densities observed during
training. This strategy improves the navigation success rate when
the learned traction models are deployed in environments unseen
during training, both in simulations (see Section VIII) and in
hardware experiments (see Section IX-B).

C. Evidential Deep Learning

While the traction predictor and the density estimator can
be trained sequentially, Charpentier et al. [16] have shown that
joint training using evidential deep learning can improve OOD
detection performance while retaining prediction accuracy. In
this section, we review the method and training loss proposed
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in [16], where NN outputs parameterize Dirichlet distributions
(the conjugate priors of categorical distributions).

The Dirichlet distribution q = Dir(β) with concentration pa-
rameters β = [β1, . . . , βB ]

� ∈ RB
>0 is a hierarchical distribu-

tion over categorical distributions Cat(p), where p ∈ RB
≥0 is

a normalized probability mass function (PMF) over B > 0
bins, i.e.,

∑B
b=1 pb = 1. The parameters p of the lower level

categorical distribution Cat(p) are sampled from the higher
level Dirichlet distribution, i.e., p ∼ Dir(β). The mean (also
called the expected PMF) of the Dirichlet distribution is given by
Ep∼q[p] = β/

∑B
b=1 βb. The expected PMF captures aleatoric

uncertainty. The sum of the parameters β, i.e.,
∑B

b=1 βb repre-
sents how concentrated the Dirichlet distribution is around its
mean. Therefore,

∑B
b=1 βb is also known as the concentration

parameter, and corresponds to the “total evidence” of a data
point observed in the training set. Higher evidence corresponds
to lower epistemic uncertainty. Given a prior Dirichlet belief
Dir(βprior) and the input feature o, the NN performs an input-
dependent posterior update

βo
φ,λ = βprior + noλpφ(o) (10)

noλ = Npλ(zo) (11)

where the posterior Dirichlet distribution qoφ,λ = Dir(βo
φ,λ) de-

pends on the predicted traction pφ(o) (7) and the predicted
evidence noλ that is proportional to the density for the latent
feature pλ(zo) (8) weighted by a fixed certainty budget N > 0.
The posterior Dirichlet distribution leads to the expected traction
PMF

po
φ,λ =

npriorpprior + noλpφ(o)

nprior + noλ
(12)

where nprior =
∑B

b=1 β
prior
b and pprior = βprior/nprior. We use a

flat prior by setting βprior = 1B , where 1B ∈ RB is a vector of
all ones, such that Dir(βprior) is a uniform distribution over all
PMFs. Based on this formulation proposed by [16], the posterior
Dirichlet distribution qoφ,λ and expected traction distribution
po
φ,λ both depend on the traction predictor, density estimator,

and the input features. While the analysis of loss functions we
perform below is for a generic Dirichlet distribution q = Dir(β)
and PMF p for notational convenience, the posterior Dirichlet
distribution and its expected PMF should be substituted by
(10, 11, 12) during training.

Given the target PMF y ∈ RB
≥0 that contains the empirically

estimated traction distribution, the traction predictor and the
normalizing flow can be trained jointly with the following UCE
loss [16]

LUCE(q,y)−H(q) (13)

where LUCE(q,y) := Ep∼q[−
∑B

b=1 yb log pb] is defined as the
expected CE loss and H(q) is an entropy term that encourages
smoothness of q. Note that both LUCE and H(q) depend on β
(see Appendix A for details).

The ablation study in [16] has shown that training with (13)
improves OOD detection performance while retaining similar
accuracy achieved using the conventional CE loss. However,
the key limitation of CE-based losses in our use case is that

Fig. 6. Difference between EMD2 and CE. Given the ground truth (GT) y
and the predictions p1 and p2, CE produces the same values while EMD2

penalizes p2 more. In practice, EMD2 is more desirable because it accounts for
the cross-bin relationship among the discretized traction values.

they treat the prediction errors across bins independently. The
independence assumption is undesirable for learning traction,
where bins are obtained by discretizing continuous traction
values. These bins are ordered—bins closer to each other should
be treated more similarly than bins far apart. We address this
limitation by proposing a new loss function based on the squared
EMD [19] that has been shown to achieve better accuracy than
CE-based losses when bins are ordered.

D. Uncertainty-Aware Squared Earth Mover’s Distance

Intuitively the EMD between two distributions measures the
minimum cost of transporting the probability mass of one dis-
tribution to the other, which has a closed-form solution for two
categorical distributions defined by PMFs with the same number
of bins [19]. Given a predicted PMF p ∈ RB

≥0 and the target
y ∈ RB

≥0, the normalized EMD with l-norm forB equally spaced
bins can be computed in closed-form [19]

EMD(p,y) =

(
1

B

) 1
l

‖cs(p)− cs(y)‖l (14)

where cs : RB → RB is the cumulative sum operator. For conve-
nience during training, we use l = 2 for Euclidean distance and
optimize the squared EMD loss (EMD2), dropping the constant
factor. The toy example in Fig. 6 clearly shows that EMD2 better
captures the physical meaning of the predicted PMFs than CE,
which ignores the relationship between bins.

As EMD2 is only defined for PMFs, a naïve strategy is to
compare the target y to the expected PMF from the predicted
Dirichlet q, which leads to the following loss function (ignoring
the constant multiplicative term):

LEMD2

(q,y) := ‖cs(p)− cs(y)‖22
= cs(p)�cs(p) + η(q,y) (15)

where p := Ep∼q[p] = β/β0 is the expected PMF, β0 :=∑B
b=1 βb is the total evidence and

η(q,y) := −2 cs(p)�cs(y) + cs(y)�cs(y). (16)

Note that cs(p) can also be written as cs(β)/β0 due to the
linearity of the cumulative sum operator. However, LEMD2

is
invariant to the total evidence β0 of the Dirichlet distribution,
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Fig. 7. Analyzing the difference between the standard EMD2 loss and our proposed UEMD2 loss on a toy example with three bins p1, p2, p3. Each blue triangle
represents a predicted Dirichlet distribution q visualized as a probability density over the 3-simplex; each point inside the simplex corresponds a categorical
distribution over the three bins. The red cross + denotes the location of the target label distribution y in the training set. A Dirichlet distribution can be parametrized
by two quantities: the position of its mean and the concentration around its mean. Left: Varying the position of the Dirichlet while keeping its concentration fixed.
In this case, both losses behave similarly and as desired—they encourage the predicted Dirichlet to be close to the target label distribution. Right: Varying the
concentration of the Dirichlet while keeping its position fixed to the GT. Since EMD2 only depends on the position of the Dirichlet mean, it is constant with respect
to varying concentration. However, our proposed UEMD2 encourages the predicted Dirichlet to have a high concentration (low epistemic uncertainty). Learning to
predict low epistemic uncertainty for in-distribution training examples is essential for calibrated uncertainty prediction and detecting OOD examples, as opposed
to being indifferent to the concentration.

as illustrated in the toy example in Fig. 7, so the epistemic
uncertainty cannot be learned accurately.

Similar to the approach in [16] that uses the expectation of the
CE loss that depends on β, we propose the uncertainty-aware
EMD2 (UEMD2) loss defined as the expectation of the EMD2

given the Dirichlet q

LUEMD2

(q,y) := Ep∼q
[
EMD2(p,y)

]
. (17)

The following theorem states that our proposed UEMD2 loss
can be computed in a closed form.

Theorem 1: Let q = Dir(β) be a Dirichlet distribution and
let Cat(y) be a categorical distribution. Then, a closed-form
expression exists for LUEMD2

(q,y) given by

LUEMD2

(q,y) = cs(p)�
cs(β) + 1B

β0 + 1
+ η(q,y) (18)

where p = Ep∼q[p], and η is defined in (16).
Proof: See Appendix B. �
Due to structural similarity to LEMD2

(15), the proposed
loss (18) also penalizes the EMD2 error to encourage accurate
traction predictions. In addition, the proposed loss penalizes
low concentration β to encourage low epistemic uncertainty
as shown in Fig. 7. In fact, it can be proved that LUEMD2

is
always greater or equal to LEMD2

using Jensen’s inequality and
the convexity1 of LEMD2

. While (18) can be directly used as a
loss function, EMD2-based loss may not always converge to the
desired local optima as observed by [19]. To address this issue,
we follow [19] by considering a loss function that combines both
EMD2-based and CE-based loss terms. Therefore, we consider
the following multiobjective optimization:

LUCE(q,y) + w1 L
UEMD2

(q,y)− w2H(q) (19)

1Taking cumulative sum and squared difference are convex operations.

where the entropyH(q) encourages smoothness and the weights
w1, w2 ≥ 0 are hyperparameters. In practice, we compute (19)
for the predicted linear and angular traction distributions sepa-
rately and average the loss values. As simulation results suggest
in Section V-C, the multiobjective loss (19) leads to more stable
training and better generalization to test data.

IV. PLANNING WITH LEARNED TRACTION DISTRIBUTION

While OOD terrain causing high epistemic uncertainty should
be avoided, in-distribution terrain may still lead to high aleatoric
uncertainty due to complex vehicle-terrain interactions. There-
fore, we propose a risk-aware planner that tradeoffs the risk
of immobilization with potential time savings from traversing
terrain that leads to high aleatoric uncertainty.

A. Conditional Value at Risk

We adopt the CVaR as a risk metric because it satisfies a
group of axioms important for rational risk assessment [46].
The conventional definition of CVaR assumes the worst-case
occurs at the right tail of the distribution. We define CVaR for a
random variable Z at level α ∈ (0, 1] for both the right and left
tails of its distribution (see Fig. 8) as follows:

CVaR→α (Z) :=
1

α

∫ α

0

VaR→τ (Z) dτ (20)

CVaR←α (Z) :=
1

α

∫ α

0

VaR←τ (Z) dτ (21)

where the right and left values at risk (VaR) are defined as

VaR→α (Z) := min{z | p(Z > z) ≤ α} (22)

VaR←α (Z) := max{z | p(Z < z) ≤ α}. (23)
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Fig. 8. This work defines two versions of CVaR to capture the worst-case
expected values at either the left tail as CVaR←α (Z)or the right tail as CVaR→α (Z)
for some random variable Z, where the worst-case scenarios constitute α ∈
(0, 1] portion of total probability. The left-tail and right-tail VaR are defined as
VaR←α (Z) and VaR→α (Z).

Intuitively, CVaR→α (Z) and CVaR←α (Z) capture the expected
outcomes that fall in the right tail and left tail of the distribution,
respectively, where each tail occupies α portion of the total
probability. Note that the right-tail definitions are suitable for
costs to be minimized, and the left-tail definitions are suitable
for low traction values. When α = 1, either definition of CVaR
is equivalent to the mean of the distribution E[Z].

B. Risk-Aware Planning

To account for the risk due to uncertain traction, we first
present an existing approach [22] that optimizes for the right-tail
CVaR of the planning objective (CVaR-Cost), and then propose
a more computationally efficient method that accounts for the
left-tail CVaR of traction (CVaR-Dyn). Lastly, we discuss the
advantages and limitations of these two methods.

1) Worst-Case Expected Cost (CVaR-Cost [22]): Given the
initial state x0, we want to find a control sequence u0:T−1
that minimizes the worst-case expected value of the nominal
objective C (4) given uncertain terrain traction

min
u0:T−1

CVaR→α (C(x̃0:T )) (24)

s.t. x̃t+1 = F (x̃t,ut, ψ̃t) (25)

ψ̃t ∼ Cat(põt

φ,λ) (26)

õt is the terrain feature at x̃t (27)

x̃0 = x0 ∀t ∈ {0, . . . , T − 1} (28)

where traction ψ̃t is realized based on the predicted traction
PMF põt

φ,λ (12) after observing the terrain feature õt. Due to
the uncertain traction, the original objective C(x̃0:T ) is now
a random variable that depends on the realization of the state
trajectory. Note that this approach is inspired by [22], but we
additionally handle terrain-dependent traction distributions.

In practice, optimizing (24) using MPPI requires a subroutine
that empirically estimates the right-tail CVaR of the objec-
tive by collecting M > 0 realizations of the nominal objective
{C(x̃m

0:T )}Mm=1 for each candidate control sequence by using
sampled traction values. To exploit GPU parallelization, we
pregenerateM > 0 traction maps where each map cell contains
sampled traction values. As a result, each candidate control
sequence can be evaluated in parallel for all the pregenerated
traction maps. While the sampled traction maps can be reused,

the computation can still grow prohibitively as the map size
grows. Therefore, we propose a cheaper cost design that ac-
counts for the left-tail CVaR of terrain traction.

2) Worst-Case Expected Terrain Traction (CVaR-Dyn):
Given the initial state x0, we want to find a control sequence
u0:T−1 that minimizes the nominal objective C (4) using the
state trajectory obtained with the worst-case expected traction

min
u0:T−1

C(x̄0:T ) (29)

s.t. x̄t+1 = F (x̄t,ut, ψ̄t) (30)

ψ̄t =

[
CVaR←α (ψ̄1,t)

CVaR←α (ψ̄2,t)

]
,

[
ψ̄1,t

ψ̄2,t

]
∼ Cat(pōt

φ,λ) (31)

ōt is the terrain feature at x̄t (32)

x̄0 = x0 ∀t ∈ {0, . . . , T − 1} (33)

where ψ̄t contains the left-tail CVaR of the linear and angular
traction based on the predicted traction PMF pōt

φ,λ (12) after
observing the terrain feature ōt. When α = 1, the expected
values of the traction parameters are used, equivalent to the
planning approach used by [21].

3) Advantages and Limitations: Both CVaR-Cost and CVaR-
Dyn leverage intuitive notions of risk based on the worst-case ex-
pected cost and traction, respectively. Moreover, they are simple
to tune with a single risk parameter α regardless of the number
of terrain types. Note that CVaR-Cost is a general algorithm
that handles uncertainty in the planning problem [22]. In com-
parison, CVaR-Dyn is computationally cheaper, but it exploits
the intuition that low traction usually worsens time-to-goal.
However, such a relationship between system parameters and
task performance may not hold for more complicated systems
and different task objectives.

V. EVALUATION OF TRAVERSABILITY LEARNING PIPELINE

The proposed evidential traversability learning method is
benchmarked using a synthetic terrain dataset (Section V-A)
designed to simulate data scarcity during real-world data col-
lection and provide ground truth (GT) traction distributions and
OOD terrain masks. Several variants of the proposed loss (19)
are compared based on prediction accuracy and OOD detection
performance (Section V-C). To highlight the benefits of joint
training and our UEMD2 loss (18), we provide an ablation
study in Section V-D. After analyzing the proposed planner in
Section VI, Section VII contains key results that show improved
navigation performance due to our proposed loss.

As comparing uncertainty quantification methods is not the
main focus of this work, we refer interested readers to [16]
that has demonstrated the computational advantages, learning
accuracy, and OOD detection performance of the NN architec-
ture used in this work compared to the other state-of-the-art
uncertainty quantification methods.

A. Synthetic 3-D Terrain Datasets

The synthetic dataset contains randomly generated 3-D terrain
with GT traction distributions generated based on geometric
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Fig. 9. Synthetic 3-D terrain dataset with dirt (brown) and vegetation (green) semantic types. (a) In each training environment, there are limited traction
measurements along a prespecified circular path to mimic real-world data collection with limited coverage. Each environment is split into two for cross validation.
Furthermore, we analyze the effect of a varying number of measurements by multiplying the base measurement counts (see Fig. 10). (b) Test environments contain
novel terrain features for analyzing the traction prediction accuracy. To support the key argument that EMD2 is a better indicator for navigation performance,
models trained with different loss functions are deployed in the test environments for go-to-goal tasks (see Section VII). (c) Compared to the test environments, the
OOD dataset additionally provides binary masks for the novel terrain with elevation and/or slope not observed during training. (a) Example training environment.
(b) Example test environment. (c) Example OOD environment.

TABLE I
SYNTHETIC TERRAIN DATASET FOR BENCHMARKING LOSS FUNCTIONS

properties (elevation and slope) and semantic types (dirt and
vegetation); details are available in Table I. Note that terrain
slopes are only used for generating the GT traction distributions,
but are not used as inputs to the NN. For simplicity, we use
the same traction distribution for both linear and angular com-
ponents, and dependencies only exist between dirt and terrain
slope, and vegetation and terrain elevation. While more complex
traction distributions can be designed, our dataset is sufficient
for supporting our contributions.

In total, there are 5 training, 20 test, and 40 OOD environments
that are 30 m in width and height, 0.5 m in resolution, as well
as different elevations, slopes, and vegetation ratios, where the
training dataset is intentionally small to examine the general-
ization of learned models. Every training environment is split
into equal parts for training and cross validation, respectively.
The synthetic environments are selectively visualized in Fig. 9.
To simulate real-world data collection, traction samples are
only obtained along a circular path. Moreover, we consider the
impact of increasing the number of samples by multiplying the

base measurement counts by factors 10k where k ∈ {0, . . . , 4}.
For training environments, traction samples are accumulated in
traversed terrain cells via histograms to obtain empirical traction
distributions, and measurement counts are also stored to weight
training loss in order to discount rarely visited terrain. In test
environments, we use GT traction distributions to measure the
prediction accuracy of trained models. In OOD environments,
terrain with slope and elevation values unseen during training
is deemed OOD. The associated OOD masks are the GT used
to benchmark OOD detection performance. An example of the
OOD masks is visualized in Fig. 9(c).

B. Model Training

We use the same network architecture for all the loss
functions, where the traction predictor consists of a shared
encoder (convolutional layers followed by fully connected
layers) to process the semantic and elevation patches of
the terrain, and two fully connected decoder heads with
soft-max outputs for predicting the linear and angular traction
distributions. The latent space features from the shared encoder
are passed to a radial flow [53] and we use a constant certainty
budget that scales exponentially with the latent dimension
for numerical purposes [16]. During training, we follow the
two-step procedure outlined in [16]. First, we jointly train
the traction distribution predictor and the flow network. After
convergence, we freeze the traction predictor and only fine-tune
the flow network. This strategy improves OOD detection
accuracy. However, we observe no improvement by performing
“warm-up training” for the flow network prescribed by [16].

Hyperparameter sweeps are conducted over learning rates
in [1e−4, 3e−4, 1e−3] for the Adam optimizer, and entropy
weights in [0, 1e−6, 1e−5] when UEMD2 and UCE are used
separately. For the weighted sum of UEMD2 and UCE, we
fix the UCE term and consider additional weights for UEMD2

in [0.1, 1, 10]. For each combination of hyperparameters, we
train the model with five random seeds and select the best
model based on validation EMD2 error averaged over the
seeds, because empirically we have found that selecting models
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Fig. 10. Prediction errors measured in EMD2 and KL divergence (the lower, the better), and OOD detection accuracy measured in AUC-ROC and AUC-PR (the
higher, the better). The legend for each loss function is followed in parentheses with the selection criteria used for choosing hyperparameters. The results show
the average and standard deviations. Overall, the proposed weighted sum of UEMD2 and UCE leads to the best prediction accuracy and steadily improving OOD
detection performance when given more training samples. Due to the distribution shift between the training and test environments, too much training data lead to
degrading prediction accuracy for the other loss designs. In addition, compared to EMD2-based losses, UCE is worse at capturing the cross-bin relationship among
the discrete traction values, resulting in worse prediction accuracy and unstable OOD detection performance.

based on validation EMD2 instead of Kullback–Leibler (KL)
divergence leads to improved performance for all models. To
guarantee fairness for the state-of-the-art and not clutter the
figures, we only present the results for models selected based
on validation KL divergence for the UCE loss.

C. Prediction Accuracy and OOD Detection Performance

Variations of the proposed loss function (19) are compared
in terms of prediction accuracy and OOD detection perfor-
mance. The prediction accuracy is measured by EMD2 and
KL divergence by comparing the predicted and the GT traction
distributions. The accuracy of OOD detection using the densities
of latent features is measured by the area under the receiver
operating characteristic curve (AUC-ROC) and the area under
the precision-recall curve (AUC-PR) with respect to the GT
OOD masks. Note that AUC-ROC and AUC-PR are standard
metrics for binary classification that are invariant to scale and
offset. Intuitively, a score of 0.5 means the classifier is as good
as random guesses, and a score of 1 indicates a perfect classifier.
To show the best performance achievable by the state-of-the-art
with unlimited traction samples during training, we include
models trained with UCE using the GT traction distributions in
the training environments. The benchmark results are in Fig. 10,
where we report the average values and the standard deviations
over all map cells, test environments, and random seeds.

The main takeaway from the benchmark is that the models
trained with the proposed weighted sum of UEMD2 and UCE
achieve the best prediction accuracy in both EMD2 and KL
divergence. Furthermore, the weighted-sum objective leads to
more stable improvements in test performance for both predic-
tion accuracy and OOD detection as training samples become
more abundant. Interestingly, too many training samples lead to
degrading prediction accuracy achieved by the other loss designs
at test time. Because we do not observe worsening accuracy on
the validation dataset, the degrading test performance can be
attributed to the distribution shift between the training and test

TABLE II
ABLATION STUDY FOR UEMD2 AND JOINT TRAINING

environments as shown in Table I. Notably, compared to EMD2-
based losses, UCE does not capture the cross-bin relationship of
the traction distribution, which leads to worse regularized latent
space that causes unstable OOD detection performance (even
for UCE trained with GT traction distributions in the training
environments).

D. Ablation Study for UEMD2 and Joint Training

While the benefits of using uncertainty-aware loss and joint
training have been established in [16] for UCE, we present a
similar ablation study for UEMD2 for completeness in Table II.
We set the sample multiplier to 10 for simplicity, but similar
conclusions can be drawn with more samples. The takeaway is
that both joint training and uncertainty awareness are required
to achieve improved accuracy in EMD2 and OOD detection.
Despite these improvements, the results in Fig. 10 show that
both UEMD2 and UCE are required to achieve more consistent
and steadily improving performance in prediction accuracy and
OOD detection performance.

VI. EVALUATION OF RISK-AWARE PLANNERS

Using simulated 2-D semantic environments whose terrain
traction has high aleatoric uncertainty, we show that the pro-
posed CVaR-Dyn outperforms existing approaches [11], [21]
that assume the nominal traction or the expected traction,
while achieving competitive performance compared to CVaR-
Cost [22]. Moreover, we discuss the advantages and limitations
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Fig. 11. Simulation environment where a robot has to move from start to
goal as fast as possible within the bounded arena. Linear and angular traction
parameters share the same distribution for simplicity. Vegetation terrain patches
are randomly sampled at the center of the vegetation zone.

of CVaR-Dyn and CVaR-Cost compared to the approach that
assumes nominal traction while penalizing trajectories moving
through terrain with high aleatoric uncertainty. For simplicity,
we consider a grid world where dirt and vegetation cells have
known traction distributions, as shown in Fig. 11. Vegetation
cells are randomly spawned with increasing probabilities at the
center of the arena, and a robot may get stuck due to vegetation’s
bi-modal traction distribution. The mission is successful if the
robot reaches the goal without encountering zero-traction re-
gions, colliding with obstacles, or getting stuck in local minima
(e.g., when the robot does not move or just repeats circular
trajectories without progressing to the goal).

A. Planner Implementation

We adopt MPPI [18, Algorithm 2] because it is derivative-free
and parallelizable on GPU. The planners run in a receding hori-
zon fashion with 100 timesteps at 0.1 s intervals. The maximum
linear and angular speeds are 3 m/s and π rad/s, and the noise
standard deviations for the control signals are 2 m/s and 2 rad/s.
The number of control rollouts is 1024, and the number of sam-
pled traction maps is 1024 (only for CVaR-Cost). We use PMFs
with 20 uniform bins to approximate the traction distribution.
A computer with Intel Core i9 CPU and Nvidia GeForce RTX
3070 GPU is used for the simulations, where the majority of the
computation happens on the GPU. The CVaR-Cost planner is
the most expensive to compute, but it is able to replan at 15 Hz
while sampling new control actions and maps with dimensions
of 200× 200. Planners that do not sample traction maps can be
executed at over 50 Hz.

B. Navigation Performance

We compare the proposed CVaR-Dyn against CVaR-
Cost [22], WayFAST [21] that uses the expected traction, and
the technique in [11] that assumes the nominal traction while
adjusting the time cost with the CVaR of linear traction. Note that
WayFAST is a vision-based navigation approach that predicts
the expected terrain traction from images, but our analysis only
focuses on the use of the expected traction values and its impact
on the navigation performance. We vary the conservativeness of
all the methods (other than WayFAST) by changing the quantile

α ∈ (0, 1] for computing the CVaR. Overall, we sample 40
different semantic maps and five random realizations of traction
parameters for every semantic map. The traction parameters
are drawn before starting each trial and remain fixed. The
benchmark results can be found in Fig. 12. The takeaway is
that the proposed CVaR-Dyn achieves better or similar success
rate and time-to-goal when compared to CVaR-Cost if the risk
tolerance α is sufficiently low. In addition, both CVaR-Dyn and
CVaR-Cost outperform the other methods that use the nominal
or the expected traction values.

To compare CVaR-based methods against another baseline
that plans with the nominal traction while imposing an auxiliary
penalties for vegetation terrain with high aleatoric uncertainty,
we focus on the most challenging setting with 70% vegetation,
where it is easy to get stuck in local minima. To adjust risk
tolerance, we consider α ∈ (0, 1] for CVaR-based methods and
vegetation penalty w ≥ 0 for the planner that assumes nominal
traction. The benchmark result in Fig. 13 shows the tradeoffs
between success rate and time-to-goal achieved by different
methods (WayFAST included as a special case of CVaR-Dyn
when α = 1). Overall, all methods except WayFAST can be
tuned to improve success rate and time-to-goal. Assigning high
vegetation penalties leads to the best success rate, because the
robot always avoids the vegetation terrain. On the other hand,
CVaR-Dyn and CVaR-Cost can achieve better time-to-goal at a
lower success rate, which may be desirable for more risk-tolerant
and time-critical missions. As α decreases further, CVaR-Dyn’s
performance first plateaus and then worsens, because the state
rollouts become too short when using the worst-case expected
traction, making CVaR-Dyn susceptible to local minima. While
CVaR-Cost also experiences worsening performance as α de-
creases, its conservativeness is caused by the greater difficulty
of estimating CVaR of objective. Note that CVaR-Cost takes
about 60 ms on average to produce a solution, which is more
computationally expensive than the other methods, which only
take about 5 ms. Overall, none of the methods completely
dominates the others. Therefore, when domain knowledge is
available, auxiliary penalties for undesirable terrain can be used
together with CVaR-based methods to improve performance (see
Section VIII). While the simulation shows comparable perfor-
mance achieved by CVaR-Dyn, CVaR-Cost, and the baseline, we
show that CVaR-Dyn achieves the best performance in practice
(see Section IX).

VII. OPTIMIZING FOR EMD IMPROVES NAVIGATION

To support the key argument that EMD2 is a better met-
ric than KL divergence for measuring the quality of learned
traction distributions for navigation, we evaluate the navigation
performances when using models trained with different losses
presented in Section V. The models are deployed in the same
test environments visualized in Fig. 9, where each map is 30 m
in width and height and the start and goal positions are at the
opposite diagonal corners. To not clutter the results, we only
focus on the proposed CVaR-Dyn planner with α = 0.4 and the
same MPPI setup in Section VI-A, but similar trends can be
observed with different choices of α. Consistent with the loss
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Fig. 12. Success rates and time-to-goal achieved by the proposed CVaR-Dyn, CVaR-Cost [22], WayFAST [21] that use the expected traction and the method
that assumes nominal traction [11] (i.e., no slip). Note that a mission is successful if the robot reaches the goal. We show the distributions of time-to-goal and their
average values. Overall, when the risk tolerance is sufficiently low (e.g., α = 0.4), CVaR-Dyn achieves a similar or better success rate and time-to-goal compared
to the CVaR-Cost planner and outperforms both WayFAST and the method that assumes nominal traction.

Fig. 13. Tradeoffs between success rate and time-to-goal in the most challeng-
ing scenario of 70% vegetation, where success is achieved if the goal is reached.
CVaR-Dyn and CVaR-Cost both achieve better tradeoffs than WayFAST by
being in the upper left of the figure. When the success rate is below 0.9,
CVaR-Dyn and CVaR-Cost achieve better tradeoffs than the method that assumes
nominal traction while imposing auxiliary penalty w > 0 for states entering
vegetation terrain. However, the success rates of CVaR-Dyn and CVaR-Cost
plateau and eventually degrade as α decreases, because the planners become
more risk-averse and susceptible to local minima.

benchmark in Section V, each loss is trained with five random
seeds and five levels of data abundance. For each of the 20 test
maps, we consider five randomly sampled traction maps and run
the mission three times. The final results averaged over training
seeds can be found in Fig. 14, where all trials are successful, so
the success rate is omitted.

Importantly, when the amount of training data is low, UEMD2

outperforms UCE in time-to-goal, even though UEMD2 leads
to worse KL error than UCE loss as shown in Fig. 10. This

Fig. 14. Navigation performance using learned traction models trained with
different loss designs in the test environments shown in Fig. 9. The results
show the average values and the standard deviations over all test environments,
sampled traction maps, and random seeds. Note that the navigation performance
of the proposed hybrid loss approaches the best possible navigation performance
using the GT traction models in the test environments and the best possible
navigation performance of the state-of-the-art UCE loss trained with the GT
traction distributions in the training environments.

validates our intuition that EMD2 captures the cross-bin infor-
mation of discretized traction values better, which facilitates
the learning of traction distribution in low-data regime and
leads to better navigation performance. As more training data
becomes available, the proposed weighted sum of UEMD2 and
UCE outperforms the other loss designs. Due to the distribution
shift between the training and test environments as discussed in
Section V-C, the traction prediction accuracy may degrade when
given too much training data, resulting in degrading navigation
performance observed in Fig. 14. However, the proposed hybrid
loss is less susceptible to the distribution shift, thus sustaining the
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Fig. 15. (Left) In the test environment, the simulated robot has to reach two
goals selected to highlight the danger of using unreliable network predictions.
(Right) The latent density-based confidence score (9) indicates the amount of
epistemic uncertainty for the predicted traction distribution, where unknown
terrain and known terrain with negative scores are shown in black. Note that the
brown semantic region (mulch) at the top has confidence below zero due to the
presence of unknown cells, in contrast to the brown semantic region to the left
with much fewer unknown cells.

navigation performance better than the other methods. Further-
more, the navigation performance of the proposed hybrid loss
approaches the best possible performance of the state-of-the-art
UCE loss when trained on GT traction distributions in the
training environments, indicating a good generalization of our
approach using only the limited data collected along circular
paths in the training environments. For reference, the figure also
provides the lower bound for the time-to-goal based on the GT
traction models in the test environments.

VIII. BENEFITS OF AVOIDING OOD TERRAIN

We demonstrate the benefits of the proposed density-based
confidence score (9) for detecting terrain with high epistemic
uncertainty. To simulate training and test environments, we
leverage the data collected in two distinct forests using Clearpath
Husky, where the first one (shown in Fig. 5) is used for training,
and the second one (whose semantic top–down view is shown in
Fig. 15) is used as the test environment. The environment models
are built using semantic octomaps [50] that fuse lidar points and
segmented RGB images based on the 24 semantic categories in
the RUGD dataset [52]. The traction values are drawn from the
test environment’s empirical traction distributions learned by a
separate NN as the proxy GT. We use the proposed CVaR-Dyn
with a low risk tolerance α = 0.2 to handle the noisy terrain
traction. Two specific start-goal pairs are selected to highlight
the most challenging parts of the test environment with novel
features. Each start-goal pair is repeated ten times for each
selected confidence threshold gthres. We investigate two ways
to prevent the planner from entering terrain that is classified as
OOD by either assigning zero traction, or adding large penalties.
The mission is deemed successful if the goal is reached.

As shown in Fig. 16, the success rate improves by up to 30%
as the confidence threshold gthres increases, because the robot
avoids regions with unreliable traction predictions. Interestingly,

Fig. 16. Navigation success rate improves by avoiding OOD terrain. Note
that the shaded areas indicate standard deviations. The OOD terrain is handled
by either assigning zero traction (blue) or imposing penalties (orange). The
performance of the planner that uses the GT traction is included to show the
best possible performance. Overall, higher gthres improves the success rate at
the cost of worse time-to-goal. However, auxiliary penalties for OOD terrain
make it easier for the planner to find solutions that lead to the goal. Notably,
the average success rate when gthres = 0.75 approaches 1, indicating that the
learned traction model generalizes well to terrain with high confidence values
(low epistemic uncertainty) in the test environment.

using CVaR-Dyn with soft penalties for OOD terrain leads
to better time-to-goal while retaining a similar success rate,
because the auxiliary costs for OOD terrain make it easier for the
planner to find trajectories that avoid the OOD terrain. Therefore,
it is advantageous to use CVaR-Dyn with auxiliary costs when
domain knowledge is available to achieve both a high success
rate and fast navigation in practice.

IX. HARDWARE EXPERIMENTS

To evaluate the effectiveness and feasibility of EVORA (the
overall framework for uncertainty-aware traversability learning
and risk-aware planning) in practice, we design two experiment
scenarios—an indoor race track scenario with fake vegetation
using an RC car (Section IX-A) and a more challenging outdoor
scenario using a legged robot (Section IX-B). For both scenarios,
the robots use onboard sensors to map the environments online
at test time, introducing more uncertainty due to motion blurs,
lighting changes, and incomplete maps. While both scenarios
show that the proposed CVaR-Dyn planner leads to the best
navigation performance, the outdoor scenario also shows the
benefits of avoiding OOD terrain. In practice, the control signals
generated by MPPI are very noisy, so we plan in the derivative
space of the nominal control [54] to generate smooth trajectories.

A. Indoor Racing With an RC Car

The goal of the indoor experiments is to show the performance
benefits of the proposed planner for mitigating the risk due to
aleatoric uncertainty in a controlled environment.

1) Experiment Setup: An overview of the indoor setup is pro-
vided in Fig. 17, which shows the 9.6 m by 8 m for consistency
with 0.33 m by 0.25 m RC car arena populated with turf and fake
trees used to mimic outdoor vegetation. The 0.33 m by 0.25 m
RC car is equipped with a RealSense D455 depth camera, an
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Fig. 17. Training and test environments used for the indoor racing experiments. (a) Training environment consists of a single turf with two fallen trees for
simulating bushes. Learned linear and angular traction distributions are visualized for selected regions with (i) hard floor, (ii) fallen tree, and (iii) turf. Note that the
bimodality of traction distribution over the vegetation may cause the robot to slow down significantly. (b) Test environment contains two turfs, three fallen trees,
three standing trees, and virtual obstacles. The robot is tasked to drive two laps following a carrot goal along the reference path while deciding between a detour
without vegetation and a shorter path with vegetation. (a) Learned traction in training environment. (b) Test environment.

Intel Core i7 CPU, and an Nvidia RTX 2060 GPU. The robot
runs onboard traction prediction, motion planning, and online
elevation mapping with 0.1 m resolution, but Vicon is used for
pose and velocity estimation. The robot identifies vegetation
by extracting green image pixels instead of using a standalone
NN semantic classifier to conserve GPU resources. The bicycle
model (3) is used for this experiment, and the traction values are
obtained by analyzing the commanded linear velocities, steering
angles, and the GT velocities from Vicon.

The traction model is trained based on 10 min of driving data
with the proposed loss function (19), where UEMD2 and UCE
are both weighted by 1 and the entropy term is weighted by 1e−5
based on empirical tuning. The learned traction distributions are
visualized in Fig. 17(a) to highlight multimodality. At deploy-
ment time, the robot runs two laps around the race track along
the ellipsoidal reference path, while deciding between a shorter
path covered with vegetation or a less risky detour, as shown in
Fig. 17(b). We design a moving goal region along the reference
path, called the “carrot goal,” that maintains a constant 75◦ offset
from the robot’s projected position on the ellipsoidal reference
path. In addition to CVaR-Cost and the proposed CVaR-Dyn, we
consider an intelligent baseline that assumes nominal traction
but assigns auxiliary penalties for low-lying vegetation between
5 cm and 15 cm that could cause unfavorable driving conditions.
All methods avoid the trees via auxiliary penalties. All planners
consider 1024 rollouts while planning at 20 Hz with 5 s of
look-ahead. Due to computational constraints, CVaR-Cost only
considers 400 traction map samples. We set the maximum linear
speed and steering angle to be 1.5 m/s and 30◦.

2) Aleatoric Uncertainty Results: The qualitative and quan-
titative results comparing planners’ abilities to mitigate the risk
due to aleatoric uncertainty are summarized in Figs. 18 and 19.
We consider three risk tolerances α ∈ {0.6, 0.8, 1} for CVaR-
Dyn, CVaR-Cost, and vegetation penalties w ∈ {10, 20, 100}
for the baseline that assumes nominal traction while penalizing
states entering vegetation terrain. We present results for Way-
FAST [21] separately, but it is a special case of CVaR-Dyn when

α = 1. We repeat the race five times and each race consists
of two laps. Overall, CVaR-Dyn with α = 0.8 achieves the
best time-to-goal and success rate. Qualitative visualizations in
Fig. 18 show that the baseline and WayFAST both suffer from
noisy real-world traction, causing wide turns. In comparison,
CVaR-Cost and the proposed CVaR-Dyn handle the noisy terrain
traction better by producing smoother trajectories. Different
from CVaR-Dyn, the CVaR-Cost planner more frequently takes
the detour and sometimes gets stuck in local minima near
obstacles.

B. Outdoor Navigation With a Legged Robot

Compared to the indoor setting, the outdoor experiments in-
troduce more diverse terrain types and uncertainty in perception
due to lighting changes and rough motions. In addition to bench-
marking the planners’ abilities to handle aleatoric uncertainty,
the outdoor tests also demonstrate the benefits of mitigating
epistemic uncertainty by avoiding OOD terrain, as well as the
applicability of our approach on a legged robot.

1) Experiment Setup: An overview of the outdoor setup is
shown in Fig. 20. A Boston Dynamics Spot robot is fitted
with a RealSense D455, an Ouster OS0 lidar, and an Nvidia
Jetson AGX Orin with good power efficiency but less powerful
computation than the computers used in previous experiments.
The unicycle model (2) is used for this experiment, and traction
values are obtained by comparing the commanded velocities and
Spot’s built-in odometry. The environment model is built using
a semantic octomap [50] with 0.2 m resolution that fuses lidar
points and segmented RGB images based on the 24 semantic
categories in the RUGD dataset [52]. The traction model is
trained based on 5 min of walking data with the proposed
loss function (19) with the same weights used for the indoor
experiment. The learned traction distributions are selectively
visualized in Fig. 20(a) to highlight multimodality. As shown in
Fig. 20(b), we choose 2 start-goal pairs for testing the planners
and assessing the benefits of avoiding OOD terrain, respectively.
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Fig. 18. Representative trials of the indoor experiments for highlighting the failure modes of the planners. The top-down semantic maps are shown in the top
row and the time-lapse photos are shown in the bottom row. We only show the first lap out of the two laps for clarity. (a) As α decreases, the proposed CVaR-Dyn
becomes more risk-averse and takes wider turns in order to enter the shortcut. (b) WayFAST (CVaR-Dyn with α = 1) does not account for the risk of under-steering,
so it always turns too late for the shortcut. (c) CVaR-Cost consistently takes the detour to avoid the vegetation terrain. As α decreases, the planner becomes more
risk-averse and sometimes stops near obstacles. (d) When the soft penalty is low, the baseline is more risk-tolerant and takes the shortcut, but the experienced
traction differs significantly from the nominal traction, causing more collisions. As the soft penalty increases, the planner becomes more conservative and takes
the detour, but planning with nominal traction leads to significant understeering that limits performance.

Fig. 19. Outcomes and mission time for the indoor experiments over 5 trials.
We show the distributions of mission time and the maximum, average, and
minimum values. The proposed CVaR-Dyn withα = 0.8 achieves the best time-
to-goal with 100% success rate. As α reduces, CVaR-Dyn and CVaR-Cost both
lead to worse time-to-goal. Notice that CVaR-Cost stops near obstacles in many
occasions whenα < 1. In comparison, the baseline and WayFAST lead to worse
time-to-goal and a higher chance of collision.

All planners avoid the terrain with elevation greater than 1.4 m
via auxiliary penalties, and the baseline assigns soft costs for the
grass and bush semantic types with elevations less than 1.4 m.
While the 1.4 m height threshold is much higher than the robot’s
step height, the selected test environments do not have short and
rigid obstacles in order to analyze the planners’ ability to handle
tall vegetation. Due to limited GPU resources shared by seman-
tic classification, traction prediction, and motion planning, the
planners can only reliably plan at 5 Hz with 8 s of look-ahead and

800 control rollouts, and CVaR-Cost is only allowed 200 traction
map samples. The maximum linear and angular velocities are
1 m/s and 90◦/s.

2) Aleatoric Uncertainty Results: The qualitative and quan-
titative results comparing planners’ abilities to mitigate the risk
due to aleatoric uncertainty are shown in Figs. 21 and 22. We
consider three round trips to and from the goal (six trials in total)
for each method. Overall, CVaR-Dyn with α = 0.9 achieves the
best time-to-goal and success rate, consistent with the indoor
experiments in Section IX-A. The CVaR-Cost planner is more
conservative by staying far from the bushes. In comparison,
the baseline and WayFAST both suffer from noisy real-world
traction, causing wide turns. Notably, when the soft penalties for
grass and bush semantic types are too high, the baseline planner
gets stuck in local minima, thus requiring human interventions
and long mission time.

3) Epistemic Uncertainty Results: Different from previous
experiments, the goal of the OOD terrain avoidance experiment
is to show the benefit of mitigating the risk due to epistemic
uncertainty. Therefore, we only use the proposed planner CVaR-
Dyn withα = 0.9, but similar conclusions still hold if we change
the underlying local planner to CVaR-Cost or another baseline
method to mitigate the risk due to aleatoric uncertainty. We
execute three round trips in total.

The qualitative and quantitative results for the OOD avoidance
experiments are shown in Figs. 23 and 24. We consider the terrain
as OOD if the normalized densities for the traction predictor’s
latent features are below 0 (i.e., the 0th percentile of the densities
observed for all the training data), but a more conservative
threshold may be used based on empirical tuning. Compared to
the training environment shown in Fig. 20, the test environment
shown in Fig. 23 contains much taller vegetation that is not
in the training dataset. As a result, the traction predictions for
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Fig. 20. Outdoor training and test environments with a legged robot. (a) Outdoor environment consists of vegetation terrain with different heights and densities.
Predicted linear and angular traction distributions are visualized for selected regions with (i) tall grass, (ii) short grass, and (iii) dense bushes. Unlike wheeled
robots, a legged robot typically has good linear traction through vegetation, but angular traction may exhibit multimodality due to the greater difficulty of turning.
(b) Two start-goal pairs are used to benchmark the planners and analyze the benefits of avoiding OOD terrain. (a) Learned traction in training environment. (b)
Test environment.

Fig. 21. Representative trials of the outdoor experiments. The top-down semantic maps are shown in the top row and the time-lapse photos are shown in the bottom
row. (a) Proposed CVaR-Dyn with α < 1 handles the noisy terrain traction well and produces less wavy trajectories compared to other methods. (b) WayFAST
(CVaR-Dyn whenα = 1) relies on the expected traction that provides a poor indication of the actual trajectory outcome, causing the constant correction in headings.
(c) CVaR-Cost is more conservative compared to CVaR-Dyn by staying further away from bushes and achieving longer time-to-goal. (d) Baseline assumes nominal
traction that leads to understeering. As soft penalties increase, the robot becomes more averse to tall grass and bushes. As most of the test area is filled with grass
or bush, the baseline with large soft penalties struggles to find feasible plans to achieve the goal in subsequent trials.

the tall vegetation produce high epistemic uncertainty and the
associated terrain is marked as OOD. Without avoiding OOD
terrain, the robot is prone to getting stuck in local minima
and requires human interventions to drive the robot to areas
with feasible trajectories to the goal. In contrast, the planner
that avoids OOD terrain achieves better time-to-goal without
requiring human interventions.

C. Takeaways From the Hardware Experiments

In summary, the hardware experiments have demonstrated
that the proposed CVaR-Dyn is an attractive choice in practice,
without incurring the extra computation required by CVaR-Cost
that samples additional traction maps or requiring human exper-
tise in designing semantics-based costs for potentially a large
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Fig. 22. Distributions of time-to-goal for the local planner benchmark with
maximum, average, and minimum values. Each planner completes three round
trips or six trials in total. The proposed CVaR-Dyn with α = 0.9 outperforms
CVaR-Cost that requires more computation, WayFAST (CVaR-Dyn withα = 1)
that plans with the expected traction, and the baseline that plans with the nominal
traction and assigns soft penalties for grass and bushes.

Fig. 23. Representative planner behaviors that show the benefits of avoiding
OOD terrain, where the semantic top-down map and the time-lapse photo are
shown on the top and bottom. Without OOD avoidance, the robot is susceptible
to local minima due to imperfect online map and noisy terrain traction, requiring
human interventions to teleoperate the robot to a region with feasible plans to
goal. In contrast, assigning auxiliary penalties for OOD terrain makes it easier
for the planner to find trajectories to goal.

variety of terrain types. In addition, the ability to estimate epis-
temic uncertainty allows us to identify and avoid OOD terrain
with unreliable traction predictions, thus improving navigation
success rate and reducing human interventions.

X. LIMITATIONS AND FUTURE WORK

From the modeling standpoint, this work focuses on 2-D robot
models, but models with six degrees of freedom are needed for
more challenging terrain [36], [55], [56]. In addition, we use a
semantic octomap [50] to model the environment, but compu-
tationally cheaper alternatives [10], [57] can be used instead.

Fig. 24. Distributions of time-to-goal for the OOD avoidance tests over six
trials (three round trips), with maximum, average, and minimum values. By
avoiding OOD terrain, the planner is less susceptible to local minima and
achieves better time-to-goal by avoiding terrain with features unseen during
training.

Moreover, our work relies on the accuracy of the semantic seg-
mentation module, so the proposed pipeline may fail if the test
environments look too different from the training environments
(e.g., due to lighting and seasonal changes). Therefore, the risk
due to the uncertainty in the perception modules needs to be
addressed separately [41].

From a data collection standpoint, this work requires empir-
ical traction distributions for training, which may be difficult
to attain for high-dimensional features such as RGB images.
While the proposed loss can be used to train against instanta-
neous traction measurements directly, the performance benefits
of using EMD2-based loss need to be reassessed. Moreover,
uncertainty-guided data collection methods [37], [58] can be
used to collect informative training samples.

From the planning standpoint, this work proposes to simulate
state trajectories using the CVaR of traction, but more investi-
gations are needed to generalize the idea to systems with more
parameters and different performance metrics. Moreover, our
planner avoids OOD terrain in new environments, but online
adaptation can be performed [12] if human supervision is avail-
able. Lastly, the proposed approach can be paired with a global
planner that exploits far-field knowledge [59].

XI. CONCLUSION

This work presented EVORA, a unified framework for
uncertainty-aware traversability learning based on evidential
deep learning and risk-aware planning based on CVaR. EVORA
modeled uncertain terrain traction via empirical distributions
(aleatoric uncertainty) and identified OOD terrain based on the
densities of traction predictor’s latent features (epistemic uncer-
tainty). By leveraging the proposed uncertainty-aware squared
EMD loss, we improved the network’s prediction accuracy,
OOD detection performance, and the downstream navigation
performance. To handle aleatoric uncertainty, the proposed risk-
aware planner simulated state trajectories based on the left-tail
CVaR of the traction distributions. To handle epistemic uncer-
tainty, we proposed to assign auxiliary costs to terrain whose
latent features had low densities, leading to higher navigation
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success rates. The overall pipeline had been analyzed via exten-
sive simulations and hardware experiments, demonstrating im-
proved navigation performance across different ground robotic
platforms.

APPENDIX A
UCE LOSS AND DIRICHLET ENTROPY [16]

Given q = Dir(β) and the target PMF y

LUCE(q,y) := Ep∼q

[
−

B∑
b=1

yb log pb

]
(34)

= −
B∑

b=1

yb(Ψ(βb)−Ψ(β0)) (35)

where Ψ is the digamma function and β0 :=
∑B

b=1 βb is the
overall evidence. In addition, the entropy of q is

H(q) = logB(β) + (β0 −B)Ψ(β0)

−
B∑

b=1

(βb − 1)Ψ(βb) (36)

where B denotes the beta function.

APPENDIX B
PROOF OF THEOREM 1

We proceed directly from the definition of UEMD2 (17)
and simplify the notation by making the expectation over p ∼
Dir(β) implicit. Recall that y is the target PMF, cs(·) is the
cumulative sum operator, and we denote csb(·) as the bth entry
of the cumulative sum vector

UEMD2(β,y) := E
[
EMD2(p,y)

]
(37)

= E

[
B∑

b=1

(csb(p)− csb(y))
2

]
(38)

=
B∑

b=1

E

(
b∑

i=1

pi −
b∑

i=1
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)2

(39)

=
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b=1
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(
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i=1

pi

)2

−2E
b∑

i=1

pi
∑b

i=1
yi︸ ︷︷ ︸

csb(y)

+E

(∑b

i=1
yi

)2

︸ ︷︷ ︸
csb(y)2

⎤⎥⎥⎥⎥⎥⎦ .
(40)

After separating out the constant additive term csb(y)2, expand-
ing the remaining terms, and moving the expectation inside the
summation, we obtain

=

B∑
b=1

⎛⎜⎝ b∑
i=1

E[p2i ]︸ ︷︷ ︸
(a)

+2
∑

1≤i<j≤b
E[pipj ]︸ ︷︷ ︸

(b)

−2csb(y)
b∑

i=1

E[pi]︸︷︷︸
(c)

⎞⎟⎠
+ cs(y)�cs(y). (41)

The terms (a–c) in (41) can be easily derived in closed-form
based on the standard properties of a Dirichlet distribution
(namely, the variance, covariance, and mean)

(a) E[p2i ] = Var(pi) + E[pi]
2 (42)

=
βi(β0 − βi)
β2
0(β0 + 1)

+
β2
i

β2
0

(43)

=
βi + β2

i

β0(β0 + 1)
(44)

where β0 :=
∑B

b=1 βb. When i = j

(b) E[pipj ] = Cov(pi, pj) + E[pi]E[pj ] (45)

=
−βiβj

β2
0(β0 + 1)

+
βiβj
β2
0

(46)

=
βiβj

β0(β0 + 1)
. (47)

Lastly, (c) E[pi] =
βi

β0
. Substituting (a–c) in (41), we obtain

=
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∑
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�
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(51)

= cs(p)�
cs(β) + 1B

β0 + 1
+ η(q,y) (52)

where p = β/β0 = Ep∼Dir(β)[p] and η is defined in (16). �
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