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A Gaussian-Mixture Nested Factorial
Variational Autoencoder Approach

Prasanjit Dey ', Soumyabrata Dev"”, Member, IEEE, and Bianca Schoen Phelan

Abstract—1In recent years, global concern for human health
has escalated due to the persistent threat of air pollution,
resulting in a surge of chronic diseases and premature mortality.
Poor air quality not only has adverse effects on human health
but also poses negative impacts on vegetation, society, and
the economy. Hence, it is imperative to invest more effort in
accurately predicting multivariate air pollutants to offer practical
and relevant solutions. However, many machine learning (ML)
and deep learning (DL) models face significant challenges when
dealing with the complexities of multivariate air pollution dynam-
ics and the ill-posed nature of the data. In this letter, we propose
a Gaussian-mixture nested factorial variational autoencoder
(NF-VAE), specifically designed for multivariate air pollution
prediction. To assess the performance of the proposed framework,
we conducted experimental validation using air pollution data
from six monitoring sites in Chinese cities. Three statistical
indicators have been used to evaluate forecasting accuracy. The
experimental results demonstrate the satisfactory performance of
the NF-VAE model in predicting six pollutants for six different
sites. Furthermore, the results indicate that the proposed NF-VAE
model can effectively enhance efficiency gains, demonstrating
improvements of at least 31% for RMSE, 22% for MAE,
and 13% for R?> compared with popular DL models, namely,
long short-term memory (LSTM), gated recurrent unit (GRU),
bidirectional LSTM (BiLSTM), and bidirectional GRU (BiGRU).

Index Terms— Air pollutant, deep learning (DL), factorial
variational autoencoder, latent space, machine learning (ML).

I. INTRODUCTION

q IR quality is a critical concern globally, particularly
in urban areas experiencing rapid population growth
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and increased industrialization. The degradation of air quality
poses significant threats to public health, with documented
adverse effects, including diseases, allergies, and, tragically,
human fatalities [1], [2]. The air quality index (AQI) serves
as a pivotal indicator of air quality, encompassing six major
air pollutant components: fine particulate matter (PM; s), res-
pirable PM;, nitrogen dioxide (NO,), sulfur dioxide (SO,),
carbon monoxide (CO), and ozone (O3) [3]. Monitoring and
forecasting air quality have become essential endeavors for
mitigating these health risks and improving overall well-being.

Machine learning (ML) and deep learning (DL) models for
predicting air pollutants have garnered significant attention in
the research community in recent years [4], [5]. These models
leverage historical air quality data to make informed predic-
tions, offering valuable insights into air pollution dynamics.
For instance, Wang et al. [6] introduced a hybrid ML model
integrating a biphasic decomposition method with an extreme
learning machine (ELM) for AQI prediction, demonstrating
promising results. Zhang and Li [7] proposed a DL model, fus-
ing convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks, to predict AQI with high accu-
racy. Meanwhile, Leong et al. [8] leveraged support vector
machines (SVMs) to forecast the air pollution index (API) in
specific regions. Zhang et al. [9] combined semi-supervised
models, namely, empirical mode decomposition (EMD) and
bidirectional LSTM (BiLSTM) neural networks for predicting
PM, 5 concentration. Chen et al. [10] proposed an integrated
dual LSTM model to forecast air quality in a specific zone.
Song et al. [11] introduced an LSTM-Kalman time prediction
model, which uses LSTM to capture information from histor-
ical data and fine-tunes the time data sequence using Kalman
filtering.

While these approaches have made significant strides in air
quality prediction, there remains a need for more advanced
techniques capable of handling the multivariate nature of
air pollution, where various pollutants intercorrelate, exhibit
complex temporal patterns, and present characteristics of an
ill-posed problem [12]. The existing methods often struggle to
capture these intricate relationships, leading to a lack of gener-
alization capability. In dealing with multivariate and dynamic
pollution data, the challenges arise from ill-posed problems
lacking essential characteristics such as well-posedness, sta-
bility, and existence. Unlike well-posed problems, ill-posed
ones, prevalent in pollution data’s complexity, struggle to offer
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Fig. 1. Proposed forecasting framework for predicting air pollutants using Gaussian-mixture NF-VAE.

unique and stable generalization capabilities. Small variations
or errors in initial data can result in significant uncertainties,
sometimes making it impossible to determine generalization
capability.

To address this problem, we have proposed an innova-
tive Gaussian-mixture nested factorial variational autoencoder
(NF-VAE). These variational autoencoders (VAEs), renowned
for their ability to capture structured and compact latent encod-
ings of data, stand out as promising candidates for achieving
these objectives. Our method surpasses the limitations of the
existing models as it addresses the intricate challenge of multi-
variate air pollution prediction and tackles the ill-posed nature
of air pollution data. The NF-VAE framework empowers us to
explore and untangle the complex relationships among various
air quality components, ultimately leading to more precise and
insightful multivariate predictions.

The main contributions of the letter are as follows.

1) The first contribution is primarily related to the devel-
opment of an innovative Gaussian-mixture NF-VAE
framework. The proposed framework is capable of han-
dling multivariate pollutants prediction and addressing
the ill-posed problem of the dynamic nature of air pol-
lution data. It has the potential to improve the forecasting
of multivariate ambient air pollution.

The second contribution lies in the validation of the
proposed framework for multivariate data with multiple
outputs.

The third and final contribution of this study involves
a comprehensive comparative analysis between the
proposed forecasting model and several powerful DL
models. Through meticulous evaluation using air pollu-
tion data from six sites in China, the study demonstrates
that the NF-VAE framework exhibits superior forecast-
ing performance for various air pollutants. Notably,
it outperforms well-established DL models such as
LSTM, gated recurrent unit (GRU), BiLSTM, and bidi-
rectional GRU (BiGRU), affirming its effectiveness in
forecasting multivariate pollutants.

2)

3)

The following sections II of this letter delve into our
NF-VAE approach. Section III presents a comparative anal-
ysis using real-world air quality data. Finally, Section IV
describes the conclusions. To access the code for repro-
ducing this research, one can find it in this repository:
https://github.com/Prasanjit-Dey/NF-VAE.

II. PROPOSED METHODOLOGY

In this section, we describe the non-Gaussian characteristics
of air pollution data. Following this, we introduce the proposed
Gaussian-mixture NF-VAE framework for predicting PM; s,
PMjy, NO,, SO,, CO, and Oj levels from six monitoring
sites. The overall framework of the proposed NF-VAE is
illustrated in Fig. 1. The middle part of Fig. 1 represents the
NF-VAE, which primarily consists of nested factorial encoder
and decoder blocks. Each block represents an encoder/decoder
network.

A. Variational Autoencoder

To gain a clearer understanding of the VAE, let us begin
with a brief overview of the autoencoder. An autoencoder is
a neural network designed to learn efficient codings of input
data through unsupervised learning. It comprises three core
components: the encoder, the latent space, and the decoder.
The encoder compresses input data, such as air pollution
measurements, into a latent-space representation. This latent
space stores the essential information in a compressed form,
optimizing the data distribution within this space. The decoder
reconstructs the input data from the latent representation,
aiming to produce outputs as close as possible to the original
inputs.

B. Non-Gaussian Characteristics of Air Pollution Data

The behavior of pollutants (a), including PM,s, PM,
NO,, SO,, CO, and Os, is characterized by a significant
diversity in scales. This wide-ranging variability leads to their
characterization as having a strong non-Gaussian nature. For
the sake of simplicity, let us assume that the parameter “a”
follows a Gaussian (normal distribution). In this hypothetical
scenario, different components or features extracted at various
scales should not exhibit correlations or dependencies. How-
ever, this expected independence is not observed in practice,
particularly when dealing with real-world data such as air
pollution data. In reality, the dependencies between different
scales are shown to be crucial for accurately capturing the
non-Gaussian stochastic (random) structure of the data [13].
These dependencies can be captured by considering the fol-
lowing correlation matrix:
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The matrix includes three types of coefficients. Correlation
coefficients E{W,(W,)T} describe the roughness of the data.
E{W,(W|W,])T} captures signed interactions between the
coefficients of the air pollution data. They have the capability
to detect sing-asymmetry and time-asymmetry within “a.”
Finally, coefficients E{W|W,|(W|W,])T} capture correlation
between sign envelopes |W,| at different time intervals.

C. Gaussian-Mixture NF-VAE

To efficiently predict concentrations of PM, s, PM;g, NO,,
SO,, CO, and O3, a generative model is essential for extract-
ing valuable features from non-Gaussian air pollution data.
Gaussian-mixture VAEs [14], [15] are known for their ability
to learn highly structured, low-dimensional latent representa-
tions of data, making them promising candidates for achieving
our predictive goal. As our objective of predicting multivari-
ate air pollutants from various input sources with different
timestamps, we propose a Gaussian-mixture NF-VAE. This
proposed model extracts essential features for predicting mul-
tivariate air pollutants with varying timestamps through a
three-step process: 1) using a nested joint encoder to extract
feature maps; 2) learning low-dimensional Gaussian-mixture
latent variables for each timestamp; and 3) within the nested
decoder, decoding the latent features of each timestamp to
predict multivariate air pollutants. The subsequent sections
provide a detailed description of our proposed generative
model.

1) Generative Model: Let a = aqg,...,a,—; denote the
observed features of each pollutant, where ¢ represents the
timestamp. Our objective is to approximate the target joint
distribution p(a) through variational inference [16] using
samples from this distribution as training data. To achieve this,
we define the following generative model:

pola, b, c) = py(alc) pe(clb) py(b)

-1
= H po(ailci) po(cilbi) po (D) 2)

i=0
where ¢; and b;, for i = 0,...,t — 1, represent the
Gaussian-mixture and categorical latent variables correspond-
ing to the ith time stamp, respectively. Besides, b =
by,...,b;_;, and ¢ = c¢gp,...,c;—1 denote the collections
of latent variables for all the time stamps. We choose the
following parametric distributions for these random variables:

po(bi) = Cat(e;)
po(cilb) = N (cilpe.i(b; 0), diag (o, (bi; 0)))
polaile) = N (ailttai(c; 0), diag(a?;(ci30)))  (3)

where py(c;|b;) denotes a Gaussian distribution having a mean
defined as p.;(b; 6) and diagonal covariance of ac%i(bi; 0).
These parameters are simply learnable vectors for each b;.
This configuration results in a Gaussian mixture model for c;.
Given c¢;, we define a; as a Gaussian distribution having a
mean of 1, ;(c; #) and diagonal standard deviation aazyi(ci; 0),
both of which are parameterized using deep neural networks.
The generative model mentioned above involves independent
decoders, meaning there is a mapping from the latent variable
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TABLE I

HYPERPARAMETER SETTINGS FOR NE-VAE, LSTM, GRU, BI-LSTM,
AND BI-GRU ACCORDING TO THE BEST MODELS’ PERFORMANCE

Models Batch Learning Latent Epochs Optimizer Activation Loss
Size Rate size

NE-VAE 256 103 32 100 Adam ReLU MSE

LSTM 256 1073 - 100 Adam ReLU MSE

GRU 256 1073 - 100 Adam ReLU MSE

Bi-LSTM 256 1073 - 100 Adam ReLU MSE

Bi-GRU 256 103 - 100 Adam ReLU MSE

to a covariance representation for each timestamp in the
prediction task. However, the training of this generative model
requires using a latent posterior distribution inference model.

2) Inference Model: The earlier described model requires
the process of marginalizing the Gaussian-mixture and cat-
egorical latent distributions to evaluate the likelihood of the
parametric distribution py(a). However, due to the high dimen-
sionality of this distribution, the computational complexity of
this process is very high. To address this challenge, we approx-
imate the latent posterior distribution g (b, cla). It explores
potential features across multivariate pollutants at various time
stamps. To predict the multivariate pollutants, we used an
approximation to the latent posterior distribution using the
following factorization:

g¢(c, bla) = qy(c|b, a)gy(bla)
-1
= [ ascilbi. a)qy bila). “)
i=0
We use the subsequent parameterizations to train an amor-
tized latent posterior model

qs(bila) = Cat(rw;(a; ¢))
qg(cilbi, @) = N (cilpe,i(a, b ¢), diag(a2;(a, bi; ¢)))  (5)

where i € {0,...,t — 1}, m(a;¢) denotes the forecast
membership probabilities for the covariance input “a” at
the ith timestamp. As the inferred latent variable encodes
information regarding the forecast membership of “a,” we
explicitly incorporated both “a” and b; into the deep neural
network to parameterize its mean . ;(a, b;; ¢) and diagonal
covariance o2,(a, b;; ).

3) Objective Function: To train the NF-VAE, the objective
is to minimize the reverse Kullback-Leibler (KL) divergence
between the parameterized distribution and the true joint
distribution

KL(p(a) || po(a)) = Egnpa)[log p(a) — log ps(a)]
= Eu~p@[—log py(a)] 4 const. (6)

III. EXPERIMENTAL RESULT
A. Dataset and Parameter Description

The dataset comprises six major air pollutants (PM; s, PMy,
NO;,, SO,, CO, and Os3), gathered from six monitoring stations
in Beijing, China, available via OpenAQ [17]. It spans from
December 27, 2017, to August 9, 2021, recorded at hourly
intervals, totaling 25941 h. We used 90% of the data (the
first three years) for training, reserving the last year’s data
(February 17, 2021, to August 8, 2021) for testing the models
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QUANTITATIVE COMPARISON WITH NE-VAE AND FOUR OTHER METHODS FOR SIX POLLUTANTS ACROSS SIX MONITORING SITES. THE METRICS

TABLE I
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INCLUDE RMSE, MAE, AND R?. WE USE TWO COLORS TO LABEL THE TOP TWO METHODS FOR EACH POLLUTANT AT EACH SITE:

INDICATES THE BEST MODEL RESULT, AND BLUE INDICATES THE SECOND-BEST MODEL RESULT

Models
Site Pollutant NE-VAE LSTM GRU BiLSTM BiGRU
RMSE. MAEL Rt RMSEl MAEl R®’{ RMSEl MAEl, R?+ RMSE, MAE, R?’{1 RMSEl, MAE, R% 1
— PMy5 5 8.02 537 0.935 8.67 593 0.924 778 529 0.938 8.10 552 0.933
2 PMqo 19.3 12.5 0.861 19.2 12.6 0.862 202 132 0.848 20.3 13.1 0.846
5 NOo 10.3 6.69 0.865 9.90 6.46 0.876 10.3 6.68 0.864 103 6.91 0.864
—_ SOo 3.86 1.11 0.512 4.00 1.28 0.475 3.81 1.32 0.524 3.62 1.16 0.572
2 Cco 126.0 825 0.857 1232 719 0.863 130.4 80.7 0.847 130.3 86.0 0.847
» [e] 10.1 7.11 0.959 10.3 6.41 0.958 10.3 6.38 0.957 10.3 6.58 0.958
- PMs 5 8.28 5.44 0.937 8.42 577 0.935 7.82 5.36 0.944 8.23 5.66 0.938
3 PMq( 16.1 10.5 0.881 159 10.6 0.884 17.9 123 0.852 16.7 11.0 0.871
@ NOo 945 6.27 0.878 9.30 6.33 0.882 9.65 6.56 0.873 9.89 6.76 0.866
a SOo 1.96 1.15 0.771 1.84 1.09 0.799 1.90 1.08 0.787 1.91 1.11 0.782
2 Cco 128.6 79.2 0.848 129.4 81.7 0.846 129.2 78.0 0.847 131.8 83.2 0.841
» O3 9.77 6.95 0.962 10.7 6.81 0.954 10.3 6.30 0.958 10.0 6.07 0.960
— PMs 5 22.6 6.00 0.437 13.9 5.81 0.786 225 5.95 0.446 14.9 5.67 0.756
2 PM1o 16.5 10.8 0.859 16.3 109 0.862 17.7 11.5 0.837 16.5 10.8 0.859
< NOo 10.0 6.54 0.850 10.3 6.85 0.841 10.1 6.69 0.848 10.4 6.82 0.839
o NeDY 3.03 1.02 0.555 3.02 1.01 0.558 3.05 1.17 0.549 3.08 1.10 0.542
£ Cco 203.5 73.9 0.655 206.1 753 0.646 202.7 70.6 0.658 204.5 74.2 0.652
@ O3 7.18 11.0 6.91 0.949 10.4 0.955 10.8 6.50 0.952 10.7 6.65 0.952
. PMs 5 9.35 6.49 0918 10.2 729 0.901 9.33 6.34 0918 9.28 6.55 0.919
x PM1o 15.1 9.92 0.922 16.4 10.6 0.908 15.1 9.99 0.923 16.1 9.86 0912
;; NOo 10.7 6.66 0.798 10.7 6.92 0.800 10.7 6.75 0.798 10.9 7.02 0.791
-+ SOo 3.49 2.08 0.571 3.54 2.34 0.559 3.81 2.18 0.489 3.70 2.27 0.517
2 Cco 139.1 89.9 0.805 133.4 874 0.821 1219 81.3 0.850 124.7 84.2 0.843
» O3 7.10 11.5 6.77 0.944 10.7 0.951 11.6 6.69 0.943 11.3 6.82 0.946
P PM5 5 6.34 11.0 6.61 0.927 10.5 0.933 10.6 6.04 0.932 10.6 6.24 0.933
I PM1o 18.1 11.4 0.935 10.9 17.7 0.951 17.7 10.9 0.951 19.3 11.4 0.942
g NOo 6.47 4.37 0.899 6.62 4.48 0.895 6.54 445 0.897 6.94 4.86 0.884
“ SOo 12.8 3.96 0.331 13.5 3.64 0.264 12.3 3.72 0.390 12.3 3.60 0.381
2 Cco 107.0 70.4 0.879 108.3 70.5 0.874 109.1 71.0 0.875 110.6 74.6 0.871
& O3 6.81 10.5 6.55 0.965 9.96 0.969 10.3 6.33 0.966 10.4 6.47 0.965
— PMs 5 6.09 10.6 6.38 0.937 9.60 0.948 9.61 6.02 0.948 10.8 7.32 0.934
he PMqq 0.942 17.7 11.2 0.942 16.8 10.3 16.8 10.7 0.948 17.6 11.2 0.943
%’ NOo 9.27 6.12 0.837 9.22 594 0.838 9.06 5.89 0.844 9.37 6.12 0.833
© SOo 4.58 252 0.613 4.63 251 0.604 4.85 2.63 0.566 4.95 293 0.548
2 co 139.4 90.1 0.860 141.9 92.3 0.855 138.2 87.7 0.862 139.9 89.6 0.859
< O3 6.80 0.965 10.0 0.964 9.70 6.01 10.0 6.36 0.963 10.6 7.20 0.958
N 10
© P N . .
o 060 030 025 023 I of long-term predictions and enhance the models’ predictive
& A o8 T
g capabilities.
o 0‘;’;\’ - 0.60 1.00 0.66 0.32 0.49 p
2o
g 06 To evaluate the performance of the NE-VAE model, we con-
= © - 050 0.66 1.00 0.29 0.56 0.20 : : : b .
g - e ducted a quantitative comparison with four other methods:
! & : . . .
g lom om om LSTM, GRU, BiLSTM, and BiGRU, across six pollutants at
£ -0.2 . . . .
E 8 six monitoring sites. Table II shows that the proposed NE-VAE
a oé\' E 0.49 0.56 0.22 1.00 0.23
A -oo emerges as the most effective approach for addressing mul-
6 0.20 023 | 100 . . . . . . .
&° H - I_O,2 tivariate air pollution forecasting problems, showcasing high
‘ .
P efficiency and satisfactory accuracy. Notably, the NE-VAE

parameter_location_id

Fig. 2. Correlation matrix among ambient air pollutants (PM 5, PM o, NO,,
SO;, CO, and O3) in site 1 (6167).

(see supplementary material for dataset location). We have
included a detailed summary of the hyperparameters used
for each model in Table I, which enables reproducing the
results. In addition, Fig. 2 shows the correlation coefficients
among PM; s, PMg, NO;, SO,, CO, and O3 over Sitel (6167)
(see supplementary for other sites). This figure highlights a
moderate positive correlation among PM; s, PMjg, NO;, SO,,
and CO. The efficient correlation within the dataset supports
the robust training of our proposed NE-VAE model, as well
as other comparison models.

B. Result Analysis

The experiments conducted in this study are designed with
the primary objective of analyzing the performance of the
NE-VAE model alongside four other DL models in predicting
six different pollutants across six distinct sites. In the context
of multivariate forecasting, each model undergoes a super-
vised training process, aiming to capture and understand the
temporal dependencies present in the time-series data of each
pollutant. The primary aim is to acquire a robust understanding

framework outperforms popular DL models such as LSTM,
GRU, BiLSTM, and BiGRU in forecasting the levels of all the
investigated pollutants (PM, 5, PMjo, NO,, SO,, CO, and O3)
measured at six Chinese location—Sitel (6167), Site2 (6168),
Site3 (6169), Site4 (6218), Site5S (6273), and Site6 (6274).
As anticipated, the NE-VAE framework achieves the lowest
forecasting error (RMSE, MAE) and the highest R? score for
most of the six sites, reinforcing its effectiveness in providing
accurate predictions for diverse environmental variables.

For a visual illustration, the observed ground-truth concen-
trations (averaged over 24 h for each data point) alongside
the forecast concentrations using NE-VAE, LSTM, GRU, Bi-
LSTM, and Bi-GRU models are depicted in Fig. 3 for CO from
Sitel (6167). The results from other stations show relatively
similar outcomes. From Fig. 3, it is evident that the proposed
NE-VAE model demonstrates a strong ability to accurately
forecast future trends in CO concentration dynamics.

Similarly, Fig. 4 provides insight into the average validation
metrics for PM, 5, PMjy, NO,, SO,, CO, and Oj pollutants
across six sites, using the proposed NE-VAE framework in
comparison to LSTM, GRU, BiLSTM, and BiGRU models.
The results indicate a substantial performance advantage for
the NE-VAE framework, showcasing efficiency gains of at
least 31% for RMSE, 22% for MAE, and 13% for R? when
contrasted with the LSTM, GRU, BiLSTM, and BiGRU
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Fig. 3.

Comparison of ground-truth CO concentrations versus predicted CO concentrations using NE-VAE, LSTM, GRU, Bi-LSTM, and Bi-GRU for Sitel

(6167). The blue dot with a line represents the average standard deviation (error) of all the models for each data point (averaged over 24 h).
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Fig. 4. Average validation metrics [(a) RMSE, MAE, and (b) (R?)] for
six pollutants across six sites in multivariate forecasting using the proposed
NE-VAE, LSTM, GRU, BiLSTM, and BiGRU models.

RMSE

O R2

(b)

models. These findings underscore the efficacy of the proposed
NE-VAE approach in achieving superior predictive accuracy
for a diverse set of pollutants, emphasizing its potential as
a robust model for multivariate time-series forecasting in
environmental studies.

IV. CONCLUSION

Air pollution is a global issue with detrimental health
effects, exacerbated by industrial advancements. Monitoring
ambient air quality is crucial. This letter introduces the
Gaussian-mixture NF-VAE as an effective framework for
improving air pollution forecasting. Our study shows that
the NF-VAE model outperforms LSTM, GRU, BiLSTM, and
BiGRU in forecasting six key pollutants (PM; 5, PM;o, NO,,
SO,, CO, and O3), using RMSE, MAE, and R? as evaluation
metrics. One limitation of our proposed NF-VAE model is
the assumption of a Gaussian-mixture distribution. While the
model assumes that the data follow a certain pattern (a mixture
of Gaussian distributions), the complex and diverse nature
of air pollution dynamics at some sites may not align well
with this assumption. To address this, we plan to use data
preprocessing techniques and introduce a multiscale version
of the model that combines NF-VAE with a wavelet-based
multiresolution representation in the future. These steps will
enhance the model’s performance and applicability to diverse
air pollution scenarios.
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