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Abstract— Accurate quantitative precipitation estimation
(QPE) methods are essential for weather forecasting and for
prevention of hydrogeological risk. QPE becomes even more
important when facing severe precipitation events. In this letter,
a comparison among different rainfall estimation methods is
presented, using a severe event that occurred in Italy as a case
study. In particular, the focus is on a merging method based
on the dynamic adaptation of the Z–R relationship according
to the spatiotemporal evolution of the observed phenomenon.
Through a cross-validation analysis, we quantitatively assess
the effectiveness of such a method: compared with the others,
it performs better on the average, while it can outperform them in
critical rainfall conditions, confirming its potential for localizing
and monitoring areas with greatest risks.

Index Terms— Merging methods, quantitative precipitation
estimation (QPE), rain gauge, rainfall estimation, weather radar.

I. INTRODUCTION

ESTIMATING rainfall at ground is important in a large
number of meteorological and hydrological applications;

it is also one of the main input parameters of early warning
systems, which are crucial to face severe rainfall events.
In such a context, accurate quantitative precipitation estimation
(QPE) methods are indispensable as well as approaches able
to provide a correct and detailed spatial retrieval of the rainfall
fields.

Rain gauges and weather radars are the most employed
instruments to monitor rainfall. Rain gauges provide point
measurements of the amount of water fallen at ground in a
given time interval. They are direct and accurate—so that they
can be considered as a “ground-truth” reference—even though
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they are typically sparse in space. The spatial representation of
the whole rainfall phenomenon can be obtained only through
interpolation techniques as, for instance, ordinary kriging (OK)
[1]; thus, critical rainfall events featuring intense and persistent
peaks may remain undetected if they are not sufficiently close
to the nodes of the rain-gauge network. Weather radars are
by far the most important instruments to observe precipitation
at mesoscale, providing a spatially detailed map of precip-
itation. However, rainfall estimates are obtained indirectly
from measurements made aloft of the power backscattered by
raindrops [2], so that they may be quantitatively inaccurate.

For the above reasons, radar rainfall estimates and rain-
gauge measurements exhibit complementary features, which
need to be integrated. Radar rainfall estimates are obtained
through the so-called Z–R power-law relationships [3], which
convert the radar reflectivity Z (in mm6 m−3) into rainfall
rate R (in mm h−1). A major problem is choosing the
appropriate coefficients of the Z–R relationship, as for a given
value of Z , different choices of the coefficients may lead to
huge differences in R [4]; due to the high variability of the
raindrop size distribution, even during a single event, these
coefficients vary both in time and space [5]. Therefore, from
a QPE perspective, using a constant and a priori-selected Z–R
relationship—such as the well-known Marshall–Palmer (MP)
[6]—is not the most suitable solution.

Merging the information provided by weather radars and
rain-gauge networks to improve QPE has been investigated for
several years (see, for instance, the review in [7]). The main
differences among such approaches concern the weight they
give to the information coming from rain gauges and radar.
Geostatistical methods are based on the interpolation of rain-
gauge measurements and exploit radars as ancillary providers
of spatial information. Among such methods, we recall some
derivations of the OK method, such as the kriging with exter-
nal drift (KED) [8], and the conditional merging or kriging
with radar-based error (KRE) correction [9]. Other approaches,
for instance, the Brandes spatial adjustment (BSA) method
[10], adjust radar rainfall estimates by introducing a correc-
tion term (either multiplicative or additive) obtained from
rain-gauge measurements. Another class of methods uses an
adaptive estimation of the coefficients of the Z–R relationship
so as to account for its variability in time and space [11];
this class includes the method presented by Cuccoli [12]
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Fig. 1. CAPPI product at 2000-m height, 16:30 UTC, September 15, 2022.
The black crosses and magenta asterisks mark the rain gauge and radar
locations, respectively, while the black curves indicate the Italian regional
borders.

and referred to as space–time adaptive coefficient conversion
(STACC) in the following.

In this letter, we assess and compare the performance of dif-
ferent QPE methods, relying upon only the radar information
(MP), only the rain-gauge network (OK), and on the fusion
of the two data (KED, KRE, BSA, and STACC). Our perfor-
mance analysis compares the different methods quantitatively,
through a leave-one-out cross validation. Such a validation
strategy also allows the robustness of each method to be
assessed: in particular, we demonstrate that the STACC method
outperforms the others in critical areas, i.e., in zones where
the rainfall is high, but the rain-gauge deployment misses to
sample the rainfall peaks. For the comparison, we used radar
and rain-gauge data collected during a severe rainfall event
occurred in 2022 in Italy.

II. DATASETS AND METHODS

The radar and rain-gauge dataset used in this study refers
to intense convective phenomena occurred on September 15,
2022, in central Italy, including V-shaped thunderstorms that
remained over the Marche region for several hours due to
the persistence of high- and low-pressure locations and to
the presence of the mountain range of the Apennines that
played a role of orographic triggering. As a result, dramatic
levels of cumulated rainfall were recorded, in particular,
from 15 to 18 UTC. Hail was not reported.

A. Datasets

1) Rain-Gauge Dataset: The data come from a network
consisting of 177 tipping bucket rain gauges, which provide
rainfall measurements every 15 min in near real time. The
position of each available rain gauge is shown in Fig. 1.

2) Radar Dataset: Weather radar data were collected by
the Italian national weather radar network, which is managed
by the Italian National Civil Protection Department (DPCN).
This network covers the whole national territory and is made
up of C-band radars, which perform synchronized scans every
5 min. The DPCN processes the raw data gathered by each

radar and then provides composite products on a national scale.
The radar reflectivity used in this work is the constant altitude
plan position indicator (CAPPI) product at 2000 m, which is
available every 10 min. The chosen height is a good trade-
off between the distance from ground (hence, from the rain-
gauge network) and the need to avoid issues related to the
local orography. Fig. 1 shows a sample of the CAPPI product
provided by DPCN.

B. STACC Method

Given a certain number of radar reflectivity (expressed in
dBZ) maps available in a time interval T and considered a
generic position (ln, lt) of the maps’ grid expressed in longi-
tude and latitude values, the algorithm computes ZT (ln, lt) as
the reflectivity averaged first over Nz neighboring positions in
the grid and then over the time T . The time-averaged rainfall
rate RT (ln, lt) is then obtained through the model

log10(RT (ln, lt)) = AT (ln, lt) + BT (ln, lt) · ZT (ln, lt) (1)

where AT (ln, lt) and BT (ln, lt) are two space-varying coeffi-
cients that rule the conversion between reflectivity and rainfall
rate. The quantities AT (ln, lt) and BT (ln, lt) are obtained with
a two step procedure, calibration and interpolation, as follows.
Consider a rain-gauge network composed of Nr elements, and
let the position of the generic kth rain gauge be (lnk, ltk),
k = 1, 2, . . . , Nr . Consider also a time interval Tw ≤ T . Let
Z W (k) denote the radar reflectivity averaged in space (over
an area centered on (lnk, ltk) and comprising Nz neighbor-
ing positions) and in time (over the interval Tw), and let
RW (k) be the time-averaged (over the interval Tw) rainfall
rate measured by the kth rain gauge. Thereby, over the time
interval T and for each rain gauge of the network, a set
of couples (log10(RW (k)), Z W (k)) is available, and, by using
the model in (1), a linear regression yields the coefficients
AT (lnk, ltk) and BT (lnk, ltk) related to the kth rain-gauge posi-
tion (lnk, ltk), k = 1, 2, . . . , Nr . The coefficients AT (ln, lt)
and BT (ln, lt) related to a generic grid position, i.e., different
from those of the rain gauges, are calculated by means of
spatial interpolation of the values AT (lnk, ltk) and BT (lnk, ltk).
The cumulated rainfall over the period T , at any grid position,
is then given by

CRT (ln, lt) = T · RT (ln, lt). (2)

In summary, the algorithm provides a space-varying Z–R
relationship that is valid within a given time interval T .
In particular, at each rain-gauge position, the coefficients of
the Z–R relationship are calibrated by using the data collected
by the set of Nr rain gauges, whereas, at any other position,
they are obtained by means of spatial interpolation.

1) Implementation Details: In the implementation of the
STACC method, only a subset of the rain gauges has been
used. During the calibration stage, rain-gauge data are consid-
ered “acceptable” if the values of AT (lnk, ltk) and BT (lnk, ltk),
obtained through linear regression as specified in Section II-B,
fall within a reasonable range, as typically found in the
literature [13]. Rain gauges for which this condition is not
met are discarded and not used in the successive interpolation
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stage. Specifically, we have used the weighted least square
method described in [14], exploiting the temporal variability of
radar and rain-gauge data as uncertainty parameter. As regards
interpolation, the inverse distance weighting algorithm [15] has
been employed.

C. Other Methods for QPE

The STACC algorithm will be compared with other com-
monly used methods for QPE, which are here briefly reviewed
along with some implementation details.

The MP Z–R relation [6] uses only radar data to estimate
rainfall rates. Since multiple radar reflectivity maps can be
produced in the interval T , they are cumulated to achieve
the final rainfall map. Using rain-gauge data only is possible
by means of interpolation, for example, the OK algorithm.
In this study, we employed, for OK, the open source library
GSTools [16] setting the spherical model for fitting the
empirical variogram (this setting was also used for the KED
and KRE methods described below). The KED method [8]
uses kriging interpolation with weights derived from a radar-
based rainfall field estimate; in this study, the latter was
achieved with the MP method. The BSA method [10] applies
to the MP map a spatially varying multiplicative correction
derived from the comparison with rain-gauge data. Specif-
ically, we followed the procedure detailed in [17]. Not all
the available rain gauges were used: in practice, rain gauges
that either recorded less than 1 mm over the interval T or
were located in positions where the MP estimate is less than
1 mm were discarded. The KRE correction method [9] adds
a correction field to that estimated through OK. The error
field is estimated by the following: 1) applying OK to the
MP estimates at each rain-gauge position and 2) subtracting
such a map to the complete MP map.

III. EXPERIMENTAL RESULTS

This section is devoted to the comparison among the STACC
method and other ones for estimating the cumulated rainfall
maps. The comparative analysis is carried out using data rel-
ative to the time interval during which rainfall was extremely
intense and caused severe damages. We also highlight a
situation in which STACC outperforms the other methods
(specifically, when there are no rain gauges sufficiently close
to the position of local rainfall peaks) and discuss reasons of
this behavior.

A. Quantitative Analysis: Cross Validation

In order to evaluate the different rainfall retrieval algorithms
from a quantitative point of view, a leave-one-out cross
validation has been carried out. The procedure consists of
the following: 1) leave one rain gauge out of the set of Ng

available rain gauges; 2) estimate the cumulated rainfall map
by using one of the methods to be compared; 3) evaluate the
error between the estimate in the location of the left-out rain
gauge and the true value recorded by it (ground truth); and
4) repeat the leave-one-out estimation for every rain gauge.

Let To be the total observation time during which the event
is analyzed. Let us also assume that the cross-validation error

is computed with a time step Ts , chosen as a submultiple of
To, so that we get Nt = (To/Ts) error samples at any rain-
gauge position. In this manner, we obtain an Ng × Nt matrix
1, whose generic element 1i, j represents the error related to
the i th rain gauge of the set at the j th time step Ts , that is,

1i, j = 0i, j − G i, j (3)

where G is the ground truth and 0 is its estimate. Only the
rain gauges that have recorded at least 1 mm h−1 over To have
been accounted for.

The accuracy of the estimation, and thus the performance of
the different methods, is evaluated by using the mean absolute
error (MAE) and the root-mean-square error (RMSE), defined
as follows:

MAE =
1

Nt · Ng

Nt −1∑
j=0

Ng−1∑
i=0

∣∣1i, j
∣∣ (4)

RMSE =

√
1

Nt · Ng

∑Nt −1

j=0

∑Ng−1

i=0
12

i, j . (5)

Table I shows the cross-validation results, for To = 180 min
and Ts = 30 min, for all the considered methods. As expected,
the improvements achieved by STACC (with Tw = 30 min),
KED, KRE, and BSA, with respect to methods based on
either only radar data (MP) or only rain-gauge data (OK), are
quite remarkable. For instance, comparing the STACC method
with MP and OK, MAE improves of about 21% and 27%,
respectively; in terms of RMSE, the percent reduction is 26%
and 22%, respectively. On the other hand, the algorithms based
on merging radar and rain-gauge information show similar
performance indexes; the proposed STACC method, however,
provides the best results in terms of all of them.

Based on the matrix 1, we can compute the performance
indexes over longer time intervals. Consider overlapping time
periods T j = [ jTs, ( j + k)Ts], having a duration T ′

s = kTs ,
with k an integer, such that 2 ≤ k ≤ Nt , and j = 0, 1, . . . ,

(Nt − k). It is apparent that each interval T j is characterized,
with respect to T j+1, by a time-shift and an overlap equal to
Ts and (k − 1)Ts , respectively. Let 1(k) be the matrix whose
entries are defined by

1
(k)
i, j =

j+k∑
r= j

1i,r (6)

where i = 0, 1, . . . , Ng − 1 is the index spanning the rain-
gauges set. In other words, the matrix 1(k) contains the rainfall
errors cumulated over a time interval T ′

s , for each rain gauge;
notice that it has the same number of rows (Ng) of 1 and a
smaller number of columns (N ′

t = Nt − k). The definition of
1(k) allows the performance indexes to be computed on the
intervals T j : it is sufficient to replace 1i, j with 1

(k)
i, j and Nt

with N ′
t in (4) and (5).

The cross-validation results obtained for T ′
s = 60 min

(k = 2) and T ′
s = 90 min (k = 3) are shown in Table I. In both

cases, the STACC method exhibits the best performance, even
though, also in this case, the differences with respect to the
other methods based on the integration of rain gauge and radar
information are not remarkable. Significant improvements,



3508005 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024

TABLE I
CROSS-VALIDATION RESULTS, To = 180 min (FROM 15:00 TO 18:00 UTC)

TABLE II
ESTIMATION ERRORS RELATIVE TO THE CRITICAL CASE WHEN RGA IS

EXCLUDED FOR PREDICTION T = 60 min (FROM 20:00 TO 21:00 UTC)

instead, are reported with respect to MP (in particular) and OK,
with increasing performance gaps as k increases: for instance,
comparing the STACC results with those obtained by MP for
k = 3, we get an improvement of 40% and 43% in terms of
MAE and RMSE, respectively; compared with OK, MAE and
RMSE are 27% and 26% smaller, respectively.

B. Cross Validation: Discussion of a Critical Case

Detecting areas of very intense rainfall is of major interest.
The absence of rain gauges nearby such areas may induce
inaccurate rainfall estimates and, in this case, weather radar
information becomes fundamental. In the following, we com-
pare the behavior of the QPE methods previously analyzed in
these “critical” situations.

Consider Fig. 2, which shows the averaged radar reflectivity
over T = 60 min (from 20:00 to 21:00 UTC). The rain
gauge marked with “A” (RGA in the following) is the only one
within the area of maximum reflectivity. Removing RGA from
the available rain gauges allows the aforementioned critical
cases to be simulated. As in the leave-one-out procedure,
we assumed that RGA is absent, applied the various rainfall
estimation methods, and evaluated the error 1A = 0A − G A,
between the cumulated rainfall 0A estimated in the position
of RGA and the rainfall G A (ground truth) measured by RGA

itself. In the considered time interval T , G A is 83.80 mm.
Table II shows the results for each estimation method.

Due to the lack of spatial details, the OK estimate is affected
by a huge error, thus confirming the fact that the spatial
information provided by radar data is fundamental. Such an
error is so large that it has a remarkable impact also on
the KRE estimate, which is based on corrections applied on

Fig. 2. Average radar reflectivity ZT (ln, lt) from 20:00 to 21:00 UTC of
September 15, 2022. “A” marks the rain gauge considered in the critical case
analysis.

the OK map. As to the MP method, it is well known that
it produces high errors in correspondence to high values of
Z [18], and this fact is confirmed by the result in Table II.
The issues of the MP method are inherited by the BSA
approach. In fact, since RGA is located where the reflectivity is
high, the correction factor should be strong as well; however,
when RGA is dropped, the correction factor in that position—
derived from the interpolation of small correction factors of
the surrounding rain gauges—is underestimated. Note that also
the KED estimate is rather poor: this is due to the fact that the
weight given to the rain-gauge information is prevailing with
respect to that given to the radar information.

Table II demonstrates that the STACC method yields the
best performance among all the tested algorithms. In other
terms, STACC is characterized by the smallest sensitivity to
the removal of the critical rain gauge RGA. What happens
can be explained as follows. Once RGA is dropped, only the
surrounding rain gauges remain to generate the local Z–R
relation, whose coefficients are then spatially interpolated:
even though they are based on smaller values of R and Z ,
they are anyhow well representative of the link existing at
higher levels of reflectivity and rainfall intensity.

For completeness, Fig. 3 shows the cumulated (over T )
rainfall maps obtained with each of the tested methods when
the rain gauge RGA is dropped.
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Fig. 3. Cumulated rainfall from 20:00 to 21:00 UTC on September 15, 2022, obtained by removing rain gauge RGA (circled and marked with the letter “A”
in the maps) and by using (a) MP, (b) OK, (c) STACC, (d) KED, (e) KRE, and (f) BSA. Notice that, in the OK case, for the sake of a better visualization,
a different scale has been used.

IV. CONCLUSION

In this letter, we have presented an in-depth quantitative
analysis of several rainfall estimation methods. As a case
study, we used the data collected during a severe rainfall
event occurred in Italy. Our comparisons have shown that,
as expected, integrating radar and rain-gauges information is
crucial, and that the STACC approach performs better than
the other methods. In particular, the STACC method is very
effective when there are no rain gauges where rainfall is most
intense. To verify this, we have simulated this situation by
dropping the input from a rain gauge placed inside a critical
area and evaluated the ability of the various methods to predict
the actual amount of rainfall in that area. The STACC method
outperformed the other ones, demonstrating in this way its
effectiveness and robustness for QPE.
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