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Abstract—This article proposes a generalized type of cable-
driven parallel robot with deformable frames (D-CDPRs). The
class of D-CDPRs allows: first, inevitable deformation of traditional
rigid frame CDPRs to be considered; and second, new possibilities
to develop CDPRs with lightweight frames that would deform.
Comparatively, such lightweight CDPRs are easier to set up and
largely reduce the cost of material and construction. However, the
analysis and control of D-CDPRs are challenging as existing works
usually assume the CDPR frame is rigid, such that the cable exit
points on the frame are known and fixed. If the modeling errors
induced by the deformable frame are not addressed appropriately,
the control performance of D-CDPRs will be inaccurate and even
unstable. To tackle this problem, novel modeling, analysis, and
control approaches are proposed accordingly for D-CDPRs. Using
the Euler–Bernoulli beam equations to develop a D-CDPR model,
the workspace analysis is proposed and explored. Furthermore, the
model-based feedforward length (MBFL) controller is proposed,
where it is shown that cable length can be used to execute the tension
control for D-CDPRs. Finally, the proposed work is validated in
both simulation and hardware experiments.

Index Terms—Deformable frame cable robots, flexible robots,
parallel robots, tendon/wire mechanism.

I. INTRODUCTION

CABLE-DRIVEN parallel robots (CDPRs) are a unique
type of parallel mechanism, which utilize cables instead of

rigid linkages [1]. Being the force transmitting medium between
the end effector (EE) and the base frame, the set of cables
maneuvers the EE via precise control of either cable tension
(acceleration), velocity, or length. CDPRs exhibit numerous
advantages over rigid-link parallel robots. Since cables are
lightweight and easy to be deployed, CDPRs have favorable
dynamic performance [2], [3], load-to-weight ratio [4], [5], and
large scalable workspace [6], [7]. A wide range of applications
have demonstrated the outstanding capability and versatility of
CDPRs, including motion simulation [8], building construc-
tion [9], and the human walking characterization system [10].
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Simplicity in the kinematic and dynamic modeling is a distinct
advantage of CDPRs. However, the simplicity is achieved by
satisfying several assumptions. First, cables are usually con-
sidered to be lightweight, such that the model of CDPRs can
be simplified by neglecting the mass of cables. Second, it is
assumed the positions of cables exit points are known [11], [12],
[13], [14], [15]. The most common approach to ensure this is to
assume that the robot frame structure is rigid. This implies that
the frame would not deform under load, and hence, the cable
exit points are accurately known.

Under the mentioned assumptions, the cable lengths and
tension directions can be solved geometrically for a given EE’s
pose. Hence, the Jacobian matrix of CDPRs, which describes
the velocity and force relationship between the joint space and
task space, is a function of both the EE’s pose and the exit
points [16]. The Jacobian matrix is widely used in design [17],
[18], [19], analysis [20], [21], [22], and control [23], [24], [25] of
CDPRs. Under the rigid frame assumption where the exit points
are known and fixed, the Jacobian matrix solely varies with the
EE’s pose. The CDPR’s model can then be simplified by just
considering the motion of EE and cable tensions.

The “rigid” frame assumption is typically achieved by
constructing a sufficiently stiff frame that ensures negligi-
ble deformation during operation. High-stiffness frames can
come in two different forms, closed frames and open frames.
Closed frames have vertical and horizontal beams that are
joined together to form a single structure. In contrast, open
frames only have independent upright beams. Limitations and
drawbacks result from attempting to fulfill the rigid frame
assumption.

Although closed frames can be constructed with lighter mate-
rial and less frame deformation by well-designed structures [26],
[27], [28] compared with open frames, the volume of frame
material and complexity would increase significantly as the
robot becomes larger. Consequently, the material and construc-
tion costs of closed frames would escalate as the scale of CD-
PRs increased. For larger workspace applications, open frames
are the more practical alternatives. For example, open frame
CDPRs such as the FAST telescope [29] and the cooperative
robot with multiple mobile cranes [30] are capable of enormous
workspace. Nevertheless, as every individual cantilever beam
has to withstand the cable tensions independently, the beams
have to be significantly stiff to minimize deformation. This
results in particularly large and heavy beams, leading to high
material and construction costs.
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Fig. 1. Concept of deforming frame CDPR (D-CDPR).

However, despite the efforts to construct stiff frames, in
reality, frames always deform under loading to a certain extent.
Directly applying existing models and control approaches that
neglect the frame dynamics and the motion of the cable exit
points will result in significant errors in motion control and
even control instability. A recent work proposed an elasto-static
model for frame deformation [31], where the beam model is
simplified as a rigid pole attached to a universal joint. However,
both the dynamics of the deforming frame and the model for
entirely flexible beams have never been studied before to the
best of the authors’ knowledge.

In this article, we propose a more generalized class of CD-
PRs that consider possible frame deformations through flexible
beam frames, also known as D-CDPRs. When CDPRs with
deformable frames (D-CDPRs) are used (see Fig. 1), the applied
cable tensions would inevitably deform the frame, changing
the position of the cable exit points and, thus, the cable force
directions. This inherent coupled dynamic relationship between
the EE and the deformable frame results in the nonlinear and
uncertain behavior of the robot. To address the challenges raised
by a deforming frame, a new D-CDPR dynamics model using
Euler–Bernoulli (EB) beams [32] is proposed.

Based on the dynamics model, it is shown that the forward and
inverse dynamics (ID) can be conveniently solved. In addition,
existing static workspace (SW) and available wrench set (AWS)
analyzes are extended to D-CDPRs, showing that the workspace
and wrench generation capabilities change due to the deforming
frame. Finally, a novel model-based feedforward length (MBFL)
control approach using the D-CDPR model is proposed. More
importantly, it is shown that for D-CDPRs, length commands
can be used to produce desired cable tensions when the beam
is attached to one cable. Simulation results on both planar and
spatial D-CDPRs show that the proposed model can provide
insight into the properties of D-CDPRs and that the proposed
controller can achieve accurate trajectory tracking performance
despite having a deforming frame. This result is then further
validated on a planar D-CDPR hardware setup, where it is
shown that the consideration of the deforming frame model
significantly improves the tracking performance.

The proposed work is significant to the development of CD-
PRs for three purposes. First, all open frames are subject to some
degree of frame deformation, traditional “rigid-frame” CDPRs
that ignore frame deformation would result in some level of

Fig. 2. Kinematics of a flexible frame CDPR.

modeling error. Therefore, the proposed D-CDPR model would
improve the performance of existing CDPRs, even when the
deformation is small. Second, as larger frame deformation is
allowable with the proposed approach, the requirement on the
frame stiffness for CDPRs can be greatly reduced. As a result,
the tolerance of deformation in the design of CDPRs’ frame is
significantly increased. Third, and most importantly, this work
makes deformable materials and structures feasible options for
CDPRs’ frame. A new class of lightweight and more portable
CDPRs, such as one constructed thin metal poles or plates,
could emerge as practical CDPRs that could be deployed in the
real-world in the future.

II. D-CDPR KINEMATICS AND DYNAMICS

The pose of the CDPR EE can be defined as a set of gener-
alized coordinates q ∈ Rn, where n is the degree-of-freedom
(DoF) of the EE. For a spatial CDPR, the EE has 3 DoF in
translation and 3 DoF in rotation, as represented as qp, qr ∈ R3,
respectively. Suppose the frame of the CDPR is deforming
with time, the state of the frame is represented by the state
variable η(t).

The ith cable vector ci is defined as a vector pointing from
the ith frame cable outlet 0ai to the corresponding EE anchor
point Ebi, as shown in Fig. 2. It will be assumed that the EE
is rigid and does not deform, and hence, the anchor points are
fixed with respect to the EE frame {E}. The ith cable vector ci
with respect to the inertial frame {0} could be defined as

0ci = qp − 0ai(η) +
0
ER(qr)

Ebi (1)

where 0
ER(qr) is the rotation matrix between frame {E}

and {0}. It is worth noting that the exit points ai of a D-CDPR
depend on the frame’s state.

The equation of motion (EoM) of the EE of the D-CDPR can
be expressed in the form

M(q)q̈ +C(q, q̇) + g(q) +wext = W(q,η)τ (2)

where M ∈ Rn×n, C ∈ Rn, g ∈ Rn, and wext ∈ Rn are the
mass-inertia matrix, centrifugal and Coriolis vector, gravity vec-
tor, and external wrench vector, respectively. The cable tension
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vector τ = [τ1, τ2, . . . , τm]T ∈ Rm
+ is a nonnegative real num-

ber set of all cable tension as the cable cannot be compressed.
MatrixW ∈ Rn×m is the wrench matrix [33] that maps the joint
wrench space into cable tension space. Without lost of generality,
for a spatial CDPR

W = −
[

0ĉ1 . . . 0ĉm

( 0
ER

Eb1)×0ĉ1 . . . ( 0
ER

Ebm)×0ĉm

]
(3)

where 0ĉi is the unit vector of ith cable vector (1), which depends
on both the CDPR EE’s pose q and cable exit points a, as shown
in Fig. 2.

The basic framework of this work involves considering the
dynamics of the frame, bringing about a change in perspective.
It is supposed that the dynamics of the frame can be described by
a second-order ordinary differential equation (ODE) as follows:

Mb(η)η̈ + cb(η, η̇) + kb(η) = f b(τ ). (4)

The matrix Mb depends on η and multiplies with η̈. The
vector cb groups the terms related to η̇, while kb groups the
remaining terms. On the left-hand side of (4), f b represents
the external force applied to the frame. For D-CDPR, this force
depends on the cable tension τ .

To express the dynamics of the CDPR and frame system
simultaneously, one can combine (2) and (4) as follows:{

M(q)q̈ +C(q̇, q) + g(q) = W(q,η)τ
Mb(η)η̈ + cb(η, η̇) + kb(η) = f b(τ ).

(5)

Please note that the exit points of a D-CDPR are dependent on
the state of the frame η, which means that the wrench matrix W
also depends on η.

III. FORWARD DYNAMICS (FD) OF D-CDPR WITH EB MODEL

In this section, the deformation behavior of the vertical pole
can be analyzed by modeling the cantilever beam dynamics.
The EB beam theory, along with the Euler–Lagrange equations,
is a suitable candidate for this work as only small deflection
is considered. A numerical approximation using the Galerkin
Method will be presented to approximate the deformation of
both 1-D and 3-D beam dynamics models. This allows the partial
differential equation to be transformed into discretized ODEs
and fitted into (5). By combining the EB beam theory with the
Galerkin method, the model retains a certain degree of accuracy
without excessive use of variables. Lastly, the kinematic and
dynamic relation of D-CDPR with EB beam model would be
expressed.

A. Deflection Dynamics of a 1-D Beam by Galerkin Method

Consider a one-dimensional beam with length L fixed along
with an arbitrary z-axis with respect to the {B} frame. Without
loss of generality, two ends of the beam are located at z = 0
and z = L. For a transverse load dx(z, t), which is a function
of both position and time, the beam would deflect to the same
direction as the load. The deflection x̃ of the beam at z and
time t can be described by the function x̃(z, t). According to
the Euler–Lagrange equation, the dynamics of the beam can be

expressed as

∂2

∂z2

(
EI

∂2x̃

∂z2

)
+ ρA

∂2x̃

∂t2
= dx(z, t) (6)

where E, I, ρ, and A are the Young’s modulus, second moment
of area, density, and cross sectional area of the beam, respec-
tively, all measured along the x-direction.

To solve the abovementioned fourth-order (6), four boundary
equations are needed. Suppose the fixed end (position and slope
is fixed) of the cantilever beam is at z = 0, then the first two
boundary conditions are

x̃
∣∣
z=0

= 0
∂x̃

∂z

∣∣∣∣
z=0

= 0. (7a)

At the free end z = L, there is no bending moment and shear
force, hence, the another two the boundary conditions are

∂2x̃

∂z2

∣∣∣∣
z=L

= 0
∂3x̃

∂z3

∣∣∣∣
z=L

= 0. (7b)

Note that (6) assumes that the cross-section of the beam does
not deform in a significant manner, where it remains planar and
normal to the bent axis during deformation. The superposition
principle is applied when there are multiple loads to the beam.

The partial differential equation (6) can be converted into
discretized ODE by the Galerkin method, of which the deflection
function can be approximated as x̃(z, t) ≈ x̃a(z, t) and

x̃a(z, t) =

N∑
i=1

φi(z)ηx,i(t) = φT (z)ηx(t) (8)

where N is the order of discretization, φi(z) are the predeter-
mined comparison functions that satisfy all boundary conditions.
The symbol φ(z) : R → RN is a vector-valued function that
stores all the comparison functions φ(z) = [φ1(z) . . . φN (z)]T .
One comparison function could be the eigenfunctions of the
cantilever beam

φi(z) = coshβiz − cosβiz

+
cosβiL+ coshβiL

sinβiL+ sinhβiL
(sinβiz − sinhβiz) (9)

where βi is the ith solutions of the equation

coshβiL cosβiL+ 1 = 0. (10)

As shown in (8), each comparison function is multiplied
with a time-dependent coefficient ηxi

(t). The vector ηx(t) =
[ηx1

(t) . . . ηxN
(t)]T stores all coefficients. Substituting x̃a into

(6) results in

∂2

∂z2

(
EI

∂2x̃a

∂z2

)
+ ρA

∂2x̃a

∂t2
≈ dx(z, t). (11)

A residual function ε(z) represents the difference between the
actual transverse load (6) and the approximated transverse load
(11) and can be defined as

ε(z, t) =
∂2

∂z2

(
EI

∂2x̃a

∂z2

)
+ ρA

∂2x̃a

∂t2
− dx(z, t). (12)
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Substituting (8) into (12) results in

ε =
(

EI(φTηx)
(2)

)(2)

+ ρA
∂2

∂t2
(φTηx)− d

= ηx,i

N∑
i=1

[
(EI)(2)φ(2)

i + 2(EI)(1)φ(3)
i + (EI)φ(4)

i

]

+ η̈x,iρA

N∑
i=1

φi − d (13)

where g(n)(z) is the nth derivative of function g(z) with respect
to z. According to the Galerkin method, the residual (error) is
to be minimized by forcing the inner product of two functions
to be zero. Mathematically, this can be expressed as

〈ε, φj〉 =
∫ L

0

εφjdz = 0, j = 1, . . ., N. (14)

Substituting (13) into (14) results in the EoM by factorizing
the coefficient ηx and its derivative

Mb,xη̈x +Kb,xηx = f b,x (15)

where the matrices Mb,x,Kb,x ∈ RN×N are analogous to the
mass and stiffness matrices, respectively. The vector f b,x is
analogous to the external force vector. The entries of these
quantities can be expressed as

Mb,x,ij =

∫ L

0

ρAφiφjdz (15a)

Kb,x,ij =

∫ L

0

[
(EI)(2)φ(2)

i + 2(EI)(1)φ(3)
i + EIφ(4)

i

]
φjdz

(15b)

fb,x,i =

∫ L

0

dx(z, t)φidz, i, j = 1, . . ., N.

(15c)

The solution to ηx(t) to (15) would allow the beam deflection
in 1-D, x̃a(z, t) to be determined as expressed in (8).

B. Deflection Dynamics Under Multiple External 3-D Forces

The beam deflection due to an arbitrary point force in 3-D
space will now be considered. Suppose a reference frame {B}
has three orthogonal axes, namely x, y, and z, as shown in Fig. 3.
Any arbitrary direction time-varying 3-D point force 0p(t) with
respect to the inertial frame {0} acting on the beam can thus be
represented in {0} by

Bp(t) = B
0R

0p(t). (16)

Due to the EB beam assumption, the axial force component
(in z-axis) will be neglected. The force component in x and y
axes would cause the beam to deflect in x and y directions,
respectively.

Representing the x-component point force Bpx(t) as a dis-
tributed load dx(z, t) by

dx(z, t) =
Bpx(t)δ(z − z′) (17)

Fig. 3. Schematic of cantilever beam.

where function δ(z − z′) is the Dirac delta function, defined as

δ(z − z′) =
{∞, z = z′

0, otherwise.
(18)

Substituting (17) into the applied force in (15c) results in

fx,i =

∫ L

0

Bpx(t)δ(z − z′)φi(z)dz

= Bpx(t)φi(z
′), i = 1, . . ., N. (19)

In vector form, it is expressed as

fx =
[
fx,1 . . . fx,N

]T
= Bpx(t)φ(z

′). (20)

Similarly, for y-direction

fy = Bpy(t)φ(z
′). (21)

The second-time derivatives of the coefficients η̈x and in η̈y

can now be obtained separately by substituting the joint forces
into (15) and the y-direction variant

Mb,yη̈y +Kb,yηy = f b,y. (22)

The coefficients ηx and ηy , hence, can be solved from the
EoM of the beam (15) numerically, such as by the Runge–
Kutta method. The deflection of any point on the beam can be
computed by multiplying the coefficient to the corresponding
comparison function by (8). Therefore, the total deflection can
next be found by superposition method as shown in Fig. 3. In
matrix form, the total deflection is⎡

⎢⎣x̃(z
′, t)

ỹ(z′, t)
z̃(z′, t)

⎤
⎥⎦ =

⎡
⎢⎣φ

T (z′)ηx(t)

φT (z′)ηy(t)

z′

⎤
⎥⎦ . (23)

The superposition principle is also applicable to multiple point
forces on a single beam. Suppose the deflections of the beam due
to the ith force is [x̃i ỹi z̃i]

T and there are m number of force
acting on the beam, the total deflection would be⎡

⎢⎣x̃(z
′, t)

ỹ(z′, t)
z̃(z′, t)

⎤
⎥⎦ =

m∑
i=1

⎡
⎢⎣x̃i(z

′, t)
ỹi(z

′, t)
z̃i(z

′, t)

⎤
⎥⎦ (24)

which is the sum of deflection due to different forces as illus-
trated in Fig. 4. Hence, the above describes the procedures to
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Fig. 4. Cantilever beam model with two point forces.

determine the single beam deflection when subject to arbitrary
point forces (FD).

A beam system refers to multiple independent cantilever
beams used as an open-frame structure for the D-CDPR. The
equation of the beam system states is constructed by block
diagonal matrices and block vectors which are from (15a) to
(15c). The overall beam system could be represented by the
following compact matrix form:

Mbη̈ +Cbη̇ +Kbη = f b (25)

where Mb, Kb ∈ Rnb×nb are block diagonal matrices, with

Mb =

⎡
⎢⎢⎢⎢⎢⎣

Mb1,x 0 · · · 0 0
0 Mb1,y · · · 0 0
...

...
. . .

...
...

0 0 · · · Mbmb
,x 0

0 0 · · · 0 Mbmb
,y

⎤
⎥⎥⎥⎥⎥⎦ (25a)

Kb =

⎡
⎢⎢⎢⎢⎢⎣

Kb1,x 0 · · · 0 0
0 Kb1,y · · · 0 0
...

...
. . .

...
...

0 0 · · · Kbmb
,x 0

0 0 · · · 0 Kbmb
,y

⎤
⎥⎥⎥⎥⎥⎦ . (25b)

The vectors η, f b ∈ Rnb are the coefficients and applied force
of the beams. They are block vectors that stores all joints and
forces from independent beams

ηT =
[
ηT
b1,x

ηT
b1,y

· · · ηT
bmb

,x ηT
bmb

,y

]
(25c)

fT
b =

[
fT
b1,x

fT
b1,y

· · · fT
bmb

,x fT
bmb

,y

]
. (25d)

The integer nb is the total order of discretization (dimension of
joint). It depends on the number of beams mb, the dimension d
of the Euclidean space that the beams lie on, and order of
discretization of each beam nj . Mathematically, it is

nb = (d− 1)

mb∑
j

nj . (25e)

The term Cb = αMb + βKb is the Rayleigh damping [34] with
some constant α and β relating to the physical properties of
the beam, which will be obtained from system identification

experiments. Hence, (25) defines the EoM of the open-frame
system and f b is the external forces. Therefore, by employing
the Galerkin method on EB beams, the frame could be expressed
in a second-order ODE with the coefficient of the beam η as the
state variable.

After introducing the kinematics and dynamics of the individ-
ual systems in Sections II and III-B, they can now be combined.

C. Kinematic Expression of the EB Beam System and CDPR

While the stationary exit points (those mounted at the fixture)
still remain constant, the expression of moving exit points (those
mounted on the deforming frame) is required. Suppose the ith
exit point ai is attached to the kth beam at z = zi. As such, the
exit point on the deflected beam Bkai with respect to the beam
frame {Bk}, can be found by (23), and hence

Bkai =

⎡
⎢⎣φ

T
k (zi)ηk,x(t)

φT
k (zi)ηk,y(t)

zk

⎤
⎥⎦ . (26)

As such, the base exit point 0ai in {0} can be expressed as

0ai =
0

Bk
RBkai +

0rk (27)

where the 0rk is the vector point to the origin of the beam k,
as shown in Fig. 2. Note from (26) that the exit point and the
beam’s joint are linearly related.

Hence, the set of exit points on the D-CDPR can be
represented in a block vector ac = [0a1

T . . . 0am
T ]T ∈ Rdm,

where d is the dimension of Euclidean space that the robot lies
on. The exit points can be expressed by

ac = Φaη + ya (28)

where Φa ∈ Rdm×nb is the mapping matrix, defined as

Φa =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φa,11 · · · Φa,1k · · · Φa,1mb

...
...

...
...

...
Φa,i1 · · · Φa,ik · · · Φa,imb

...
...

...
...

...
Φa,m1 · · · Φa,mk · · · Φa,mmb

⎤
⎥⎥⎥⎥⎥⎥⎦
. (29)

Define an integer mapping function g(i) = k that converts the
exit point index i into beam index k. The submatrices Φa,ik are
defined as

Φa,ik =

{
0

g(i)RΦbi =
0
kRΦbi, if ai on the beam k

0, otherwise.
(30)

The rotation matrix 0
g(i)R rotates the point from {Bk} to {0}.

For the ith exit point on the kth beam

Φbi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
φT

g(i)(zi)

0

]
=

[
φT

k (zi)

0

]
, d = 2

⎡
⎢⎣
φT

g(i)(zi) 0

0 φT
g(i)(zi)

0 0

⎤
⎥⎦ =

⎡
⎢⎣φ

T
k (zi) 0

0 φT
k (zi)

0 0

⎤
⎥⎦ , d = 3.

(31)
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Fig. 5. Example D-CDPR to show the relationship between beams’ coeffi-
cients to exit points.

The vector ya ∈ Rdm is the offset vector, constructed as

ya = Rb

⎡
⎢⎢⎣
[0 0 z1]

T

...

[0 0 zm]
T

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
g(1)r

...
0

g(m)r

⎤
⎥⎥⎦ . (32)

With (28), a relation to transform the beam coefficients into
exit points on the frame is established. Below is an example
mapping matrix of the D-CDPR shown in Fig. 5

Φa =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
B1

RΦb1 0

0 0
B2

RΦb2

0
B1

RΦb3 0

0 0
B2

RΦb4

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ R8×nb . (33)

Because the first and third exit points are on the first
beam B1, g(1) = g(3) = 1 and the first column of Φa in (33) is
nonzero on the first and third rows. The second column, which
represents the second beam, on the other hand, has a nonzero
second and forth rows that represents the second and the forth
exit points.

D. Dynamic Expression of the EB Beam System and CDPR

For the force relation, the cable tension τ deforms the beams
in addition to providing a wrench to the EE. The cable forces
(cable tension with directions) can be modeled as a series of
external point forces acting on the beams. The force vector
w.r.t. {0} of the ith cable, 0f i can be obtained by

0f i =
0ĉi τi. (34)

Again, suppose the ith cable tension τi is applied to the kth beam
at z = zk. By (20) and (21), the beam joint forces in x and y
directions are

fk =

[
fk,x

fk,y

]
=

[
φk(zk) 0 0

0 φk(zk) 0

]
B k

0R 0ĉi τi. (35)

Defining a cable force vector τ c ∈ Rdm that contains all cable
forces

τ c =

⎡
⎢⎢⎣

0ĉ1τ1
...

0ĉmτm

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0ĉ1 · · · 0

...
. . .

...

0 · · · 0ĉm

⎤
⎥⎥⎦ τ := Lτ . (36)

Finally, by taking into account all cable tension and beam joint
force, the relationship between τ c andf b can be expressed using
the Φa as derived in (28), where

f b = ΦT
a τ c = ΦT

aLτ . (37)

E. EoM of a D-CDOR With EB Beams

The cable tension τ would cause certain wrenches onto the
EE and the beam. By combining (25) and (2), the EoM of the
entire D-CDPR can now be expressed as{

M(q)q̈ +C(q̇, q) + g(q) = W(q,η)τ
Mbη̈ +Cbη̇ +Kbη = f b = Wb(q,η)τ

(38)

where Wb = ΦT
aL. With the expressions, the EoM in (5) could

be crafted into a more specific form (38).

IV. D-CDPR FORWARD AND ID

The FD and the ID of the D-CDPR will be discussed in this
section. The FD is used in the simulation to better understand
the D-CDPR’s behavior. The ID, on the other hand, governs the
cable tension command for the EE’s desired motion.

A. Forward Dynamics

From the dynamics model of the D-CDPR (38), the overall
dynamics could be combined as a time-variant nonlinear system.
At each time step, the wrench matrix W of the CDPR and the
mapping matrix Wb of the frame can be determined by knowing
or measuring the state of the CDPR q and the state of the beamη.
The output state ys of the overall system is q. Hence, the state-
space equation of the overall system is

ẋs = Asxs +Bsus

ys = Csxs (39)

or in the expanded form

ẋs =

⎡
⎢⎢⎢⎣
0 I 0 0

0 0 0 0

0 0 0 I

0 0 −M−1
b K −M−1

b Cb

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
q

q̇

η

η̇

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 0

M−1W −M−1

0 0

M−1
b Wb 0

⎤
⎥⎥⎥⎦
[

τ

C+ g +wext

]
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Fig. 6. Cable tension and actuators for the D-CDPR system.

ys =
[
I 0 0 0

]
⎡
⎢⎢⎢⎣
q

q̇

η

η̇

⎤
⎥⎥⎥⎦ . (40)

The output q is the CDPR EE pose and will be used to evaluate
the tracking performance of the system.

In this work, a discretized state-space EoM with fixed
time step will be used, to lower the computational effort
and to be more convenient for execution on D-CDPR. Let-
ting x[k], u[k], y[k] be the state, input, and output at the kth
time step, respectively, with Δt as the time step. At t = k + 1

x[k + 1] = Adx[k] +Bdu[k]

y[k] = Cdx[k] (41)

where

Ad = eAsΔt

Bd =

∫ (k+1)Δt

kΔt

eAs((k+1)Δt−τ)dτBs

Cd = Cs.

With the FD (41), the behavior of both the frame and the EE
could then be determined.

B. Inverse Dynamics

ID refers to determination of the required cable tension τ
for the desired task motion q̃, velocity ˜̇q, and acceleration ˜̈q.
Note that for a redundantly actuated CDPR, there exists multiple
combinations of cable tension that generate the same desired
acceleration. Moreover, the nonlinearity of the wrench matrix
and positive cable tension constraint create challenges in solving
the ID.

Fig. 6 shows an overview of cable linkage from the motors
to the EE. Fig. 7 shows the free body diagram of a general
type D-CDPR. The cables that are connecting the EE provide
tension τ , which provide wrenches on to the EE to produce the
desired acceleration. When calculating the required command
tension τm for the motors, the EoM of D-CDPR systems must
be taken into account.

In this work, an optimization-based approach is proposed
to solve the ID, by considering the positive force constraint

Fig. 7. Model of the motor tension to the EE.

and coupled EoM including the dynamics of the deforming
frame into the solver. This also allows additional objectives
to be fulfilled by using the null space of the cable tension
redundancy. The EoM with the desired acceleration command
can be formulated either as a soft or a hard constraint. For
hardware implementation, treating the EoM as a soft constraint
is preferred for situations where the solver may fail to find a
feasible cable tension solution due to demanding tracking gains
or large tracking error [35]. As such, the following ID problem
is proposed:

argmin
τm

b‖Wτ − w̃‖22 + ho(τm)

s.t. Wbτm = Mbη̈ +Cb +Kb − τ

0 ≤ τm ≤ τm

τ ≤ τ ≤ τ (42)

where

w̃ = M˜̈q +C+ g +wext. (43)

The term ho(τm) is the extra objective function dependent
on τm. The scalar b controls the weighting of tracking perfor-
mance over other objectives, where usually b � 1 to prioritize
the tracking performance. Here, ˜̈q = [˜̈qp, ˜̈qr] is the command
acceleration that consists of both translational and rotational
acceleration, which will be defined in Section VI.

In the following, two objective functions are proposed for
the D-CDPR ID. The first is to minimize the cable tensions for
the D-CDPR, which reduces the beam deflection and possible
inaccuracies caused by large deflections. Setting ho(τm) as the
second norm of the cable tension vector, the extra objective
function becomes

ho(τm) = ‖τm‖22. (44)

Due to the fact that the dynamics properties of the beam are
less accurate and hard to measure, it is desirable to lower the
dynamic effect of the beam in order to reduce the modeling
error. To prevent rapid changing cable tension from exciting
high dynamic effect. The objective function

ho(τm) = ‖τm − τ ′
m‖22 (45)

where τ ′
m is the previous cable tension command, aims at

minimizing the change of cable tension. Note that the choice
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of extra objective functions (44) and (45) allow the optimization
problem to be solved by quadratic programming.

V. WORKSPACE ANALYSIS OF D-CDPR

The analysis of the workspace is essential to gain an under-
standing of the region that the EE could physically reach. In this
article, the AWS is analyzed first to showcase the differences
between the conventional CDPR’s and D-CDPR’s AWS. This
analysis helps to explain the unusual SW of the D-CDPR,
which is discussed in the second part of this section. Next, the
static conditions of the D-CDPR are formulated, and the SW is
compared with the conventional CDPR’s SW.

A. AWS of the D-CDPR

The AWS is the set of EE wrenches that can be produced by
the available cable tension combinations. Mathematically, the
AWS of a rigid frame CDPR is

AWSr(qc) = {w ∈ Rn : w = W(q)τ ∀τ ∈ [τ , τ ]}. (46)

For rigid frame CDPRs, whose base frame exit points’ loca-
tions a are constant, the wrench matrix W is also constant for a
given pose q. By expanding the equation in (46), any wrench w
generated by feasible cable tension could be represented by

w =

m∑
i=1

τiŵi (47)

where ŵi is the ith column of the wrench matrix, or the unit
wrench vector of the ith cable.

According to [33], the AWS of a rigid frame CDPR (AWSr) at
a fixed pose is a convex zonotope, whose bounding hyperplanes
is spanned by combinations of cable tension. They can also
be parameterized by the cable tension τ . The kth hyperplane
consists of the following three subsets of cable tensions:

1) those that shift the plane, i.e., ∀τ iŵi, i ∈ Zk;
2) those that span the plane, i.e., ∀τjŵj , j ∈ Yk;
3) those that are the remaining, i.e., ∀τ iŵi, i /∈ Zk ∪ Yk.
Let Zk be an integer set that stores the indices of the cable

tensions those that shift the kth plane. Let Yk be another integer
set that stores the indices of the cable tension that span the kth
plane whose parametric equation in the wrench space is

wk(τ ) =
∑
j∈Yk

τjŵj +
∑
i∈Zk

τ iŵi +
∑
i/∈Yk

i/∈Zk

τ iŵi (48)

where τj ∈ [τ j , τ j ]. In other words, the plane spanned by
the Ykth cable forces is shifted by the wrenches generated by
cable forces in Zk. Noted that different planes are contributed
by different combinations of Yk and Zk.

An AWS example of a 3-cable 2-DoF rigid frame CDPR
is shown in Fig. 8. The first plane is spanned by the third
cable vector, hence Y1 = {3}. It is shifted by wrench τ2

0ŵ2,
hence, Z1 = {2}. The parametric equations are shown in the
figure.

For D-CDPRs, the unit wrench vector ŵ is a function of the
exit points, which depend on cable tension and cable vector.
Consider that in quasi-static state, the exit points could be

Fig. 8. AWS example of a rigid frame CDPR. The parametric equations of
two of the boundaries are written out.

expressed by combining the second and third constraints from
(52)

a = ΦaK
−1
b Wb(q,η) τ + ya. (49)

It should be noted that the change in cable tension magnitude
affects the supporting beams’ deflection and hence the direction
of the cable force acting on the EE. Hence, the kth bounding
planes of the AWS of D-CDPRs could be found by the following
procedures.

1) Discretize τj into a finite number of steps for one member
from j ∈ Yk.

2) For each step, construct the tension vector as τ = τ except
for the jth element and ith elements, where i ∈ Zk and j ∈
Yk.

3) For the jth element, τj is set to the discretized cable tension
as defined in step (1). For the ith elements, τi = τ i.

4) Obtain a by substituting τ into (49).
5) One step of the bounding plane wk could be obtain nu-

merically by substituting a, τj , τ i, τ i into (48).
6) Repeat the abovementioned process (1)–(5) until all cor-

responding wk of all steps and all j are calculated. The
bounding plane is obtained.

The orange plane (k = 2) in Fig. 8 would be selected as an
example. From the figure, τ2ŵ2 is the parameter and it spans the
plane, thus, Y2 = {2}. Cable 1 shift the plane, thus, Z2 = {1}.

1) Suppose τ2 is discretized into 10 steps τs ∈
[τ2, τ2], ∀τs = 1, . . ., 10.

2) Set τ = [∗, ∗, τ3]T as i = 1 and j = 2.
3) Set the first element and the second element of τ as τ1

and τs, respectively, such that τ = [τ1, τs, τ3]
T is a con-

stant.
4) Substitute τ into (49) to obtain the the exit points a under

this combination of cable tension.
5) The cable tension can be mapped into wrench space by

(48).
6) Repeat the steps 1)–5) 10 times until all combinations of

the disrectized τ2 is converted into wrench space.
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Fig. 9. (a) SWs of a planar CDPR with rigid or deformable frame. (b) AWSs
of the robot at a particular pose.

With these procedures, the AWS for D-CDPR could be ob-
tained. Consider a redundantly actuated planar D-CDPR as
shown in Fig. 9(a) (of which the SW is also plotted), the AWS of
this robot at the same pose is shown in Fig. 9(b). The exit points
move toward the cable force direction thus the hyperplanes tend
to curve along with the bending direction.

B. Static Workspace

SW is defined as the set of poses where the EE could sustain its
own weight (static condition or SC). The equilibrium equation
could be interpreted as a special case of the D-CDPR’s EoM
(38), where q̈ = q̇ = η̈ = η̇ = 0 and hence

g(q) = W(q,η)τ

Kbη = Wb(q,η) τ . (50)

A given pose fulfills the SC, if and only if there exists an
available cable tension that could satisfy the equilibrium equa-
tion (50). Mathematically, it is defined as

SW =

{
q

∣∣∣∣ g(q) = W(q,η)τ
Kbη = Wb(q,η) τ

, ∃τ ∈ [τ , τ ]

}
. (51)

Due to the nonlinearity of the wrench matrix W with respect
to η, nonlinear programming (NLP) is used to evaluate the SC.

Fig. 10. SW of a planar rigid CDPR and D-CDPR.

If the pose satisfies the SC, then there exists a solution τ to

min
τ ,η

‖τ‖2

s.t. g(q) = W(q,a(η))τ

a = Φaη + ya

η = K−1
b Wb(q,η) τ

τ ≤ τ ≤ τ . (52)

In this work, the interior point algorithm [36], implemented
by fmincon in MATLAB was used, to solve this constrained
nonlinear multivariable optimization problem (52). The SW of
the first D-CDPR example as shown in Fig. 10 is a 2-beam and
2-cable point mass D-CDPR with 2 DoFs EE. The SW of a rigid
frame CDPR with the same exit point location is also evaluated
and plotted in Fig. 10.

It demonstrates that the D-CDPR SW has greater coverage
on the top side but less on the two sides. This phenomenon is
analyzed and expressed with the aid of the wrench set concept
for D-CDPR in the previous Section V-A. Referring to the Fig. 9,
the AWSd is deformed to become taller and thinner compared
to the AWSr. As a result, g ∈ AWSd but g /∈ AWSr. Hence, the
EE is at a point where the rigid frame CDPR is out of SW whilst
the D-CDPR is within the workspace.

A second D-CDPR example is a 4-beam, 8-cable, and 3-DoF
point mass D-CDPR, as shown in Fig. 11(a). In this example, the
beams are significantly stiffer (in the magnitude of 102) along yz
plane than xz plane. They could be considered as thin plates. As
can be seen from Fig. 11(b) and (c), similar trend of reshaped
workspace is found for these 3-D CDPRs.

It is worth noting that the NLP method is conservative (a
feasible solution might not be found) since the solver might
converge to a locally infeasible point. To increase the successful
search rate and decrease the evaluation time, it is proposed to set
the initial guess of each NLP (52) as the nearest feasible point
(NFP). This method relies on the observation that the difference
between the optimal solutions of two adjacent workspace points
is small. The upper left plot of Fig. 12 shows that using random
initial guess, the NLP solver misses several SW points as it fails
to converge to any feasible solution. Moreover, Table I shows
the computational time required for generating the workspace
of different D-CDPRs. The computational time is around 10%
faster when using NFP initial guess than when using random
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Fig. 11. (a) SW of a spatial rigid CDPR (left) and D-CDPR (right).
(b) Cross-sectional view of SW of a spatial rigid CDPR and D-CDPR for y = 0.
(c) Cross-sectional view of SW of a spatial rigid CDPR and D-CDPR for x = 0.

Fig. 12. Comparison using different initial conditions to the NLP.

TABLE I
COMPARISON OF COMPUTATIONAL TIME OF DIFFERENT D-CDPR

guess, which makes a significant difference when calculating
workspaces with a high DoF or a large number of points.

VI. D-CDPR CONTROL STRATEGY

This section presents a novel control scheme suitable for D-
CDPRs. The controller consists of two components: 1) tension
control; and 2) MBFL control.

Fig. 13. Block diagram of closed-loop tension control D-CDPR.

Fig. 14. 4-beam, 8-cable D-CDPR with a trapezoidal prism EE. The circle-
shaped reference trajectory. On top of the reference trajectory, the motion history
is shown as a red line on the graph.

A. Tension Control

In this work, the command acceleration is produced by the
common computed-torque control law, where the command
translational acceleration is

ˆ̈qp = q̈r
p + kd,p(q̇

r
p − q̇p) + kp,p(q

r
p − qp) (53)

and the command rotational acceleration is

ˆ̈qr = q̈r
r + kd,r(q̇

r
r − q̇r) + kp,rRV ( Er

ER) (54)

where qr = [qr
p
T , qr

r
T ]T is the reference pose. The func-

tion RV : SO(3) → R3 converts the rotation matrix to a rotation
vector [37]. The rotation matrix Er

ER rotates the points in actual
EE frame {E} to the reference EE frame {Er}. The positive
scalars kp,p, kd,p, kp,r, kd,r are the position and velocity gains.
The command acceleration would be converted into command
cable tension by the ID (42) using the proposed D-CDPR model
from Sections III and IV. Fig. 13 shows the block diagram of
the tension control.

A 6-DoF (n = 6), 8-cable (m = 8), 4 beams D-CDPR that lies
in the 3-D space (d = 3) was tracking a circular trajectory in the
simulation. The undeformed frame has a size of 2× 2× 1m3

and the setup is shown in Fig. 14. The EE is a trapezoidal prism
with a dimension approximately equal to 0.2× 0.2× 0.1 m3.
The inertial frame origin is located at the bottom center of the
workspace. The beams have different bending properties at x
and y axes such that they could be treated as spring-steel plates.
The details of the exit points and the beams are listed in Tables II
and III, respectively.
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TABLE II
EXIT POINTS OF THE 6-DOF D-CDPR

TABLE III
BEAM PROPERTIES OF THE 6-DOF D-CDPR

Fig. 15. Position and orientation error of the EE tracking the circular trajectory
from Fig. 14.

All cables have a force limit of 0 ≤ τ ≤ 80N. The initial state
of the EE is

q0 =
[
0 0 1

2 0 0 0
]T

q̇0 = q̈0 = 0. (55)

The first reference trajectory is

qr =
1

2

[
cos (γt) sin (γt) 1.4 0 0 0

]T
q̇r =

1

2

[
−γ sin (γt) γ cos (γt) 0 0 0 0

]T
q̈r = −1

2

[
γ2 cos (γt) γ2 sin (γt) 0 0 0 0

]T
(56)

where γ = 0.4π. The simulation ran at a discrete-time frequency
of 100 Hz. The EE started at the center of the workspace, hence, it
had a very large position error initially. However, the position and
orientation errors converged to ‖ep‖ < 3 mm ‖er‖ = ‖qr −
qr
r‖ < 10−3 rad, respectively, for t > 2 s. The error plots are

displayed in Fig. 15.

Fig. 16. Component functions of the second reference trajectory are sinu-
soidal.

Fig. 17. Position and orientation error of the EE tracking the sinusoidal
trajectory from Fig. 16.

The second reference trajectory (shown in Fig. 16) included
rotation, given by

qr =
[
1
2 cos (γ1t)

1
2 sin (γ2t)

1
10 t

1
3 sin (γ1t) 0 0

]T
q̇r=

[
−γ1

2 sin (γ1t)
γ2

2 cos (γ2t)
1
10

γ1

3 cos (γ1t) 0 0
]T

q̈r=−
[
γ2
1

2 cos (γ1t)
γ2
2

2 sin (γ2t) 0
γ2
1

3 sin (γ1t) 0 0
]T

(57)

where γ1 = 0.4π, γ2 = π. The EE was resting at the origin of the
inertial frame {0}, i.e., q0 = q̇0 = q̈0 = 0. Hence, the EE also
had a large position error initially. However, the position and ori-
entation errors converged to ‖ep‖ < 2mm ‖er‖ < 2(10−3) rad,
respectively, for t > 2 s. The error plots are displayed in Fig. 17.

B. MBFL Control

In general, tension control of CDPRs is challenging as it
requires fast operating frequency and accurate tension feedback
of the cables. Furthermore, an accurate model and state feedback
is also required for the proposed tension scheme in Section VI-A.
However, for D-CDPRs, this must include the state of the beam,
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which is challenging to measure in practice. This makes the real-
ization of direct closed-loop tension control from Section VI-A
impractical.

To address these challenges, a practical and novel MBFL
control approach is proposed. The MBFL uses cable lengths
in order to produce the desired tension from the ID (42) using
the computed-torque control accelerations (53) and (54). Most
importantly, the MBFL control exploits a unique property of the
deforming frame of D-CDPRs.

Theorem 1: If the beam of a planar D-CDPR has only one
exit point, the length and the tension of each cable are uniquely
related.

Hence, the D-CDPR model allows the desired cable tensions
to be expressed uniquely with respect to the cable lengths. In
other words, the cable length command could be used to produce
desired tensions.

Proof: Consider a planar D-CDPR with a point mass EE.
The ith cable is the only cable that attached to the jth de-
forming beam with stiffness kj . Without loss of generality, the
beam frame {Bj} is overlapping with the inertial frame {0}.
Hence, the y-component of the exit point, aiy is a constant
and x-component is a function of ith cable tension aix(τi)
and aix(0) = 0. Under this setting

kjaix = τiŵix = τi
cix
‖ci‖ (58)

where cix is the x component of the ith cable vector. It is related
to its y-component ciy by

cix =
√

‖ci‖2 − c2iy. (59)

By rearranging the symbol

τ2i =
k2ja

2
ix

c2ix
‖ci‖ =

k2j (qx − cix)
2

c2ix
‖ci‖. (60)

Substituting (59) into (60) constructs the relationship between
cable length and tension

τi = kj‖ci‖
⎡
⎣ |qx|√

‖ci‖2 − c2iy

− 1

⎤
⎦ . (61)

‖ci‖ ≥ |ciy| as ciy is the vertical component ofci. The derivative
of (61) is given by

dτi
d‖ci‖ = −kj

[
|qx|c2iy

(‖ci‖2 − c2iy)
3/2

+ 1

]
< 0. (62)

Hence, (61) is always decreasing and cable and tension are
uniquely related within the defined range. �

Corollary 1.1: If the beam of a spatial D-CDPR has only
one exit point, the length and the tension of each cable are also
uniquely related. This implies that for a D-CDPR with every
cable attached to a single beam, the length command can be
used to control the cable tensions directly.

Fig. 18 graphically describes this phenomena, where for a
given pose, different cable tensions can be achieved by deter-
mining the corresponding lengths that will produce the desired
frame bending. As the tension increases, the distance (also the

Fig. 18. Beam deflection due to different example cable tensions.

Fig. 19. Unique one to one relationship between the cable length and the cable
tension of a D-CDPR at different pose. The solid line and dashed line are the
tension-length relationship of cable 1 and 2, respectively.

Fig. 20. Block diagrams of typical tension control versus MBFL.

cable length) between the exit point and the EE decreases. Fig. 19
illustrates the one-to-one relationship between the cable tension
and length for the D-CDPR at three different fixed EE poses. This
relation is plotted by decreasing the cable length to obtain the
change in tension. For the sake of clarity, change of cable length
is plotted such that Δ‖ci‖ always starts at 0 for all cases. Due to
the complex relationship between the D-CDPR frame’s bending,
cable lengths and cable tensions, analytical relationship between
them could not be determined generally. Hence, the cable length
command is instead determined using the D-CDPR FD model
within the MBFL.

Fig. 20 shows the block diagrams of tension and MBFL
control. The control scheme has an FD model and uses length
command as input to the D-CDPR. A closed-loop length control
could be setup via cable length feedback as it is less sensitive
and can be readily obtained from sensors such as encoders. In
the case of a D-CDPR with fixed exit points, this relationship
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Fig. 21. Comparison of the errors of MBFL and tension control methods when
random disturbance is applied to the EE.

does not hold. However, length control is still applicable to
the D-CDPR, just as hybrid control is for CDPRs. Fig. 21
compares the tracking errors of MBFL and tension control. This
was done over the circular trajectory defined in (56) as shown
in Fig. 14. The MBFL results in a bounded task-space error.
Because of geometric constraints, the tracking error plots of
cable length and tension show that the length error is correlated to
the EE position error. The open-loop tension control follows the
reference tension command exactly (zero tension error shown in
the last subplot), so it cannot reject the external disturbance acted
on the EE and the error accumulates. Although there is potential
for improving the tracking performance of the D-CDPR such
as combining both tension and length control and by learning
controls, this requires more extra sensors and computational
power.

VII. HARDWARE EXPERIMENTS

The proposed MBFL control strategy was tested on a 2-DoF
suspended D-CDPR (the robot), which is identical to Fig. 10.

A. Robot Setup

The robot in Fig. 22 has two cables suspending a 1.68 kg EE.
The cables were each connected to thin steel plate poles as the
D-CDPR frame. Thin plate beams were selected to significantly
reduce the bending stiffness that is coplanar to the robot’s
operating plane. Two identical beams have a height of 0.45 m
and are 0.8 m apart. The beam’s cross-section is a rectangle
with dimensions of 30× 2.5 mm. Two exit points are fixed to
the beams’ tops.

A calibration experiment was performed on the bending
beams, where the beams were found to have a constant of EI =

Fig. 22. Hardware setup of a 2-DoF deformable frame suspended cable robot.

Fig. 23. Rectangular trajectory example comparing rigid frame and D-CDPR.
(a) Overview of the tracking performance. (b) The position error of the EE.

7.5 N · m2. Within the deflection range of 0 to 120 mm at the
exit point, both beams have a linear relationship between static
deflection and load. As the beam deflection during the robot
operation is always less than 120 mm, it is valid to use the EB
beam model to model the bending beam.

An AprilTag [38] was attached to the EE to record the pose,
as shown in Fig. 22. It was recorded at a frequency of 10 Hz by
a camera. The location of the EE was calculated by comparing
the transformation matrix between the reference frames of EE’s
AprilTag and stationary AprilTag (at the lower right corner of
the setup).

B. Result

Two trajectories were tested on the hardware. The tracking
performance of cable length was satisfactory because of PID
control of the actuators within the MBFL control scheme, where
the maximum cable length error ‖la − lr‖ was less than 5 mm.

1) Rectangular Trajectory: The first trajectory is a rectangle
as shown as a dotted line in Fig. 23(a). Table IV lists the fixed
points of the trajectory at various time instancesT . The trajectory
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Fig. 24. Snapshots of the D-CDPR hardware that was running a rectangular trajectory. The red dot indicates the point mass EE.

TABLE IV
FIXED POINTS (IN METERS) OF THE RECTANGULAR TRAJECTORY

between each point is defined as

qr(t) =
t− Ti

Ti+1 − Ti
(qr(Ti+1)− qr(Ti)) + qr(Ti)

q̇r(t) =
qr(Ti+1)− qr(Ti)

Ti+1 − Ti

q̈r(t) = 0. (63)

The bending frame model was used to calculate the first length
command set, while the rigid frame model was used to calculate
the second set. The tracking results are shown in Fig. 23(a)
and (b). The EE’s error when the rigid frame assumption was
used was significantly larger. The maximum error is reduced
to 10−2m if the length command is obtained from the deformed
frame.

Fig. 24 shows a series of snapshots of the D-CDPR hardware
that was running a rectangular trajectory to demonstrate the
proper motion of the D-CDPR EE, even under obvious defor-
mation of the CDPR frame.

2) Hypotrochoid Trajectory: One more set of length com-
mand is tested on the robot. The majority of the trajectory is
shaped like a flower. At the start (t = 0), the EE would travel a
linear trajectory with total time of 3 s from the resting position to
the start point of the hypotrochoid function. The hypotrochoid
trajectory starts at th = 0 or t = 3, as defined by

qr(th) =

[
1
7

(
3
4 cos (

2
3 th) + cos th

)
− 3

70 sin (
2
3 th) +

2
35 sin th

]
+

[
0.4

0.2

]

Fig. 25. Hypotrochoid trajectory example. (a) Overview of the tracking per-
formance. (b) Position error of the EE.

q̇r(th) =

[
1
14

(
sin ( 23 th)− 2 sin th

)
1
35 (−2 cos

(
2
3 th

)
+ cos th)

]

q̈r(th) =

[
1
21

(− cos ( 23 th)− 3 cos th
)

2
105 (sin

(
2
3 th

)− 1
3 sin th)

]

0 ≤ th ≤ 6π (64)

where th = t− 3. The EE was returned to the start point of the
hypotrochoid function at th = 6π or t = 6π + 3. To return to its
resting position, the EE would move in a 3 s linear trajectory.
As a result, the total travel time is 3 + 6π + 3 = 24.8 s. The
tracking results are shown in Fig. 25(a) and (b). The EE’s error
is about 10−2 m using the MBFL control scheme.
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VIII. CONCLUSION

In this study, a generalized type of D-CDPR that allows for
frame deformation of CDPRs is proposed. The main objectives
of this research are to develop the model, conduct analysis,
and implement practical controllers for D-CDPR. To address
the long-standing drawback of CDPRs, cantilever beams were
used as the building blocks of the frame due to their simplicity,
cost-effectiveness, and ease of setup. The dynamic model of
the D-CDPRs was presented, enabling the description of frame
deformation and EE motion based on initial states and external
forces. The SW of the D-CDPR was also analyzed, comparing
it with that of traditional CDPRs. Furthermore, a unique model
reference length command control was proposed and success-
fully implemented in the D-CDPR. Both simulation and robot
hardware experiments demonstrated that the proposed control
scheme exhibits disturbance and uncertainty rejection capabili-
ties, along with satisfactory tracking performance. Future work
will focus on the following:

1) the beam design and arrangement to better take advantage
of flexible beam CDPRs;

2) different types of beam model, such as Timoshenko
beams, can be used to consider larger deflections;

3) improving the tracking performance of the D-CDPR by
developing new control approaches.
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