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Tropical Density Estimation of Phylogenetic
Trees
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Abstract—Much evidence from biological theory and empirical data indicates that, gene trees, phylogenetic trees reconstructed from
different genes (loci), do not have to have exactly the same tree topologies. Such incongruence between gene trees might be caused
by some “unusual” evolutionary events, such as meiotic sexual recombination in eukaryotes or horizontal transfers of genetic material
in prokaryotes. However, most of the gene trees are constrained by the tree topology of the underlying species tree, that is, the
phylogenetic tree depicting the evolutionary history of the set of species under consideration. In order to discover “outlying” gene trees
which do not follow the “main distribution(s)” of trees, we propose to apply the “tropical metric” with the max-plus algebra from tropical
geometry to a non-parametric estimation of gene trees over the space of phylogenetic trees. In this research we apply the “tropical
metric,” a well-defined metric over the space of phylogenetic trees under the max-plus algebra, to non-parametric estimation of gene
trees distribution over the tree space. Kernel density estimator (KDE) is one of the most popular non-parametric estimation of a
distribution from a given sample, and we propose an analogue of the classical KDE in the setting of tropical geometry with the tropical
metric which measures the length of an intrinsic geodesic between trees over the tree space. We estimate the probability of an
observed tree by empirical frequencies of nearby trees, with the level of influence determined by the tropical metric. Then, with
simulated data generated from the multispecies coalescent model, we show that the non-parametric estimation of the gene tree
distribution using the tropical metric performs better than one using the Billera-Holmes-Vogtmann (BHV) metric developed by
Weyenberg et al. in terms of computational times and accuracy. We then apply it to Apicomplexa data.

Index Terms—Apicomplexa, Kernel Density Estimator, Phylogenomics, Space of Phylogenetic Trees, Tropical Geometry

✦

1 INTRODUCTION

Due to efficient genome sequencing technologies in
terms of time and cost, it is essential to develop efficient
bioinformatic methods to analyze genome structure and
evolution. In this paper, we focus on correlations between
gene trees, that is, phylogenetic trees reconstructed from
alignments of genes in a genome. Ané et al., for example,
applied a Bayesian method to estimate concordance among
gene trees from multiple loci in [1]. However, most of such
estimators assume that concordance is present among the
given set of gene trees. In practice, however, numerous evo-
lutionary processes can reduce correlations between gene
trees. For example, such evolutionary processes include
negative or balancing selection on a locus, which might
increase the chance for ancestral gene copies to maintain
through speciation events [2], and horizontal gene transfer,
which shuffles divergent genes among different species [3].

In this paper, we propose a method analogous to esti-
mate a distribution of gene trees over the space of phylogenetic
trees as a whole. Especially using this estimated distribu-
tion of trees, our interest is to identify gene trees which
exhibit significant discordance among gene trees. These
“uncommon” genes can be generated from evolutionary
processes, such as, paralogy, neofunctionalization, horizon-
tal gene transfer or periods of rapid molecular evolution,
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and they might come from processes of data analyses, such
as incorrect sequencing, alignment, tree reconstruction or
annotation [4].

While parametric statistical methods are available or un-
der development, we propose in this paper a nonparametric
approach which offers particular advantages in phyloge-
nomic analyses. In particular, problems of estimation and
potentially incorrect selection of model parameters, which
could obscure the search for outlier trees, are obviated. Here
we propose a method analogue to kernel density estimator
to estimate a distribution of trees over the space of trees
using tools from tropical geometry.

One of the most challenging problems in phylogenomics
is to study correlations among gene trees over the space
of phylogenetic trees. Ideally, we could apply conventional
statistical methods directly to a sample of gene trees, how-
ever, the space of phylogenetic trees, the space of all possible
phylogenetic trees with m leaves, is not Euclidean. In fact
it is an union of lower dimensional cones over Re, where
e =

(m
2

)
and it is not convex [5]. Therefore, we cannot

just apply conventional statistical models in data science to
a set of phylogenetic trees because these methods assume
Euclidean spaces [6].

The notion of the space of phylogenetic trees with m
leaves comes from the work by Billera-Holmes-Vogtmann
(BHV) in [7]. Billera-Holmes-Vogtmann defined the space
by gluing m − 2 dimensional positive orthants, where each
orthant represents all possible rooted phylogenetic trees
with a fixed tree topology with m leaves. Over the tree space
with the BHV metric, two orthants with coordinates defined
by edge lengths of interior edges are glued to each other
if the tree topology for one orthant differs by one nearest
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neighbor interchange (NNI) move from the tree topology for
the other orthant. In their work, Billera-Holmes-Vogtmann
also showed that this tree space is CAT(0) space. This
means that for any two trees in the tree space there is a
unique shortest connecting path, called a geodesic, defined
by the CAT(0)-metric.

Shortly after that, in 2004, Speyer and Sturmfels showed
that the space of phylogenetic trees with m leaves is a
tropical Grassmanian [8], which is a tropicalization of the set
of all solutions for a system of certain linear equations [6]
under max-plus arithmetic. Several researchers then showed
that the tropical metric with max-plus algebra on the space of
equidistant trees with m leaves behaves very well [9], [10],
[11]. For example, the dimension of the convex hull, the
smallest tropical convex set, of s points with the tropical
metric over the tropical projective space (R ∪ {−∞})e/R1 is
at most s− 1 while this is not the case with the BHV metric
[11]. Therefore developing a machine learning algorithm
that predicts based on the tropical metric as a data proximity
measure is crucial for novel discovery.

Applications of the tropical metric to phylogenomics
have been often done over the space of equidistant trees.
An equidistant tree is a rooted phylogenetic tree whose
distance between its root to each leaf is the same for all
leaves in the tree. In terms of biology, this can be seen
as a phylogenetic tree with a molecular clock. Also, the
multispecies coalescent model assumes that all gene trees
are equidistant. Therefore this is a natural assumption in
evolutionary biology [12]. For example, Yoshida et al. [6]
and Page et al. [13] developed tropical principal component
analysis. In their work they use the fact that the space of
equidistant trees with m leaves is a tropically convex set
over the tropical projective space in terms of the tropical
metric and the tropical line segment between any trees over
the space is intrinsically geodesic and is unique [14].

A kernel density estimator (KDE) is a non-parametric
density estimator using kernel functions, which is useful
for, say, discovering outliers. Weyenberg et al. developed
a non-parametric density estimator over the space of phy-
logenetic trees in terms of the BHV metric by mimicking
a classical KDE [15]. The biggest problem Weyenberg et
al. encountered was that the kernel function normalizing
constant varies depending on the location of the center
of the function. In addition, even though Weyenberg et
al. developed a method to approximate the normalizing
constant for a kernel function with the BHV metric over the
space of phylogenetic trees, there is still no explicit method
to compute the normalizing constant.

In this paper, since the space of equidistant trees is a
tropical convex set [6], we apply a Hit and Run (HAR)
sampler from tropically convex sets with the tropical metric
developed by Yoshida et al. [16] to estimate the normalizing
constant of a kernel function with the tropical metric over
the space of equidistant trees. Computationally, we show
that the normalizing constant of a kernel function is inde-
pendent from a central location of the function over the
space of equidistant trees. Then we develop an analogue
of a classical KDE with the tropical metric over the space
of equidistant trees and, with simulated data generated
from the multispecies coalescent model, we show that the
KDE with the tropical metric performs better than the one

with the BHV developed by Weyenberg et al. [17] in terms
of computational time and accuracy. We also apply it to
Apicomplexa data from [18].

This paper is organized as follows. In Section 2, we
first outline basics on tropical geometry using the max-plus
algebra over the tropical semiring. Then, we outline our
non-parametric estimation of the gene tree distribution over
the space of phylogenetic trees with a given set of leaves
defined by the tropical metric. In Section 3, we show how we
set up simulation studies with our method. Then we show
the results from computational experiments with simulated
data generated from the multispecies coalescent model and
with the empirical data of Apicomplexa from [18]. In Section
4, we discuss the results from computational experiments
and we end with future work and an open problem in
Section 5.

2 METHODS

2.1 Basics of Tropical Geometry

Throughout this paper, like [8], we consider the tropical
projective torus Re/R1, which is isomorphic to Re−1. For
more details, see [19], [20].

Definition 2.1 (Tropical Arithmetic Operations). Under the
tropical semiring (R∪{−∞},⊞,⊙) , the tropical arithmetic
operations of addition and multiplication are defined as:

c1 ⊞ c2 := max{c1, c2}, c1 ⊙ c2 := c1 + c2,

where c1, c2 ∈ R ∪ {−∞}. Over the tropical semiring, the
identity element under addition is −∞ and the identity
element under multiplication is 0.

Definition 2.2 (Tropical Scalar Multiplication and Vector Ad-
dition). For any scalars c1, c2 ∈ R ∪ {−∞} and for any
vectors v = (v1, . . . , ve), w = (w1, . . . , we) over the tropical
projective space (R ∪ −{∞})e/R1, we have tropical scalar
multiplication and tropical vector addition as:

c1⊙v⊞c2⊙w := (max{c1+v1, c2+w1}, . . . ,max{c1+ve, c2+we}).

Definition 2.3. Suppose we have S ⊂ Re/R1. S is tropically
convex if

c1 ⊙ v ⊞ c2 ⊙ w ∈ S

for any c1, c2 ∈ R and for any points v, w ∈ S. Suppose
V = {v1, . . . , vs} ⊂ Re/R1. The smallest tropically-convex
subset containing V is called the tropical convex hull or
tropical polytope of V which can be written as the set of all
tropical linear combinations of V as:

tconv(V ) = {a1⊙v1⊕a2⊙v2⊕· · ·⊕as⊙vs | a1, . . . , as ∈ R}.

A tropical line segment between two points v1, v2 is a tropical
polytope of a set of two points {v1, v2} ⊂ Re/R1.

Definition 2.4 (Generalized Hilbert Projective Metric). For
any vectors v := (v1, . . . , ve), w := (w1, . . . , we) ∈ Re/R1,
the tropical distance dtr between v and w is defined as:

dtr(v, w) := max
i∈{1,...,e}

{
vi − wi

}
− min

i∈{1,...,e}

{
vi − wi

}
.

This distance measure is a well-defined metric over the
tropical projective torus Re/R1 [11].
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2.2 Basics of Ultrametrics
Suppose we have [m] := {1, . . . ,m} and let d : [m]× [m] →
R be a metric over [m], that is, d is a map from [m]× [m] to
R such that

d(i, j) = d(j, i) for all i, j ∈ [m]

d(i, j) = 0 if and only if i = j

d(i, j) ≤ d(i, k) + d(j, k) for all i, j, k ∈ [m].

Suppose d is a metric on [m]. Then if

max{d(i, j), d(i, k), d(j, k)} (1)

is attained at least twice for any i, j, k ∈ [m], then d is called
an ultrametric.
Example 2.5. Suppose m = 3. Let d be a metric on [m] :=
{1, 2, 3} such that

d(1, 2) = 2, d(1, 3) = 2, d(2, 3) = 1.

Since the maximum is achieved twice, d is an ultrametric.
A phylogenetic tree is a weighted tree whose internal

nodes do not have labels and whose external nodes, i.e.,
leaves, have labels [m]. Throughout this paper, we consider
a rooted phylogenetic tree with a leaf label set [m].
Definition 2.6. Suppose we have a rooted phylogenetic tree
T with a leaf label set [m]. If the distance from its root to
each leaf i ∈ [m] is the same distance for all i ∈ [m], then
we call T an equidistant tree.

In order to conduct a statistical analysis, we need to map
a phylogenetic tree on [m] to a vector representation. There
are many ways to map a phylogenetic tree to a vector, in-
cluding the BHV coordinates [7]. In this paper, we vectorize
phylogenetic tree as dissimilarity maps. Dissimilarity maps
are maps d : [m] × [m] → R such that d(i, i) = 0 and
d(i, j) = d(j, i). In phylogenetics, we consider dissimilarity
maps over the product of a leaf set [m] such that d(i, j) is the
pairwise distance between a leaf i ∈ [m] and a leaf j ∈ [m].
Throughout this paper we consider a vector of all possible
pairwise distances in T between any two leaves in [m] as
a vector representation of a phylogenetic tree T with [m].
Then we have the following theorem.

Theorem 2.7 ( [21]). Suppose we have an equidistant tree T
with a leaf label set [m] and suppose d(i, j) for all i, j ∈ [m] is
the distance from a leaf i to a leaf j. Then, d is an ultrametric if
and only if T is an equidistant tree.

Example 2.8. Suppose we have m = 5. Then, the phyloge-
netic tree shown in Fig. 1 is an equidistant tree with a leaf
label set [5] := {A,B,C,D,E} and its pairwise distances
are

u = (4, 4, 4, 4, 2, 2, 2, 1.6, 1.6, 0.6)

which is an ultrametric.
Using Theorem 2.7, if we wish to consider all possible

equidistant trees, then it is equivalent to consider the space
of ultrametrics as the space of phylogenetic trees on [m].
Here we define Um as the space of ultrametrics with a set of
leaf labels [m].

Throughout this paper, we assume we have a sample
of gene trees which are equidistant. This assumption is not
unusual in phylogenomics since the multispecies coalescent

A         B       C        D       E
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Fig. 1. Example of an equidistant tree with a leaf label set [5].

model assumes that all gene trees are equidistant trees in
order to conduct the inference on the species tree from a
sample of gene trees [12].

Theorem 2.9 ( [5], [13]). Suppose we have a classical linear
subspace Lm ⊂ Re defined by the linear equations xij − xik +
xjk = 0 for 1 ≤ i < j < k ≤ m. Let Trop(Lm) ⊆ Re/R1 be the
tropicalization of the linear space Lm ⊂ Re, that is, we replace
the classical addition by the tropical addition ⊞ and we replace
the classical multiplication by the tropical multiplication ⊙ in
the equations defining the linear subspace Lm, so that all points
(x12, x13, . . . , xm−1,m) in Trop(Lm) satisfy the condition:

max
i,j,k∈[m]

{vij , vik, vjk}

is achieved at least twice. Then the image of Um inside of the
tropical projective torus Re/R1 is equal to Trop(Lm).

Remark 1. Since Um ⊆ Re/R1 is the tropicalization of the
linear subspace, Um is tropically convex. Therefore, if we
take a tropical line segment Γu,v between any two ultra-
metrics u, v ∈ Um, then since Γu,v is also tropically convex,
Γu,v is contained in Um, i.e., Γu,v ⊂ Um. Further, Monod et
al. in [14] showed that Γu,v is a unique geodesic between
u, v ∈ Um. Therefore, dtr(u, v) measures the length of Γu,v

which is an intrinsic metric between u, v ∈ Um.

2.3 Non-parametric Estimation of Gene Tree Distribu-
tion
Suppose we have an i.i.d. sample of trees S :=
{T1, . . . , TN} ⊂ Um. Our goal is to estimate the gene tree
distribution from S over the space of ultrametrics Um. Here
we assume that the ’non-outlying trees’ are independently
sampled from some unknown distribution which we are
interested in estimating and ’outlying trees’ are sampled
from a different distribution. Our non-parametric density
estimator with the tropical metric over the space of ultramet-
rics Um mimics a classical kernel density estimator (KDE)
formulated as:

f̂(T ) ∝ 1

N

N∑
i=1

k(T, Ti) (2)

where k is a non-negative function defined over Um such
that

k(T, Ti) = exp

(
−
(
dtr(T, Ti)

σ

))
, (3)

where σ > 0 is a user specified parameter to define “band-
width” which controls, how tightly each contribution of a
function k(T, Ti) will be centered around Ti ∈ S in terms
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of dtr (See Formula (2)). In [15], [17], the default set up of
this user-defined parameter is determined by the nearest
neighbor of each Ti ∈ S . Ideally the normalizing constant

C(Ti) =

∫
Um

k(T, Ti)dT

does not depend on Ti ∈ Um so that we do not have
to compute the normalizing constant for each Ti ∈ S
as was required in [17]. In achieving this, our proposed
method in this section will be more analogous to a kernel
density estimation. Since our experiments in the following
subsection show that the normalizing constant C(Ti) does
not vary for any Ti ∈ Um, we assume that the normalizing
constant C(Ti) is a constant for any Ti ∈ Um.

In this paper we are interested in detecting outliers Tj ∈
S similar to [15], [17]. Therefore, we consider the estimation

ĝ(Tj) ∝
1

N − 1

∑
i̸=j

k(Tj , Ti)

for Tj ∈ S . As is the case in [15], [17], after we estimated
ĝ(Tj) for each Tj ∈ S , we classify Tj as an outlying tree if
ĝ(Tj) is less than Q1 − κIQR, where Q1 is the first quartile
and IQR is the interquartile range of the set of all scores for
all trees in S . κ is a tuning parameter and it is set to 1.5 as a
default [22].

2.4 Approximating Normalizing Constants

In [15], [17], the authors considered the function

kBHV(T, Ti) ∝ exp

(
−
(
dBHV(T, Ti)

2

σ

))
, (4)

where dBHV is the BHV metric defined by Billera, Holmes
and Vogtmann over Tm, the space of phylogenetic trees with
m leaves using the BHV metric [7]. In [17], Weyenberg et
al. showed that CBHV(Ti) varies on Ti ∈ Tm where

CBHV(Ti) =

∫
Tm

kBHV(T, Ti)dT.

Therefore, Weyenberg et al. in [15] developed an algorithm
to approximate CBHV(Ti) for any Ti ∈ Tm. When Ti is the
star tree, i.e., the tree with no internal branch, CBHV(Ti)
achieves its largest values. Therefore, in this section, we
apply a Hit and Run sampler developed by Yoshida et al. [16]
to approximate the normalizing constant of k(T, Ti) for
Ti ∈ Um. Especially, we compare the normalizing constant
of k(T, Ti) where Ti is the star tree and Ti is a binary random
tree for m = 10.

Example 2.10. In this example, we use three different trees
as the centroid of each distribution. One is shown in the left
picture of Fig. 2. The second is shown in the right picture
of Fig. 2 and the last is the star tree of ten leaves with the
length of each branch equal to 1. Using 1,000 samples and
letting σ = 1.5, 2, 5 we achieve the results shown in Table
1. From this result, it seems that the normalizing constant
D(Ti) in terms of dtr for any Ti ∈ Um is invariant under the
different tree topologies.

Estimating the normalizing constants
σ\ Tree Type Tree in left Fig. 2 Tree in right Fig. 2 Star Tree

1.5 117.21 120.59 117.78
2 199.24 199.24 201.23
5 521.23 521.12 524.45

TABLE 1
Results for estimating the normalizing constants for different centroids

with varying σ.

2.5 Computational time

The computational time complexity of the tropical distance
dtr(T1, T2) between two trees T1, T2 ∈ Um is O(m2). There-
fore, when computing the normalizing constant, for each
T ∈ Um, the time complexity of computing f(T ) is O(Nm2)
while with the BHV metric it is O(Nm6) for each T ∈ Tm.

3 RESULTS

3.1 Simulated Experiments

For this computational experiment, we generate gene trees
from the multispecies coalescent models with a given
species tree via the software Mesquite [12]. We fixed the
effective population size Ne = 100, 000 and varied R = SD

Ne

where SD is the species depth which is the number of
generations from the common ancestor (the root) to the taxa
(leaves).

Algorithm 1 Generating a set of gene trees from the multi-
species coalescent model

Input: The number of leaves m; R, the ratio of the species
depth and effective population size; and the number of
gene trees N .
Output: A sample of gene trees T.
Set the labels for leaves to the species tree and gene trees
using m.
Use the Yule model to generate a random species tree T .
Using the species tree T with the ratio R, generate N gene
trees T. return T.

To sample trees randomly from two different distribu-
tions, we fix the number of leaves as m = 10 and generate
two different species trees T1, T2 using the Yule process.
Then using the coalescent model for gene trees within the
species tree, we generate 1000 gene trees for each species
tree via Algorithm 1. In these simulated experiments, we
vary the ratio R = 0.25, 0.5, 1, 2, 5, 10. Let T1 be the set
of gene trees with the species tree T1 and let T2 be the set
of gene trees with the species tree T2. It is worth noting
that when we have small R, gene trees generated from a
coalescent model within a given species tree are similar
to random trees. Thus, it becomes harder to distinguish
between two distributions of gene trees with two different
species trees as R becomes smaller [24].

To get the ROCs for the two samples, we conduct experi-
ments described in Algorithm 2 with r = 500 and g = 1000.
More specifically, for each R, we take all 1000 trees from
T1 and we take one tree from T2. Then we estimate prob-
ability distribution of gene trees using the tropical density
estimator described in Equation (2) (Fig. 3, Left) and with
KDETrees (Fig. 3, Right). We iterate this process 500 times.
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Fig. 2. (Left) The centroid tree used for computational experiments. Its ultrametric is u = (0, 0.446, 2, 2, 0.942, 2, 0.348, 2, 2, 0.446, 2, 2, 0.942, 2,
0.348, 2, 2, 2, 2, 0.942, 2, 0.446, 2, 2, 0.124, 2, 0.845, 2, 0, 0.845, 2, 0.845, 2, 0.124, 0.845, 2, 0.942, 2, 2, 2, 0.845, 0.079, 2, 2, 0.845). (Right) The
second centroid tree for Example 2.10. The picture is produced by the R package ape [23].

Algorithm 2 Experiments on a Sample Generating from
Coalescent

Input: g > 1 many non-outlier gene trees T1, . . . , Tg ;
and r ≥ 1 many outlier gene trees T ′

1, . . . , T
′
r . Density

Estimator M .
Output: Estimated probabilities for g many non-outlier
gene trees and r many outlier gene trees.
for j = 1, . . . , r, do

for i = 1, . . . , g, do
Compute estimated probability f̂(Ti)

of Ti via M with a sample of gene trees
{T1, . . . , Ti−1, Ti+1, . . . , Tg, T

′
j}.

Compute estimated probability f̂(T ′
j) of T ′

j via M
with a sample of gene trees {T1, . . . , Tg}.

end for
end for
return f̂(T1), . . . , f̂(Tg) and f̂(T ′

1), . . . , f̂(T
′
r).

Area Under the Curves (AUCs)
R 0.25 0.5 1 2 5 10

Tropical 0.54 0.61 0.71 0.88 1.00 1
BHV 0.51 0.54 0.54 0.72 0.98 1

TABLE 2
Area Under the Curves (AUCs) for the KDE with the tropical metric and

the BHV metric via KDETrees.

Therefore, we have estimated probabilities for 1000 trees in
T1 and for 500 trees in T2.

In this next experiment (Fig. 3, Right), we compare the
results against KDETrees from [15], [17] with the Billera-
Holmes-Vogtmann (BHV) metric [7]. We run computational
experiments in MACPRO with 2.4 GHz 8-Core Intel Core
i9 processor and 64 GB 2667 MHz DDR4 memory. The
computational time for one iteration with our tropical KDE
is 9.54 seconds and with KDETrees is 1.27 minutes.

3.2 Applications to Apicomplexa Data
In this section we apply a tropical KDE with the HAR
algorithm over the space of ultrametrics to the Apicomplexa
dataset which consists of 268 orthologous sequences with
eight species of protozoa from [18]. There are eight species in
each alignment in the set: Babesia bovis (Bb), Cryptosporidium
parvum (Cp), Eimeria tenella (Et) [15], Plasmodium falciparum

Apicomplexa gene sets identified as outliers by KDE with the tropical
metric

# Gene ID Function
691 PFA0310c calcium-transporting ATPase
566 PF13 0257 glutamate–tRNA ligase
650 PF11 0358 DNA-directed RNA polymerase, beta

subunit, putative
730 PFL0930w clathrin heavy chain, putative
615 PF13 0063 26S proteasome regulatory subunit 7,

putative
712 MAL13P1.274 serine/threonine protein phosphatase

pfPp5
630 PFL2120w hypothetical protein, conserved
625 PFD1090c clathrin assembly protein, putative
755 PF10 0148 hypothetical protein
708 PFC0140c N-ethylmaleimide-sensitive fusion pro-

tein, putative
497 PF13 0228 40S ribosomal subunit protein S6, puta-

tive
690 MAL8P1.134 hypothetical protein, conserved
503 PF13 0178 translation initiation factor 6, putative

TABLE 3
Apicomplexa gene sets identified as outliers by KDE with the tropical

metric. All annotations except 728 are putative. Based on the gene set
designations in [18]. Gene set represented by GeneID for P.falciparum.

(Pf) [11], Plasmodium vivax (Pv), Theileria annulata (Ta), and
Toxoplasma gondii (Tg). An outgroup is a free-living ciliate,
Tetrahymena thermophila (Tt).

The gene trees in the 0.05 lower tail of the estimated
distribution of gene trees using the tropical KDE are trees
with their IDs 691, 566, 650, 730, 615, 712, 630, 625, 755, 708,
497, 690, 503 (ordered by the smallest probabilities to the
largest). Details of these outlying gene trees can be found in
Table 3.

In addition, we visualize the distribution of gene trees
of Apicomplexa using tropical principal component anal-
ysis (PCA) developed by Yoshida et al. [6] via the best-
fitted tropical triangle, principal tropical polytope, shown in
Fig. 4. Suppose we have an s×e matrix D whose rows repre-
sent vertices of the best-fitted tropical polytope over Re/R1
via the tropical PCA. Recall that the tropical convex hull of
the rows of D is isometric (linear translation) to the tropical
convex hull of the columns of D [20, Theorem 5.2.21]. In
our case we have s = 3 and e =

(8
2

)
= 28. Therefore, these

unfilled circles in Fig. 4 represent the columns of D whose
rows are the vertices of the best-fitted tropical triangle for
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Fig. 3. (Left) ROC curves for the KDE with the tropical metric. (Right) ROC curves for KDETrees [15], [17].

Apicomplexa data set from [18]. Filled black points in Fig. 4
represent “outlying” gene trees. The bottom of Fig. 4 shows
tree topologies which appear most frequently in the best-
fit tropical triangle estimated. The number next to each tree
topology in the plot is the number of observations appear in
the best-fit tropical triangle.

4 DISCUSSION

4.1 Simulation Study
In [15], [17], Weyenberg et al. showed that KDETrees out-
performed software Phylo-MCOA. In general it works well.
However, the biggest problem when using KDETrees is that
the normalizing constant, C(Ti), of the function kBHV(T, Ti)
for all Ti ∈ Tm varies. However, using the tropical metric
it seems that we do not have the same issue. From the
computation using the HAR sampler from [16], we estimate
that C , the normalizing constant of kK(K.Ti), is constant
for all Ti ∈ Um while with the BHV metric, the normalizing
constant C(Ti) for kKrmBHV (T, Ti) varies for Ti ∈ Tm.
Therefore, we do not have to compute the normalizing
constant for each observation in S when using the tropical
metric in order to estimate the gene tree distribution from
a sample S ⊂ Um. This is not the case when using the
BHV metric, since the normalizing constant varies with each
Ti, requiring computation for each sample. This makes the
computational time for estimating the gene tree distribution
much faster with the tropical metric as compared with using
the BHV metric.

Weyenberg et al. in [17] estimate the normalizing con-
stant C(Ti) for each observation Ti in a sample by using the
cone distance between two trees on the BHV coordinates
where one tree in the BHV coordinates goes through on
the straight line to the origin (the star tree) and then goes
through on the straight line to the other tree. This can
lead to large errors in the estimation and may affect the
performance of KDETrees. As we can see from Table 2
and Figure 3, our proposed non-parametric estimation of
the gene tree distribution outperforms KDETrees proposed
by Weyenberg et al. [15], [17] for all R = 0.25, 0.5, 1, 2, 5, 10.

4.2 Apicomplexa
In this section we summarize the analysis on outliers iden-
tified from the non-parametric estimation of the gene tree

distribution we propose in this research. Sequence align-
ments used to derive gene trees were judged to be poor if
gene annotation errors were evident and likely reduced the
accuracy of the alignment. Here we have Pf = Plasmodium
falciparum, Pv = Plasmodium vivax, Bb = Babesia bovis, Ta
= Theileria annulata, Et = Eimeria tenella, Tg = Toxoplasma
gondii, Cp = Cryptosporidium parvum, and Tt = Tetrahymena
thermophila (outgroup).

• PFA0310c: Generally good alignment of sequences.
The tree topology is mostly consistent with species
phylogeny, except Tg and Et are clustered with the
outgroup Tt rather than the expected Cp.

• PF13 0257: Poor alignment in the N-terminal por-
tion of the sequences. Long C-terminal extension in
the outgroup Tt. There are several anomalies in the
tree topology. The outgroup Tt clustered with the
piroplasms Ta and Bb. The intestinal parasite Cp
clustered with malaria parasites Pv and Pf.

• PF11 0358: Good sequence alignment in blocks.
Longer sequences for the malaria parasites Pf and Pv,
including aN-terminal extension and several internal
insertions. These potentially reflect incorrect gene
annotation. Pf and Pv branch deeper than the Tt
outgroup branch.

• PFL0930w: Good sequence alignment in blocks, but
with multiple assorted insertions in the gene for
different taxa. The tree topology is inconsistent with
phylogeny. The outgroup Tt branched internally and
clustered with the coccidian parasites Tg and Et.

• PF13 0063: Overall good sequence alignment. The
protein horter sequence for Et is shorter. There is a
50 amino acid repetitive insertion in Et, possibly re-
flecting a gene annotation error. The tree is generally
consistent with phylogeny. The intestinal parasite Cp
is on the basal branch with outgroup Tt.

• MAL13P1.274: Good alignment in the C-terminal
half of the protein sequences. Inconsistent alignment
in the N-terminal half with an approximately100
amino acid. extension in Pf and Pv. The outgroup
Tt clustered with the malaria parasites Pf and Pv;
otherwise, the tree topology is largely consistent with
phylogeny.
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Fig. 4. Estimated tropical PCA developed by Yoshida et al. in [6] using the Hit and Run algorithm developed by Yoshida et al. [16] with the
Apicomplexa dataset from [18]. In the figures above, a leaf label 1 is for the label ”Pv”, a leaf label 2 is for the label ”Pf”, a leaf label 3 is for the
label ”Tg”, a leaf label 4 is for the label ”Et”, a leaf label 5 is for the label ”Cp”, a leaf label 6 is for the label ”Ta”, a leaf label 7 is for the label ”Bb”,
a leaf label 8 is for the label ”Tt”, the outgroup. (Top) 1000 iterations were conducted for each vertex of the principal tropical triangle. The black
points represent “outlying” gene trees. (Bottom) the top 6th tree topologies of the projected observations onto the best-fit tropical triangle after 1000
iterations. The number inside of the parentheses for each tree topology is the number of projected trees which have the particular tree topology.
The sum of residuals is 307.682.

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2024.3420815

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

• PFL2120w: Poor sequence alignment, with multiple
sequence insertions in different species. The intesti-
nal parasite Cp clustered with the piroplasms Bb
and Ta. The outgroup Tt clustered with the malaria
parasites Pf and Pv.

• PFD1090c: Good sequence alignment. There is a
long N-terminal extension in Et with homopolymeric
stretches, likely reflecting incorrect gene annotation.
The tree is very inconsistent with phylogeny. The
piroplasm Ta clustered with the intestinal parasite
Cp. The piroplasm Bb clustered with the malaria
parasites Pv and Pf. The outgroup Tt is located on
an internal branch with the coccidian parasites Tg
and Et.

• PF10 0148: Generally good alignment in the N-
terminal half of the proteins. Insertion present in
the gene sequences for Pf and Pv. There is an ap-
proximate 100 residue C-terminal extension in Tg.
The tree topology is inconsistent with phylogeny.
The intestinal parasite Cp clustered with the malaria
parasites Pf and Pv. The outgroup Tt clustered with
the coccidian parasites Tg and Et.

• PFC0140c: Good alignment in the central portion of
the gene sequences. The gene sequence for Et is much
shorter. The coccidian parasite Tg clustered with the
malaria parasites Pf and Pv.

• PF13 0228: The sequence for the outgroup Tt is much
longer than all others with long N- terminal and
C-terminal extensions. There is very good sequence
alignment in blocks, but with lengthy insertions for
the outgroup Tt, possibly reflecting incorrect annota-
tion of the gene. The piroplasms Bb and Ta do not
form a monophyletic taxon.

• MAL8P1.134: Good alignment in blocks. There is
a much longer sequence for the outgroup Tt. in
the malaria parasites Pf and Pv share a sequence
insertion. The tree has the malaria parasites Pf and
Pv clustered with the coccidian parasites Tg and Et.

• PF13 0178: Good sequence alignment. The tree has
Tg and Et branched as the basal taxa.

5 CONCLUSION

From computational experiments, the tropical metric out-
performs the BHV metric proposed by Weyenberg et al. [15],
[17] when using this approach for a non-parametric esti-
mation of the gene tree distribution in terms of accuracy
and computational time. Therefore, we intend to extend
our methods to large-scale codivergence studies that will
describe the tree space encompassing such ancestral gene
pools. After doing so, outliers in that tree space will repre-
sent such events in genome evolution as gene duplications,
lateral gene transfer between species, retention of ancestral
polymorphisms by balancing selection, or accelerated evo-
lution by neofunctionalization. Even phylogenetic codiver-
gence of regions within enzyme sequences are of interest
due to the possibility of module or domain shuffling in gene
evolution. Outlier trees may represent erroneous gene mod-
els, correction of which can enhance genome annotations;
or they may represent genes with unusual evolutionary
histories caused by horizontal gene transfer, trans-species

(ancient) polymorphisms, or accelerated evolution due to
positive selection and neofunctionalization.

With the combination of visualization via tropical prin-
cipal component analysis (PCA) developed by Yoshida et
al. [6], we can see how gene trees in a given sample are dis-
tributed over the space of phylogenetic trees. Fig. 4 shows
the visualization via the tropical PCA with annotations of
outlying gene trees written in black. From Fig. 4, it seems
that all outlying gene trees are projected onto the same
point in the two dimensional tropical triangle. It is not clear
whether this is a unique case or it happens often.

It is well-known that if we reconstruct a phylogenetic
tree from a concatenated alignment from gene alignments
(for example, [25]), an estimated phylogenetic tree is not
statistically consistent. This means that no matter how large
an input alignment is, the reconstructed phylogenetic tree
from the concatenated alignment might not be converging to
the true tree. However, without the methodology proposed
in this research, we might be able to obtain an interval esti-
mation of a phylogenetic tree from a set of gene trees instead
of a point estimation of a tree based on a concatenated
alignment from gene alignments.

There are still some open problems. For example, with
the Billera-Holmes-Vogtmann metric [17], the normalizing
constant C(Ti) for the function kBHV(T, Ti) varies for
Ti ∈ Tm. While the geodesic between random two trees
under the BHV metric over the tree space goes through
the origin, i..e., the star tree, with positive probability [26],
Yoshida and Cox showed that under the tropical metric, the
tropical line segment (geodesic under the tropical metric)
between two random trees on the tree space does not go
through the origin, the star tree, with probability one [27]
if m ≥ 5. Therefore, for small trees with m < 5, the
normalizing constant for k(T, Ti) with the tropical metric
for Ti ∈ Um might vary depending on their central location
Ti ∈ Um. However, for m ≥ 5, the normalizing constant for
k(T, Ti) with the tropical metric for Ti ∈ Um seems to be
constant for any point in Um as we see from the example
2.10 for m = 10. However, it is not proven mathematically.
Thus, we have the following conjecture:

Conjecture 1. The integration

C(Ti) =

∫
Um

k(T, Ti)dT

is constant for any fixed Ti ∈ Um for m ≥ 5.
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