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Gamma Log Inversion of Seismic Data Based on
Transformer with Stratigraphic Position Encoding

Yongjian Zhou, Haochen Qi, Wang Zhang, and Xiaocai Shan*

Abstract—As an indispensable part of geophysical exploration,
seismic inversion can obtain the properties of subsurface media
based on seismic data and available well-log information. With
the nonlinear mapping ability, deep neural networks can map
seismic data to well-log of interest. Interpreting gamma is crucial
as it is essential for determining lithology and indicating sediment
characteristics. Stratigraphic frameworks can approximate low-
frequency trends in subsurface properties and are often used to
guide well-log interpolation effectively. However, the existing
deep neural network models cannot effectively explicitly fuse
critical stratigraphic information, which will restrict the physical
explainability and correctness of the seismic inversion. Thus, we
propose a stratigraphic-encoded Transformer algorithm, named
SeisWellTrans, to build a gamma log inversion model using
horizon position encoding and seismic trace as inputs.
Specifically, the incorporation of stratigraphic information from
several horizons is crucial for improving the resolution of the
output; and SeisWellTrans can efficiently model context in
seismic sequences by capturing the interactions between horizon
position encodings. We take the Volve field data as an example
and use several gamma curves as training labels, numerical
experiments demonstrate the geologically reasonable
performance and high validation accuracy of this network and
the crucial role that stratigraphic information plays. On the four
validation wells, stratigraphic-encoded SeisWellTrans obtained
an average correlation coefficient of 86%, exceeding 79% of
stratigraphic-encoded CNN.

Index Terms—Deep learning, Transformer, seismic inversion,
gamma log, stratigraphic constraint.

I. INTRODUCTION
EISMIC data can characterize stratigraphic features

and geological structures, while well-log curves can
describe higher-resolution rock property information,

such as impedance, lithology, and gamma. Seismic inversion
can infer high-resolution rock properties in the subsurface at
no-well locations, playing a significant role in building and
characterizing subsurface reservoir models. Traditional
seismic inversion assumes some forward physical and
inversion models [1], [2], which is usually only an
approximation and limits the accuracy of rock property
estimation. Stratigraphic frameworks, such as horizons, faults,
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and unconformities, are usually taken as key additional
constraints in building the initial or reference interpolation
model in traditional seismic inversion [3]. Since stratigraphic
frameworks can approximate the low-frequency trends of
subsurface properties, it is critical for obtaining high-
resolution rock properties.
In recent years, deep learning has attracted extensive

attention in seismic inversion due to its excellent nonlinear
mapping between inputs and outputs. In terms of seismic
inversion, research on deep learning mostly focuses on elastic
parameter or impedance inversion [3]–[14], other applications
are inversion of gamma [3], porosity[3], [15], [16], fluid and
lithology [17]–[20], etc. Seismic inversion of gamma, porosity,
fluid, and lithology is more ill-posed and faces greater
challenges than inversion of elastic parameters, which are
more related to seismic waveforms. The deep learning
networks used in the above studies are mostly Convolutional
Neural Network (CNN) architectures, such as CNNs [3], [7],
[14], [15], [18]–[20], Residual Attention Network [13],
Autoencoders [8], U-Nets [6], [10], [16], and Temporal
Convolutional Network [11]. There are also some Recurrent
Neural Network (RNN) architectures, such as Long Short-
Term Memory (LSTM) [17], and fusion architectures, such as
CNN-Gate Recurrent Unit [4] and CNN-LSTM [9]. Yan et al.
[3] input the initial interpolation results by relative geological
time (RGT) volume into CNN together with the seismic data
to invert several log curves, and achieves certain improvement.
However, the calculation steps are relatively cumbersome, and
the stratigraphic constraints are not directly embedded in the
deep learning model. Therefore, it is necessary to design a
deep neural network model to directly integrate stratigraphic
constraints into the model, to test its effect on improving the
inversion accuracy.
Originally proposed as a sequence-to-sequence model for

machine translation, Transformer [21] is now a prominent
deep-learning model widely adopted in various fields, such as
natural language processing, speech processing, and computer
vision. Transformer usually has a better performance and is
more flexible than CNNs or RNNs since it is based on the
multi-head self-attention mechanism and has few prior
assumptions on the data structure [22]. Since Transformer
does not introduce recurrence or convolution, it needs
additional positional representation (especially for the encoder)
to model the inner ordering of the input information. Few
people have applied Transformer or its variants to seismic
inversion. Recently, Wu et al. [5] input the original seismic
data into a Fastformer and use the low-frequency model as the
physical constraint label to predict brittle parameters. In the

S

This article has been accepted for publication in IEEE Geoscience and Remote Sensing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LGRS.2025.3535723

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2
GRSL-02285-2024.R2

encoder, this scheme used the order constraints of seismic
profiles but did not utilize the more detailed stratigraphic
position constraints, which is essential for the inversion
accuracy.
This letter presents a high-resolution gamma log inversion

scheme based on the SeisWellTrans network, a Transformer
with stratigraphic position encoding. Specifically, we take
several horizons as the stratigraphic position encoding and
take the corresponding seismic trace together as inputs to the
SeisWellTrans. The network output is the predicted gamma
log. There is a non-linear relationship between the outputs. On
the public Volve data [23], we test and compare CNN and
SeisWellTrans structures with and without stratigraphic
position encoding as the input for seismic inversion.
Compared with the CNN-based inversion method,
SeisWellTrans achieves surprisingly better performance and
generalization by efficiently modeling and capturing the
interactive context in seismic sequences.

II. METHODOLOGY

A. Stratigraphic Position Encoding

For field geophysical data, the well-log curves of the
inversion target are sometimes missing at different depths,
resulting in integrity inconsistencies of the log curves at
different well locations. At the same time, the corresponding
seismic traces are complete. As shown in Fig. 1, if discarding
the stratigraphic formation constraint, the seismic waveforms
at different depth areas are very similar, but the corresponding
well-log curves are quite different. Thus, during the training
process of deep learning models, if there is no stratigraphic
constraint on the input layer, the model will confuse some
samples with similar seismic waveforms but different log-
curve labels, which is not conducive to its convergence.
Following feature engineering principles, neural networks

may perform quite well with the input features chosen
appropriately by the physical mechanism or expert
experiences [24]. Stratigraphic information comprises the
large-scale variation of the subsurface, which might help the
inversion process converge to the global minima and improve
the seismic inversion accuracy.
Therefore, similar to word position encoding in text

modeling, it is critical to constrain seismic waveforms with
stratigraphic order encoding as input. This is the key idea of
the interpolation step in the traditional seismic inversion

scheme, and it also conforms to the visual experience
perception of geological interpretation experts in the actual
workflow.
In this study, instead of only using the raw seismic trace as

input, we extract several horizons as the stratigraphic
information to constrain seismic trace and accelerate the
convergence of the network training. The layers between
several seismic horizons are positionally encoded as 1, 2, 3, …,
N, which constitute the overall stratigraphic framework of the
target area.

B. Architecture of SeisWellTrans
Transformers, CNNs, and RNNs are all suitable for

sequence data analysis and modeling, but Transformers are
more universal and usually have better performances. To
impose the inductive biases, CNNs use shared local kernel
functions to track translation invariance and locality, and
RNNs use Markovian structure to capture temporal invariance
and locality. Different from CNNs and RNNs which
inherently incorporate the inductive bias of locality,
Transformer does not make any assumption on the data
structure. As the central piece of the Transformer, self-
attention can be viewed as a fully connected layer whose
weights are dynamically generated from pairwise relations of
inputs. On the one hand, self-attention has a constant
maximum path length, enabling it to model long-range
dependency. On the other hand, constant sequential operations
make self-attention more parameter efficient, parallelizable,
and flexible in handling variable-length inputs.
Fig. 2 shows the overall architecture of the proposed

SeisWellTrans [21]. SeisWellTrans consists of an encoder and
a decoder, each of which stacks � identical blocks. Encoder
block is mainly composed of a multi-head self-attention
(MHA) module and a position-wise feed-forward network
(FFN). A residual connection and Layer Normalization are

Fig. 1. The encoded stratigraphic information (red line) with normalized
seismic trace (black line) and the corresponding gamma curve (blue line) form
well 15_9-F-1-A in the Volve filed. The boundaries of stratigraphic encoding
represent horizons of Ty, SHETLAND, BCU and Hugin_Base.

Fig. 2. The proposed architecture: SeisWellTrans with stratigraphic encoding.

This article has been accepted for publication in IEEE Geoscience and Remote Sensing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LGRS.2025.3535723

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3
GRSL-02285-2024.R2

employed around each module. Decoder blocks furthermore
insert cross-attention between the multi-head self-attention
modules and the position-wise FFNs. Due to space limitations,
the detailed mathematical formulas of each module can refer
to [22], which is not expanded here. Like text modeling, this
work uses a vector to represent the stratigraphic encoding
(with dimension Len×d_embed), which is injected into the
SeisWellTrans encoder together with the corresponding
seismic waveform embedding (with dimension Len×d_embed).
The output of the SeisWellTrans is the target gamma log curve
(with dimension Len). We set Len as 250 and d_embed as 64.
Compared with CNN structures, the structure in Transformer
does not need to stack deep networks to obtain a global
receptive field since the MHA module in encoder and decoder
can model long-distance dependencies. Here, we stack 2
encoder and 2 decoder blocks with the head number of MHA
module as 8. In the MHA module, the query (Q), key (K), and
value (V) vectors are computed with dimensions of
Len×d_embed, and are further split into 8 heads.
In this work, four models—CNN or SeisWellTrans with and

without stratigraphic encoding in the input—are created to
thoroughly assess the impact of network models and

stratigraphic constraints on seismic inversion. For training the
model, we use mean squared error (MSE) loss to measure the
error between the true value and the prediction, and an Adam
optimization to reduce the error. The CNN designed in this
letter refers to the model architecture proposed by Yan et al.
[3], as shown in Fig. 3. The difference is that Yan's model
uses the RGT-interpolated log curve as a supplement to the
seismic waveform, while we skip the interpolation step and
directly use several seismic horizons as supplementary
stratigraphic encoding input. From the level of information
contained in the model input, compared to the initial
interpolated curve, the seismic stratigraphic constraints can
better represent the physical mechanism constraints and are
more in line with the visual boundary features.

III. EXPERIMENTS

A. Dataset Preparation
In June 2018 Equinor [23] released the Volve Data Village

data set for research and study. The field data contains over
40,000 files, covering production data, well design, seismic
data, well logs, geologic and stratigraphical data, etc. In this
letter, we mainly use seismic, horizons, and well-log data. The
seismic data are post-stack migration in the depth domain,
called
“ST10010ZC11_PZ_PSDM_KIRCH_FULL_D.MIG_FIN.PO
ST_STACK.3D.JS-017536.segy.” The horizon data contain
some key horizons such as Ty_Fm, Shetland_Gp, BCU, and
Hugin_Base. There are 20 wells with different curves, such as
velocity, density, impedance, porosity, and gamma. Some
wells lack specific log curves, but it is worth noting that every
well contains a gamma curve, which is thus selected as the
seismic inversion target here to test the proposed method.
The preparation of the data set includes the following four

steps, extracting seismic traces beside wells, encoding
stratigraphic positions, data normalization, and dividing the
training and validation dataset.
(1) In the process of extracting seismic traces beside wells,

since most of the wells in the Volve field are deviated, it is
necessary to extract seismic traces by segments according to
the well trajectory and smooth the joints of each segment.
(2) In the process of stratigraphic encoding, we selected

four key horizons named Ty_Fm, Shetland_Gp, BCU, and
Hugin_Base, and encoded the stratigraphic information as 1, 2,
3, 4, and 5, as shown in Fig. 1.
(3) Since the numerical levels of seismic and gamma log

data are inconsistent, to accelerate model optimization, we
perform maximum and minimum normalization on seismic
and gamma log data respectively to uniform their amplitudes.
(4) After the above three steps, the input and output of each

well sample are constructed. To verify the effect of the model
and be consistent with the work of Yan et al. [3], samples
from wells 15_9-F-1-A, 15_9-F-4, 15_9-F-11-A, and 15_9-F-
15-A are set as blind validation datasets and samples of the
remaining 16 wells are used as the training datasets.

B. Validation Results from Different Networks and Inputs
Fig.4 shows the true (blue curves) and predicted gamma

curves by the stratigraphically encoded CNN (orange curves)
and the stratigraphically encoded SeisWellTrans (purple
curves) on the four validation wells. Under the constraint of
stratigraphic encoding, the seismic-inverted gamma curves by
both models generally follow the overall trend of the measured
curves, particularly in regions with low and smooth variations
of gamma values (outside the dotted boxes in Fig.4).
SeisWellTrans, however, reveals specific advantages over

the CNN model in various aspects. At critical depths where
the gamma values increase or decrease sharply (such as dotted
boxes in Fig.4), the predictions of SeisWellTrans visually
match the actual values quite well, especially in promptly
portraying their ascending and descending trends and slopes.
This indicates the high vertical resolution of the proposed

Fig. 3. CNN architecture with stratigraphic encoding used for comparison.
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seismic inversion approach. Table.1 shows that SeisWellTrans
outperformed CNN in the high gamma areas (dotted boxes in
Fig.4), low gamma areas (outside the dotted boxes in Fig.4)
and whole areas of the four verification wells with the
stratigraphic encoding. On the four validation wells,

stratigraphic-encoded SeisWellTrans obtained an average
correlation coefficient of 86%, exceeding 79% of
stratigraphic-encoded CNN.
Fig.5 shows the true (blue curves) and predicted gamma

curves by CNN without stratigraphic encoding (orange curves)
and SeisWellTrans without stratigraphic encoding (purple
curves) on the four validation wells. In the areas with low and
smooth variations of gamma values (outside the dotted boxes
in Fig.5), the predicted gamma curves by both models follow
the general trend of the measurement curves. The predicted
values of SeisWellTrans are relatively closer to the real values,
while the predicted values of CNN have many weak
fluctuations that do not match.
At critical depths where the gamma values increase or

decrease sharply (dotted boxes in Fig.5), both models visually
show significant differences from the true values, and neither
of them can capture the ascending and descending trends and
slopes. In wells 15_9-F-1-A and 15_9-F-4, the predicted
values by CNN are slightly better than those by SeisWellTrans,
which demonstrates that Transformer is somewhat more
dependent on the stratigraphic position encoding.
Comparing Fig.4 and Fig.5 comprehensively, stratigraphic

encoding has a great influence on the effect of CNN and
Transformer models, which verifies that it is critical for the
seismic inversion of log curves. When using stratigraphic
constraints, seismic inversion by SeisWellTrans has higher
resolution and accuracy than CNN, which benefits from
Transformer's global perception ability and detail sensitivity
with no prior structural assumptions.

TABLEⅠ
THE AVERAGE OF THE CORRELATION COEFFICIENTS OF THE

FOUR VALIDATIONWELLS

Models and Wells

CNN
without

stratigraphic
encoding

SeisWellTrans
without

stratigraphic
encoding

CNN
with

stratigraphic
encoding

SeisWellTrans
with

stratigraphic
encoding

Low
GR
area

15_9-F-1-A 0.38 0.32 0.81 0.84
15_9-F-4 0.71 0.77 0.83 0.88
15_9-F-11-A 0.80 0.84 0.79 0.89
15_9-F-15-A 0.42 0.78 0.79 0.81

MEAN 0.58 0.68 0.81 0.86

High
GR
area

15_9-F-1-A 0.85 0.85 0.89 0.94
15_9-F-4 0.92 0.81 0.94 0.94
15_9-F-11-A 0.80 0.81 0.91 0.96
15_9-F-15-A 0.65 0.72 0.76 0.95

MEAN 0.81 0.80 0.88 0.95

Whole
GR
area

15_9-F-1-A 0.64 0.51 0.83 0.91
15_9-F-4 0.69 0.62 0.85 0.86
15_9-F-11-A 0.51 0.55 0.81 0.90
15_9-F-15-A 0.21 0.59 0.66 0.76

MEAN 0.51 0.57 0.79 0.86

C. Test Results from Different Networks
Finally, we compared the crosswell seismic inversion

results by CNN with stratigraphic encoding and
SeisWellTrans with stratigraphic encoding. To view local
details of prediction results, Fig.6a shows 2D seismic slices
extracted from the 3D seismic volume. Fig.6b and Fig.6c
show the gamma inversion results by CNN with stratigraphic
encoding and SeisWellTrans with stratigraphic encoding,
respectively. In Fig. 6b, high gamma areas are not well-
defined and surrounded by artifacts. There are many
subdivided small thin layers in the low gamma value area, but
considering that the Pearson correlation coefficients of the
stratigraphic-encoded CNN in the low gamma area in Table 1
are not higher than stratigraphic-encoded SeisWellTrans, this

Fig. 4. The measured (blue curves) and predicted gamma curves by CNN with
stratigraphic encoding (orange curves) and SeisWellTrans with stratigraphic
encoding (purple curves) on the four validation wells.

Fig. 5. The measured (blue curves) and predicted gamma curves by CNN
without stratigraphic encoding (orange curves) and SeisWellTrans without
stratigraphic encoding (purple curves) on the four validation wells.
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thin layer information is not necessarily accurate. In Fig.6c,
the target layer with a high Gamma value has clear boundaries
and no artifacts around it. The boundaries of areas with low
gamma values are clear, and the changes at different depths
are depicted. This result can be used as a comparatively low-
frequency initial model for further high-frequency detail
inversion research.
The predicted gamma profile by SeisWellTrans shows more

key features of gamma distribution compared to CNN, which
proves that the multi-head self-attention mechanism can
extract rich and precise seismic stratigraphic features and
accurately map them into gamma information. In addition, the
predicted transverse trend by SeisWellTrans is consistent and
reasonable with the seismic structure. Compared to CNN, our
inversion scheme in the fault area (black line in Fig. 6) is more
consistent with the stratigraphic framework and structure.

V. CONCLUSION
In this study, we developed a Transformer network

SeisWellTrans for high-resolution gamma inversion by
integrating stratigraphic encoding along with seismic
waveform. We analyze the enhancement effect of stratigraphic
encoding and state-of-the-art deep learning model designing
on seismic inversion. Test examples on the Volve field data
show effective inversion performance and demonstrate that
introducing stratigraphic encoding can help guide precise
seismic inversion. More importantly, compared to CNN,
SeisWellTrans has better precision benefits from its global
perception ability and detail sensitivity with no prior structural
assumptions. Our seismic inversion scheme is flexible and
feasible for field seismic data applications with several wells.
The proposed SeisWellTrans architecture with stratigraphic
position encoding provides a promising reference for further
research on the high-resolution inversion of other various logs,
such as elastic impedance parameters, porosity, fluid, and
lithology.
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