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Abstract— Deep learning (DL) models are generally less able
to maintain their performance in out-of-domain (OOD) testing.
Model transferability is crucial, especially when a model needs
to be applied to a new dataset, such as in disaster emergency
response, where the training samples are scarce. To solve the
aforementioned issues, we propose a semi-supervised framework
to improve model generalization using unlabeled samples from
the target domain. The framework consists of two main steps:
model initialization, which incorporates past events, and iterative
fine-tuning. The latter step relies heavily on the pseudolabels
inferred with high confidence from the former step. We tested
our framework on the 2024 Noto Peninsula Earthquake. Our
framework shows an improvement in model generalization indi-
cated by higher scores in the tuned model compared with the
initial model. The effect is even greater when the local context
from the past event is included in the initial learning step. In this
case, the score has increased by about 21% from 0.62 to 0.75.
The proposed framework offers a promising solution for rapid
disaster damage mapping.

Index Terms— Building damage recognition, disaster resilience,
emergency response, remote sensing (RS), semi-supervised.

I. INTRODUCTION

REMOTE sensing (RS) and deep learning (DL) have been
widely studied in many applications, including building

damage detection. Generally, model evaluation can be done
in two streams: in-domain (IND) and out-of-domain (OOD).
IND testing is undertaken by splitting samples into a training
and test set. In this scheme, training and testing are drawn

Manuscript received 3 April 2024; revised 24 May 2024; accepted 27 May
2024. Date of publication 31 May 2024; date of current version 10 June 2024.
This work was supported in part by the Japan Society for the Promotion
of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI), under
Grant 21H05001, Grant 22K21372, and Grant 22H01741; in part by the
Ministry of Education, Culture, Sports, Science and Technology (MEXT);
in part by the Co-Creation Center for Disaster Resilience, Tohoku University;
and in part by the Cross Ministerial Strategic Innovation Promotion Program
under Grant JPJ012289. (Corresponding author: Shunichi Koshimura.)

Sesa Wiguna and Ruben Vescovo are with the Department of Civil and Envi-
ronmental Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
(e-mail: wiguna.sesa.p1@dc.tohoku.ac.jp; vescovo.ruben.t7@dc.tohoku.ac.jp).

Bruno Adriano, Erick Mas, Ayumu Mizutani, and Shunichi Koshimura
are with the Disaster Geo-informatics Laboratory, International Research
Institute of Disaster Science (IRIDeS), Tohoku University, Sendai 980-8572,
Japan (e-mail: adriano@irides.tohoku.ac.jp; mas@irides.tohoku.ac.jp;
ayumu.mizutani.c1@tohoku.ac.jp; koshimura@irides.tohoku.ac.jp).

Digital Object Identifier 10.1109/LGRS.2024.3407725

from the same distribution. In the OOD scheme, samples are
unseen before and usually drawn from different distributions.
Regarding these testing schemes, IND generally achieves a
higher score as the models are already familiar with the
distribution. For some applications, such as disaster emergency
response, the OOD satisfies the real-world application.

In the aftermath of a disaster, training samples are unavail-
able, and data collection is time-consuming. Meanwhile, the
damage information is required immediately to help the emer-
gency response efforts. One possible approach would be to
use a model trained on a big dataset and use it for inference
in the new disaster-affected area [1]. In this setting, the testing
is OOD, as the new disaster location will likely differ from
the one the model was trained on. Previous studies (e.g., [2],
[3], [4]), however, have reported a drop in performance when
their models are applied to unseen disaster events.

In the lack of training samples, some approaches have
been proposed to improve model generalizations, including
domain adaptation, fine-tuning, and semi-/un-supervised learn-
ing. Kellenberger et al. [5] use various domain adaptation
techniques to improve the model’s generalization in land cover
classification. Yang et al. [6] reported an improvement in
model generalization by fine-tuning DL trained with satellite
images with few samples from aerial photographs.

Semi-supervised learning frameworks use labeled and unla-
beled data in the training loop. One of the approaches is
to use a model trained on labeled data to predict label
probability from the unlabeled target samples. The unlabeled
data with a high probability (pseudolabels) are used in the
training loop, e.g., via fine-tuning or retraining the model.
Previous studies (e.g., [7], [8], [9]) have shown the usefulness
of using these high-probability samples. In Saha et al. [9],
a pseudolabel of a target data is used in incremental training
schemes to align conditional distributions across domains.
In Paul and Ganju [7], pseudolabels were generated using
ensemble models and assimilated with original training data
as input for the next round of training ensemble models.
Similarly, Babakhin et al. [8] use multiple round training
using assimilated pseudolabel samples and training data. The
second-last models were used as an ensemble model to infer
the final prediction.
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In this study, rather than using the pseudolabel information
to train a model from scratch, we use it only for fine-
tuning. This approach results in inexpensive computation. The
contributions of this study are summarized as follows.

1) We propose a semi-supervised framework using unla-
beled data to improve model generalizations in unseen
data to contribute to the emergency response phase.
We applied our approach to the 2024 Noto Peninsula
Earthquake in Japan.

2) We evaluate the performance of a model trained only
with the global dataset and a model trained with an
additional local context from the same region.

3) We examine the classification results with higher reso-
lution aerial photographs to understand the advantages
and limitations of the model.

II. METHODOLOGY

A. Problem Settings

The study aims to use RS and DL technologies to detect
building damage to support emergency response efforts. In dis-
aster emergency settings, postdisaster imagery of the target
area may be provided, but there is a lack of labeled data.
However, we can access past event data, including imagery
and corresponding damage labels. The task is then to predict
the damage using this data availability. In other words, given
the source domain dataset Ds comprising satellite imagery Xs

and its corresponding damage label Ys , we aim to predict a
label Yt to the target domain Dt imagery X t .

For the initial rapid damage assessment purposes, we focus
on two damage classes, namely, no-damage and damage.
We perceive the problem as image classification, in which each
building image will be assigned a class of either no-damage
or damage.

As for the input images, we use multitemporal very-high-
resolution (VHR) optical imagery acquired before and after the
disaster. We operate under the assumption of perpetual access
to predisaster images, sourced from platforms such as Google
Satellite or Bing Satellite.

B. Semi-Supervised Framework

In this study, we propose a semi-supervised framework
using unlabeled data to help a model trained in the source
domain to generalize in unseen data of the target domain
(Fig. 1). The framework comprises two main steps: model ini-
tialization and iterative fine-tuning. Model initialization refers
to training DL models with a large dataset. The second stage
is the fine-tuning process using target domain unlabeled data.
Since the tuning requires labels, we generate a pseudolabel ŷt

according to the damage probability inferred by the trained
model. We discard all the inputs that score within a predefined
threshold using Softmax (Con-1).

We iterate the tuning process multiple rounds where the
predicted probability of each last tuned model is used for the
next round of tuning. Note that the fine-tuned model is only
used for inference. The tuning stops when the total pseudolabel
is less than that of the previous round (Con-2).

Fig. 1. Illustration of the semi-supervised iterative tuning framework. Past
event dataset is fed to the initial training. The trained model is used to obtain
damage probability of the 2024 Noto Peninsula Earthquake.

The proposed framework was tested using a global
dataset (xBD) [10] as a source domain (Xs , Ys) and the
recent 2024 Noto Peninsula Earthquake as a target domain X t .
Note that the 2024 Noto Peninsula Earthquake is only used
for testing, so the model has not seen it during training.
We also experiment with adding samples to the xBD, namely,
the 2011 Great East Japan Earthquake and Tsunami (hereafter,
2011 Tohoku Tsunami). Specifically, we evaluate the model
performance between training only with xBD and a combina-
tion of xBD and the 2011 Tohoku Tsunami. Since the xBD
does not include samples from Japan, it may be beneficial to
introduce the model with samples from the same region as the
target area. This way, the model will have prior knowledge of
the local context of the target domain, for example, its building
characteristics. Details about the data used are described in
Sections III-A and III-B.

III. EXPERIMENTS AND RESULTS

A. Data Descriptions

This section explains the data used in this study. It includes
xBD and the 2011 Tohoku Tsunami dataset, which was used
for training, and the 2024 Noto Peninsula Earthquake as the
target area of a site for testing.

1) xBD Dataset: The xBD dataset is initially released for
xView-2 Challenge [10]. It is a collection of 19 disasters
from around the globe from various disaster types, including
bushfire, fire, wildfire, volcanic eruption, earthquake, flood,
tsunami, hurricane, and tornadoes. The data comprise VHR
satellite imagery acquired before and after the disasters.
Each images have a ground sampling distance (GSD) of
0.5 × 0.5 m. Besides the imagery, the dataset is also provided
with building footprints with the corresponding damage of four
categories, namely, no-damage, minor-damage, major-damage,
and destroyed. Since the current study focuses on binary
classes, we grouped minor-, major-damage, and destroyed into
the damage class. Meanwhile, we keep the no-damage class
as it is.

2) 2011 Tohoku Tsunami Dataset: On March 11, 2011,
a massive tsunami hit the eastern coast of Japan. The tsunami
caused numerous deaths, missing, and massive damage to
infrastructure. This study focuses on the Sendai City area.

The dataset for the study comprises a pair of World-
View3 imagery captured before (10 August 2010) and after
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Fig. 2. (Top left) Epicenter and the intensity of the earthquake. The intensity is obtained from Quiet+ (https://app.quietplus.kke.co.jp/quakes?mode=quick).
(Bottom left) Number of samples per location. (Right) Ground truth and damage distribution predicted by the baseline (direct testing using an xBD pretrained
model) and our proposed framework. The predictions are generated using xBD + Tohoku training as the initial model. The graph in the bottom left shows
the number of samples per class in the study area.

(11 March 2011) the tsunami and damage label. The images
have a GSD of 0.5 × 0.5 m. As for the building dam-
age label, we used a building polygon from the Ministry
of Land, Infrastructure, Transport and Tourism of Japan
(MLIT) with the corresponding damage labels based on a
field survey [11]. The data are available at http://fukkou.csis.
u-tokyo.ac.jp/dataset/list_all.

MLIT categorized the damage classes into seven classes,
namely, no-damage, minor-damage, moderate-damage, major-
damage, complete damage, collapsed, and washed-away.
To meet the setting of the current work, we regrouped those
classes based on the damaged appearance in the images.
Specifically, we randomly selected samples from each sample
of MLIT and checked the damage states of those samples.
We then recategorized those samples into no-damage and
damage classes.

B. 2024 Noto Peninsula Earthquake

On 1 January 2024, a major earthquake of M7.6 hit the
Noto Peninsula in Ishikawa Prefecture, Japan. As of March 12,
the prefectural government confirmed 241 deaths in Ishikawa
prefecture. The disaster also injured 1188 people, displaced
15 920 families, and damaged over 80 000 houses and
buildings (https://www.pref.ishikawa.lg.jp/saigai/documents/
higaihou_108_0312_1400.pdf).

The earthquake has triggered collateral hazards, such as
tsunamis, landslides, and fires. To explore different types of
damage, the study focuses on four areas: Ukai fishing port
(hereafter, Ukai), Center of Suzu city (hereafter, Suzu), Center
of Wajima city (hereafter, Wajima), and Machinomachi in
Wajima city (herafter, Machinomachi). Each city has a unique
damaging factor. Ukai and Suzu were affected by both the
tsunami and strong motion. In Wajima, fires damaged many

buildings. In Machinomachi, the earthquake was the main
cause of the damage.

Postdisaster aerial photographs were taken by the Geospa-
tial Information Authority of Japan (GSI) a few days
after the disaster (https://www.gsi.go.jp/BOUSAI/20240101_
noto_earthquake.html). For Wajima city, the image acquisi-
tion date is 11 January 2024, while for other areas, the
images were captured on 2 January 2024. For some areas,
oblique photographs are available from Kokusaki Kougyou
(https://bois-free.bousai.genavis.jp/diarsweb). As for the pre-
disaster image, we used Google Satellite imagery. Both the
images have approximately 0.2 × 0.2 m. of GSD. To validate
our model, we generated a damage label through visual
interpretation by comparing the before- and after-disaster
images. We classify the damage into two classes according to
the structural conditions visible from the aerial photographs.
No-damage refers to buildings with undisturbed structures.
In contrast, buildings that are structurally disturbed are cat-
egorized as damage. The total samples of each studied city
are illustrated in Fig. 2. Note that the dataset from Noto event
is not included in the training.

C. Training Parameters

In our experiments, we use the Shifted Windows (Swin)
Transformer model [12] as the classification model. SwinT
was demonstrated consistently superior to other architectures
in a previous investigation [1]. Nonetheless, we performed
additional tests using a ResNet backbone. Ultimately, SwinT
again outperformed other architectures. Details of each archi-
tecture are outlined in our previous work.

We designed a Siamese structure comprising two identical
encoders to meet multitemporal input images. One encoder is
responsible for extracting features from predisaster images,
and the other for postevent images. The features extracted
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from each encoder are concatenated before being fed to the
additional linear layers for classification.

We used a pretrained model to achieve better convergence
and accuracy. The model was pretrained on ImageNet. The
model was then retrained on the xBD dataset with a batch
size of 64 for 30 epochs. We used BinaryCrossEntropy (BCE)
as a loss function. An initial learning rate (LR) of 1 × 10−4

was set. Cosine annealing LR with a minimum LR of 1 × 10−6

was used as LR Scheduler. AdamW was used as an optimizer
algorithm. To tackle randomness in the experiments, we used
a random seed number of 100. Data augmentation techniques,
including rotation, resizing, color transformation, and noise
transformation, were used to deal with overfitting and increase
the variability of models. All the experiments were imple-
mented using the PyTorch framework on an NVIDIA Quadro
RTX 6000 GPU machine.

For fine-tuning, we freeze all the blocks except the linear
layers and the last Swin Transformer block. All other training
settings were kept the same as in the initial training.

To evaluate model performance, we use F1. It considers both
precision and recall, which makes it suitable for imbalanced
datasets.

D. Results

This section evaluates the proposed method for predicting
damage in a new disaster event. To assess its effectiveness,
we compare the results with a baseline model (xBD pretrained
model without fine-tuning).

For the fine-tuning process, we experiment with six different
thresholds to obtain the pseudolabel. Each threshold deter-
mines the pseudolabel’s confidence level, which ranges from
lowest to highest. Each threshold value is randomly set based
on its strictness in determining the confidence level, affecting
the number of pseudolabels, hence the model performance.
These thresholds range from loose to strict. Details on the
values per each threshold, as well as the average F1, are
summarized in Fig. 3. The figure shows that the highest
score is obtained by threshold#5 (0.01 & 0.90 for no-damage
and damage, respectively). Thus, the results presented in this
section are calculated based on threshold#5. The performance
evaluation is reported in Table I, and the prediction maps are
depicted in Fig. 2.

The table shows that overall, our approach improves the
generalization, indicated by a higher score for iterative tuning
compared with the baseline. In the xBD input model, our
approach increases the overall score by 7% from 0.57 to 0.61.
All the areas also show improvements. For instance, for
Machinomachi, the tuning approach has improved the score
by 20% from 0.50 to 0.60.

The impact is even greater in cases where the 2011 Tohoku
Earthquake data are included in the initial training. Overall,
our method has increased the overall score by 21% from
0.62 to 0.75, with a significant improvement in the damage
class with an increase of 67% from 0.33 to 0.55. In this case,
all the areas experience significant improvements. It appears
that combining the past events from the local area and our
approach gives significant generalization ability of the model.
Introducing a local context may have helped models learn

Fig. 3. Ablation study with different threshold values. (−) and (+) indicates
the threshold for no-damage and damage class, respectively.

TABLE I
ACCURACY ASSESSMENT COMPARING THE

BASELINE AND ITERATIVE TUNING

the pattern better since the model is familiar with local
characteristics such as building styles.

The classification performance is illustrated in Figs. 4 and 5.
In general, our model can improve damage detection in
collapsed buildings. For example, in Case #1, the postdisaster
image shows that the building has collapsed, as indicated by
the flattened roof in the postdisaster image. The oblique image
also verifies this. The baseline model, however, predicted it as
no-damage. After the fine-tuning process, the model correctly
classified it as damage.

In Case #2, the building is damaged, indicated by a
structural change where the building has rotated. Meanwhile,
no significant changes appear in the roof. For this instance, the
baseline and our model misclassified it as no-damage. The two
cases indicated that our model can enhance damage detection
when there is an alteration in the roof. However, buildings
with damaged structures with no significant changes in the
roof tend to be classified as no-damage. This may be related
to the use of satellite imagery in the xBD. The nature of the
nadir view of the images tends to learn the damage states from
the top, in this case, building roofs.
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Fig. 4. Classification results calculated for the damage class. TP: True
positive, FP: False positive, FN: False negative, TN: True negative.

Fig. 5. Classification results calculated for the damage class in Ukai City.
Case #1 illustrates that our model improves damage detection in collapsed
buildings by looking at the significant change in the roof (e.g., flattened in the
postdisaster image). Case #2 shows that damaged buildings with no significant
changes in the roof tend to be classified as no-damage.

In our experiments, training took approximately 7 h. Once
the initial model and the target data were available, each
round of tuning and inference took approximately 20 min.
In addition, since past data are s available in most cases, it is
possible to train a model to prepare for a possible upcoming
disaster. During the emergency response, the trained model can
be directly used for inference and tuning processes. Due to its
generalization ability and speed in the process, the proposed
approach can be promising in helping disaster emergency
operations.

IV. CONCLUSION

In this study, we propose a semi-supervised iterative tuning
process using unlabeled data of the target area to help map the

building damage in emergency settings. The benefit of our pro-
posed method is that it operates with unlabeled samples, which
is often the case in disaster emergencies. Meanwhile, since the
model uses fine-tuning methods, this approach is inexpensive
in computation. We initiate a big model by training a damage
classification model with a global dataset (xBD). As a part
of the experiment, we also add damage dataset to the global
data. We used the trained models to predict unseen data. This
inference process results in a damage probability. We filter
the samples of the testing location with high confidence and
assign a pseudolabel to each sample based on the probability.
We use these samples to fine-tune the initial model.

We tested the framework on the recent 2024 Noto Penin-
sula Earthquake. Our framework shows an improvement in
the model’s generalization. The effect is even greater
when the similar building context from the past event is
included in the initial learning step. In this case, the score
increased by about 21% from 0.62 to 0.75. We believe that the
framework offers a promising solution for rapid disaster dam-
age mapping. As a final note, the proposed approach should
not be seen as a competitor to supervised and unsupervised
methods, rather as a complementary to them.
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