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Abstract— Wavelength-resolution (WR) synthetic aperture
radar (SAR) change detection (CD) has been used to detect con-
cealed targets in forestry areas. However, most proposed methods
are generally based on matrix or vector analyses and, therefore,
do not exploit information embedded in multidimensional data.
In this letter, a CD method for WR SAR image stacks based on
tensor robust principal component analysis (TRPCA) is proposed.
The proposed CD method used the new tensor nuclear norm
(TNN) induced by the definition of the tensor–tensor product
to exploit temporal and spatial information contained in the
image stack. To assess the performance of the proposed method,
we considered SAR images obtained by the very high-frequency
(VHF) WR coherent all radio band sensing (CARABAS)-II SAR
system. Experiments for three different stack sizes show that a
significant performance gain can be achieved when large image
stacks are considered. The proposed CD method performs better
in terms of probability of detection (PD) and false alarm rate
(FAR) than the other five CD methods in VHF WR SAR images,
including one based on matrix robust principal component
analysis (RPCA). In a particular setting, it achieves a PD of
99% and an FAR of 0.028 false alarms (FAs) per km2.

Index Terms— Change detection (CD), coherent all radio band
sensing (CARABAS)-II, synthetic aperture radar (SAR), tensor
robust PCA.

I. INTRODUCTION

DETECTING changes in remote sensing images of the
same scene taken at different times is of great interest,

as it allows dynamically processing satellite maps, observing
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environmental changes, and monitoring land use and land
cover [1], [2]. Synthetic aperture radar (SAR) images are
acquired by active microwave sensors and have proven to
be an ideal source for change detection (CD) applications
because they can monitor the Earth independently of sunlight
conditions and cloud coverage [3].

It is understood that the design of the SAR system depends
on the application of interest. Wavelength-resolution (WR)
SAR systems have been used targeting different applications
such as high-resolution imaging, ground-moving target indi-
cation, and CD [4]. WR SAR systems are characterized by a
large fractional bandwidth, e.g., ultrawideband (UWB) and a
wide antenna bandwidth [5]. In these systems, the scattering
process is related to scatters with dimensions in the order of
the signal wavelengths [6]. Thus, the resolution cell contains
only a single scatter, and consequently, SAR images generated
by WR SAR systems do not suffer from speckle noise. When
operating in frequency bands below 1 GHz, for instance, the
one used in this article, i.e., very high frequency (VHF),
the main contribution to the clutter comes from large static
objects generally stable in time and less sensitive to weather
conditions. Then, measurements performed by VHF WR SAR
systems become stable across different acquisitions [7].

The first CD methods for this type of SAR image were
based on pairs of images, i.e., an interest image that changes
are expected to have occurred and a reference image [8], [9].
However, other studies showed that using small stacks of SAR
images improves the performance of the CD method [10], [11].
For example, Ramos et al. [12] proposed a CD method based
on robust principal component analysis (RPCA) via principal
component pursuit (PCP) [13] for WR SAR image stacks,
extending the work proposed in Schwartz et al. [14], which
was proposed for SAR image pairs and validating that this
increase in information contributes to a performance gain by
reducing the number of false alarms (FAs). RPCA method
pursues a decomposition of the input SAR data into a low-
rank, which seeks to model the clutter-plus-noise content, and
a sparse matrix, which aims at detecting the targets. These
methods showed that a matrix solution based on RPCA could
be an efficient strategy to detect military targets and have
advantages in terms of run-time processing compared with
traditional methods, which usually is a pixel-by-pixel solution.

Matrix-based methods have a significant shortcoming when
dealing with multidimensional data, which is ubiquitous in
real applications. For example, an SAR image pair or stack
is a 3-D object indexed by a temporal variable (number
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Fig. 1. CD scheme based on tensor robust PCA.

of images) and two spatial variables (rows and columns).
Applying RPCA requires organizing the data into a matrix,
ignoring the information embedded in the multidimensional
structure that may be associated with targets or clutter-plus-
noise content in SAR images [15]. An efficient way to face
this issue is to extend the RPCA problem from matrices (i.e.,
2-D) to tensors (i.e., 3-D), capturing the multifactor structure
of the data [16], [17]. Recently, tensor RPCA (TRPCA) with
a new tensor nuclear norm (TNN) was developed [18]. This
approach, based on the tensor–tensor product (t-product) and
tensor singular value decomposition (t-SVD), showed that
TRPCA could exactly recover the low-rank and sparse tensor
from its sum and outperform the RPCA problem [13], [18].

Motivated by the possible gains associated with SAR image
stacks in CD methods and new technological advances in
robust computer vision techniques, a CD method in VHF
WR SAR image stacks based on TRPCA (CD-TRPCA) is
proposed. The proposed CD-TRPCA is based on TRPCA
via new TNN [18] and aims at exploring the spatial and
temporal information in SAR image stacks on target detection
applications. Furthermore, with the increase in the database of
SAR systems, CD methods based on techniques that work with
a larger number of images, such as TRPCA, are increasingly
important. We use 24 VHF WR SAR images provided in [19]
from the coherent all radio band sensing (CARABAS) II SAR
system. It operates in the 20–90-MHz band and provides
imagery with a spatial resolution of about 2.5 m.

Therefore, the main contribution of the work is to propose
a CD method for WR SAR image stacks based on TRPCA,
exploring the multidimensional diversity of the SAR image
stack. Experiments on different stack configurations demon-
strate that CD-TRPCA achieves competitive performance in
comparison to state-of-the-art CD methods, allowing the use of
different amounts of SAR images with the proposed method.

This letter is organized as follows. Section II presents
the formulation of the TRPCA. The WR SAR CD method
is introduced in Section III. In Section IV, the results and
experimental aspects of the proposed method are presented
and discussed. Finally, the conclusions are drawn in Section V.

II. TENSOR ROBUST PCA

TRPCA is a tensor extension of RPCA, which in turn can
be seen as a robust extension of classical PCA. However, both

RPCA and PCA have limitations when dealing with high-
dimensional data, as both the methods must first restructure
the multidimensional data into a matrix, i.e., they ignore
the information embedded in the multidimensional structure,
causing a performance degradation [20].

TRPCA assumes that X ∈ Rn1×n2×n3 can be decomposed
into a low-rank tensor L0 ∈ Rn1×n2×n3 and a sparse tensor
S0 ∈ Rn1×n2×n3 , satisfying X = L0 + S0, where n1, n2,
and n3 represent the horizontal, lateral, and frontal slices of
the tensor, respectively. The problem of recovering L0 and
S0 separately can be formulated by the following convex
optimization problem:

minimize ∥L∥∗ + λ∥S∥1

s.t. L + S = X (1)

where ∥·∥1 represents the l1-norm and it is computed by the
sum of all entries in S, i.e., ∥S∥1 =

∑
abc |Sabc| and ∥·∥∗

represents the TNN [21], [22], and it is computed by the
sum of singular values of all frontal slices of L, i.e.,∥L∥∗ :=∑n3

t=1 ∥L(t)
∥∗, where L(t)

is the t th frontal slice of L, and
L = fft(L, [], 3) is the discrete Fourier transformation (DFT)
along the third dimension using the MATLAB command [18].
Note that the DFT is performed on all the tubes of L since
the tube of a tensor A ∈ Rn1×n2×n3 is denoted as A(a, b, :),
i.e., a vector derived by keeping the entries a and b fixed in
a tensor [18].

This convex optimization problem aims at recovering a
tensor of low tubal rank based on the TNN induced by the
recent definition of the t-product and t-SVD [21], [23]. The
tensor tubal rank is defined as the number of nonzero singular
tubes of D, with D being the f-diagonal tensor obtained
from the t-SVD of a tensor A = U ∗ D ∗ V∗. The term
“ f -diagonal” is used when each frontal slice is diagonal [23].
The t-product is analogous to the matrix multiplication except
that the circular convolution replaces the multiplication opera-
tion between the elements [18]. In the Fourier domain, circular
convolution means a multiplication operation between the
elements. Thus, the t-SVD can be easily calculated by solving
several SVDs [23]. If the tensor tubal rank of L0 is not too
large and S0 is reasonably sparse, Lu et al. [18] show that
L0 and S0 are perfectly recovery by defining λ as

λ =
1

√
max(n1, n2)n3

. (2)

Different approaches for solving (1) exist. In this study,
we considered the alternating direction method of multiplier
(ADMM) framework, widely used to solve RPCA and its
related problems [14], [18]. ADMM breaks the optimization
problem into smaller pieces, each easier to handle [24]. For
TRPCA, L and S are obtained alternatively with closed
solutions and then updated. The complexity of the TRPCA
solved by ADDM is equal to O(n1n2n3 log n3 + n1n2

2n3).
Details on ADMM solving TRPCA can be found in [21]
and [18].

III. CHANGE DETECTION

The methodology of the proposed CD method is presented
in Fig. 1. Let us consider a surveillance image Ii of size
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Fig. 2. Scattering magnitude of the ground scene from the CARABAS-II system with different target deployments (i.e., missions) and flight headings, and
a map covering the same area as the SAR images. The circles show targets deployed in each mission. (a) Mission 2, Image 1 (225◦). (b) Mission 3, Image 3
(225◦). (c) Mission 4, Image 2 (135◦). (d) Mission 5, Image 6 (230◦). (e) Map of the region, June 2024.

Fig. 3. CD-TRPCA results for λ = 2.8577 × 10−3 and N = 7. (a) Mission 2,
Image 1 [225◦, Fig. 2(a)] as surveillance image and Mission 4 as reference.
(b) Mission 4, Image 2 [135◦, Fig. 2(c)] as surveillance image and Mission
2 as reference. The blue dots outside the red square mean FAs, while the ones
inside the red square mean the known targets in the scene, i.e., ground truth,
with green points as the detected targets.

Fig. 4. ROC performance for the proposed method using different configu-
rations of SAR images into the stack.

n × m (rows × columns), in which we aim to identify targets.
For this, we consider a stack of k SAR images of size n × m
(R1, R2, . . . , Rk) acquired in the same geographical area but
at different time instants acting as a background representation
and therefore are called reference images.

Fig. 5. ROC performance for the proposed and reference methods.

There are different combinations to form the tensor X . They
differ in the way t-SVD is obtained. As we are proposing
a CD method to exploit temporal and spatial information in
the decomposition, X is given by N × n × m, where N
is the total number of SAR images in the stack given by
1 + k, where k is the total number of reference images. Our
approach allows the t-SVD to consider a temporal and spatial
dimension, i.e., N and n, respectively. This is justified by the
t-product definition [23], in which a size tensor is written as
n1 × n2 matrix of n3 tubes, i.e., N × n matrix of m tubes.
We evaluated other combinations, exploring both the temporal
and spatial dimensions. However, there were no significant
changes in performance.

X is then decomposed into L and S, where L represents
the low-rank subspace that can gradually change over time as
is the background of X , and S represents the sparse content
of X , i.e., targets of X , which is of interest to our study. S
is formed with the sparse content of the surveillance image
(Si ) and with the sparse content of the reference images
(S1,S2, . . . ,Sk). Some method rules were adopted to explore
the sparse information of the reference images and improve
the detection in Si . These rules, which are presented below,
were proposed by Ramos et al. [12] and proved very effective
for CD applications focusing on target detection.

1) Only detections in Si are counted. This rule is justified
since we want to detect targets in surveillance images.

2) Only positive detection in Si is counted. In the CD
method, we look for variations that emerged in the
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surveillance image (i.e., variations that do not appear
in the reference images). These variations are mirrored
in the sparse content of the surveillance image, i.e., Si

with positive values. However, we cannot rule out that
reference images may have reflections referring to static
objects in the same position (e.g., buildings, fences,
and others). The absence of these structures only in
the surveillance image is interpreted by the TRPCA as
sparse content and separated into Si with a negative
value. For example, the CARABAS-II data are charac-
terized by having targets in all SAR images. Then, if one
considers reference images from the same deployment
(i.e., targets in the same position), the TRPCA mirrors
the targets of the reference images in Si with negative
values. Since these negative values represent reference
content, such values can be discarded.

3) Detections in Si which also occur, at least, in one
of the reference images of the output sparse stack
(S1,S2, . . . ,Sk) are discarded if they occur within a
specified square window of 2δ × 2δ pixels. The idea of
this rule is to eliminate possible detection related to the
same object in the surveillance and any reference image.
Based on the spatial resolution of the CARABAS-II
system, Ramos et al. [12] showed that δ = 9 pixels could
further improve the performance of the RPCA-based CD
method. We adopted this same radius for comparison
purposes.

IV. EXPERIMENTAL RESULTS

A. Dataset

We used 24-magnitude SAR images (calibrated and coreg-
istered) from the CARABAS-II system in the strip map
SAR mode operating at 20–85 MHz, HH-polarization, and an
incidence angle of 58◦. These images are available for the VHF
WR SAR CD research as a challenging problem [9]. Each
magnitude image of 3000 × 2000 covers the same ground
area as 6 km2 (3 × 2 km) and contains 25 military vehicles of
different dimensions as testing targets (length, width, height):
ten TGB11 (4.4, 1.9, 2.2 m), eight TGB30 (6.8, 2.5, 3 m),
and seven TGB40 (7.8, 2.5, 3 m). In addition, the region is
characterized by forests, power lines, lakes, roads, buildings,
fields, and fences [9].

The images are divided into four missions: Missions 2–5,
where each mission represents a different target deployment.
Each mission consists of six images collected under three
different flight headings: 2 of 225◦ (Images 1 and 3), 2 of
135◦ (Images 2 and 4), and 2 of 230◦ (Images 5 and 6). Fig. 2
shows scattering magnitude SAR images of the ground scene
with the targets deployed in each mission, considering images
acquired from different flight headings.

B. Implementation Aspects

The experimental evaluation was performed using
all 24 VHF WR SAR images and considering the processing
scheme provided in Fig. 1. The method proposed herein
uses the TRPCA implementation presented in [25]. Thus, the
TRPCA implementation parameters were the same as for [18]

and [25], such as initialization parameters, step length for
convergence, and stopping criteria.

Each 3000 × 2000 SAR image is organized into a
third-order tensor given by 1 × 3000 × 2000. Thus, X is
formed by N × 3000 × 2000. According to [18], a value of λ

that exactly recovers L0 and S0 under certain assumptions can
be theoretically obtained by (2). Based on X ∈ RN×3000×2000

and 3000 ≫ N , we have λ = ((max(n1, n2)n3)
1/2)−1

=

((3000 × 2000)1/2)−1
= 4.0825 × 10−4 for the CARABAS-

II dataset. This value is the same obtained in RPCA-based
CD methods [12], [14]. These methods empirically showed
that better results can be obtained when working with a
λ approximately nine times larger. Thus, we analyzed our
method in a range of 3–13× the value of 4.0825 × 10−4

with a 0.5 step size.

C. Discussion

The proposed method is evaluated based on the probability
of detection (PD), defined by the ratio between the number
of targets detected in the surveillance image and the known
number of targets in the surveillance image, i.e., 25 targets.
The false alarm rate (FAR) is also considered and is calculated
from the ratio between the number of FAs detected and the
area under surveillance, i.e., 6 km2.

Aiming to illustrate a result obtained using the CD proposed
method, Fig. 3 presents the detection results for λ = 2.8577 ×

10−3 and N = 7. In Fig. 3(a), one can observe Image
1 from Mission 2 as a surveillance image and six images
from Mission 4 as reference images. In Fig. 3(b), we have
Image 4 from Mission 4 as a surveillance image and six images
from Mission 2 as reference images. Note that depending on
the surveillance SAR image and the reference images used in
the stack, one may have a result of PD = 0.960 and FAR =

0.167 FA/km2 [Fig. 3(a)] or a result of PD = 0.840 and FAR =

1.500 FA/km2 [Fig. 3(b)]. If we compare both the surveillance
images used for the results presented in Fig. 3 [i.e., Fig. 2(a)
and (c)], it is possible to observe that the difference in FAR
is mainly related to elongated structures sensitive to flight
heading, which increase the number of FAs. Furthermore,
it is visually observed that some targets in Fig. 2(c) present a
weaker backscatter than those in Fig. 2(a), which may justify
a loss in detection.

Fig. 4 shows the method’s overall performance in receiver
operating characteristic (ROC) curves, obtained by varying
the λ value. Our approach is evaluated considering different
missions as a reference and also different N stack sizes. The
PD and FAR values for each λ in the ROC curves using
SAR image stacks were obtained from the average of the
(24 − k) surveillance images. The higher the number k of
reference images considered, the fewer surveillance images
will be considered on average. The image pairs’ curve in Fig. 4
used the same image pairs of [9] and [14].

Initially, we analyzed our method with only one mission (six
images) as a reference, i.e., N = 7 and k = 6. In this analysis,
similar to [12], the best ROC curve was obtained when using
Mission 3 as a reference, while a standard behavior was
presented in the other missions. Mission 3 targets have weaker
backscatter when compared with targets in other missions,
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which generally reduces the performance of CD methods.
However, when considering this mission as a reference, we are
removing such images as surveillance images, and therefore,
better performance is obtained. For this analysis, it was possi-
ble to get an FAR = 0.657 FA/km2 and a PD = 0.976 using
λ = 26.536 × 10−4 and Mission 3 as a reference. Since
Mission 3 as reference yielded the highest performance, it has
been selected and fixed for the remaining experiments.

We expanded our analysis using two and three missions as
a reference, respectively, N = 13 and N = 19. Our method
shows that the best ROC curves are obtained with more SAR
images in the stack, i.e., N = 19. This analysis shows that
the increase in temporal diversity, i.e., the increase in N ,
provides more a priori information for the TRPCA about the
clutter and the target, and consequently, better performance
is obtained. In this analysis, we have our best case with an
FAR = 0.028 FA/km2 and a PD = 0.987 using λ = 26.536 ×

10−4 and Missions 3–5 as reference.
Fig. 5 shows comparison of our best ROC curve with other

best ROC curves from other CD methods on VHF WR SAR
images. For this, we considered the proposed CD methods
based on matrix RPCA [12], [14], a recent iterative CD
method [5], and one of the first CD methods on VHF WR
SAR images pairs [8] and stacks [10]. For a fair comparison,
we expanded [12] to our best case. Note that the proposed
method in the present work provides clear gains in perfor-
mance compared with previous approaches, which are based
on either image pairs or stacks.

V. CONCLUSION

This letter proposed a CD method based on TRPCA for
WR SAR image stacks. The proposed approach benefits from
the multidimensional characteristics of TRPCA, obtaining
accurate information on the data and consequently reducing
FAs. Stacks with seven, 13, and 19 were considered for
the experiments. The best results were obtained when more
reference images were added to the stack, i.e., when more
reference information was provided to TRPCA. Experiments
on the CARABAS-II dataset show that the proposed method
overcomes state-of-the-art CD methods, such as the one based
on the matrix robust PCA, in terms of the PD and FAR on
the same dataset. In particular, our method achieves a PD of
99% and an FAR = 0.028 FA/km2. In recent years, there has
been a tremendous increase in the release of SAR systems,
which has allowed for greater accessibility to different types
of SAR images. Thus, CD methods that enable the exploration
of temporal and spatial diversity in SAR image stacks, such
as TRPCA, become even more important.
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