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Abstract— The paper addresses the problem of estimating the
energy consumed by production resources in manufacturing so
that alternative process designs can be compared in terms of
energy expenditure. In particular, the proposed methodology
focuses on Computer Numerical Controlled (CNC) machining
centers. Classical approaches to energy modeling require high
expertise and large development effort since, for example, data
acquisition is resource-specific and must be repeated frequently
to avoid obsolescence. An automated and flexible data-driven
methodology is designed in this work. A data-driven method
is employed to learn a hybrid and stochastic model of a
CNC machining center’s energetic behavior. The learned model
is used to provide offline energy consumption estimates of
simulated part-programs before the actual execution of the
cutting. Numerical results show the performance of the proposed
method on a set of case studies. The methodology is also applied
to a real industrial application, including data collected during
machine production.

Note to Practitioners—This article provides a flexible
and autonomous data-driven approach to building models
representing the energetic behavior of production resources,
particularly CNC machining centers. The learned models can
predict machine energy consumption while executing complex
part-programs. The algorithm uses data that are commonly
acquired by contemporary machine monitoring systems and does
not require ad-hoc experimental tests for training. Specifically,
it requires the spindle rotary speed signal, part load/unload
signal, and spindle (or machine) power signal during the learning
phase, whilst the estimation phase uses only the load/unload and
spindle speed simulated signals.

Index Terms— Energy modeling, machining, automata learn-
ing, data-driven modeling.

I. INTRODUCTION

ENERGY consumption reduction is a clear need of
contemporary manufacturing. Effective energy-efficient
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measures must be supported by proper models of the energy
behavior of production resources, enabling the assessment and
monitoring of their energy consumption. Indeed, estimating
the energy consumed by manufacturing resources is crucial to
evaluate alternative processes in terms of energy expenditure
at the process design stage, where information might be very
limited.

In particular, Computer Numerical Controlled (CNC)
machining centers are the resources of interest of this work
as considerable consumers of electrical energy [10], [12].
A single CNC machining center (hereinafter machine) might
execute a large mix of chip removal tasks on numerous part
types. The heterogeneity and complexity of machines make it
difficult to create general and flexible models representing a
large set of part-programs and to estimate their related energy
consumption.

The automated discovery of energy models using limited
information is an open research challenge. The ability to
estimate machine energy consumption before the actual
execution of a part-program enables the estimation of product
footprint in terms of energy, the optimization of processes,
the selection of alternative sequences and sets of tasks to
obtain a certain workpiece, and the allocation of workpieces to
alternative machines. Machine producers and users generally
have a keen interest in techniques for developing flexible and,
preferably, automated energy modeling techniques. In practice,
the described ability is challenging due to the limited amount
of information related to the actual execution of a certain
machining operation; indeed, digital twins of the machine
and the process are not common and, in their absence, the
implementation of a sensing and monitoring system can be
costly to measure, record, and maintain the information. The
state-of-the-art on the topic lacks of solution for this case.

This paper addresses the problem of discovering a model
of the machine’s energetic behavior under limited information.
The proposed data-driven methodology exploits an automata
learning algorithm to obtain models of a machine executing
complex operations (the part-program). The algorithm uses
data acquired by the monitoring system of contemporary
machines and does not require ad-hoc experimental tests for
model training. Since machines are significant consumers of
electrical energy, the paper focuses on electrical energy as
the physical property under learning but can be extended to
represent the consumption of other materials or utilities.

The rest of Section I describes related literature and details
the paper’s contribution. Section II provides preliminaries on
Stochastic Hybrid Automata (SHA). Section III presents the
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problem statement and the application domain. Section IV
details the proposed methodology. Numerical results are
presented for a lab-scale application in Section V and for a
real industrial case in Section VI. Section VII concludes.

A. Related Literature

Given the recent increase of interest in the topic, the
literature includes systematic overviews on machine energy
assessment and modeling, e.g., [26], [30], and [33]. The
surveys discuss classical approaches to building machine
models from prior knowledge of the cutting process, the
machine, and the product. Such approaches can obtain
analytical, empirical or hybrid models. Analytical models
capture the energy consumption of specific machining tasks
(e.g., turning, milling, drilling) as a known function of cutting
parameters (spindle speed, depth of cut, feed rate) and of
the workpiece and tool materials and geometry. Empirical
models, despite being generally simpler than analytical
approaches, require ad-hoc and extensive experimental tests to
fit model parameters. For example, [12] modeled the machine-
specific energy consumption as a function of the material
removal rate. Hybrid models integrate measured data and
theoretical knowledge of the cutting process [17], [20], [32] or
combine nominal parameters, theoretical knowledge, and data
retrieved from the machine controller during ad-hoc designed
experiments [1], [9], [22]. Consequently, the characterization
of specific machines and tasks can be effortful in terms of
model development and tuning.

AI and Machine Learning (ML) techniques are also used to
train machine energy models. For instance, [6], [13] use an
Artificial Neural Network (ANN) trained over a set of ad-hoc
experiments on milling tasks. Reference [31] trained a Neural
Network (NN) to obtain a model of a lathe. Reference [19]
incorporated transfer learning and Bayesian and Markov chain
Monte Carlo calibration, then introduced a random forest
regression as the base learner to train the prediction model.
Reference [18] also exploits the random forest algorithm. For
this group of works, the large number of physical variables
to be acquired and the custom-designed experiments to obtain
training data limit the applicability of the approaches. Also, the
learned models are not amenable to formal verification, and
they are not human-readable, being a black-box representation
of machine behavior.

We note that the emulation of the part-program execution
and/or the interpretation of the Numeric Control (NC) code
executed by the machine are used in literature to understand
machine operations at a given time and to obtain an accurate
model. These approaches require a high customization effort to
be applied to a specific machine, PLC, and part. NC program
interpretation in [25] is coupled with empirical data in the NN
training; a similar approach is proposed in [5], [7], and [29]. To
assume that the acquisition system has access the NC program
is the main barrier to applying these approaches in practice.

Finally, the main limitations of available approaches are the
need for ad-hoc sets of experiments for algorithm and model
training, the need for a significant amount of diverse signals
and parameters to understand the energy consumption of
machining tasks, the high level of expertise needed to build the
model and the lack of flexibility. Moreover, while interpreting

why an AI-based model produces a certain prediction becomes
an increasingly pressing issue due to the potential economic
impact, ML models are typically considered opaque rather
than transparent [4]. In this regard, discovering an explainable
model of machine behavior, such as an automaton, sheds light
on the dynamics that lead to a specific energy prediction value.

B. Paper Contribution
This paper addresses the industrial need for flexible and

automated methodologies to model the energy consumption
of a machine while executing a certain sequence of tasks.
Differently from state-of-the-art methods, this methodology
uses data with limited diversity that can be acquired in
the industrial practice with a limited effort. The proposed
methodology uses a data-driven learning approach to create
the model of the energy required by the machine to execute a
part-program.

The methodology envisages two main phases: learning and
usage. During learning, the algorithm uses the machine power
signal acquired over time (i.e., the physical property under
learning) and two signals representing machine behavior—the
so-called mined signals—that are the spindle rotary speed and
a signal indicating part load/unload events. During the usage
phase, an energy consumption estimate is obtained through the
learned model using only the mined signals as input, which
are simulated without executing any cutting process.

Unlike other works in the literature, the proposed approach
does not require specific knowledge of the machine, the
part, tool geometry, materials, or the executed cutting task.
The required information is limited to signals commonly
acquired by contemporary machine monitoring systems, and
training does not require ad-hoc experimental tests. Thus,
the proposed approach overcomes specific shortcomings of
existing approaches as it can be applied, for example, when the
part mix is unknown or too broad to be exhaustively tested in
the field or when information on the nature of the machining
tasks is unavailable or too costly to acquire.

The idea behind the proposed approach is that a machine
data-acquisition system includes signals that are related to the
execution of a part-program and that such signals can be used
to guide a model of the machine’s physical behavior—i.e.,
machine power requests over time.

The learning algorithm called L∗

SHA [16] is employed
in the proposed approach. L∗

SHA creates the machine
energy predictive model, which relies on an automata-based
formalism. The approach presented in this paper exploits L∗

SHA
within a broader methodology. Also, compared to [16], the
algorithm has been enriched with a post-processing phase of
the learned model to estimate probability distributions of the
power request through Kernel Density Estimation (KDE) [21],
[24], and with a trace-based simulation technique to calculate
the energy estimate. In addition to the methodology, these
extensions are also contributions presented in this paper.

With L∗

SHA, each predictor is realized through a SHA
endowed with probability distributions modeling the machine
power request for a certain machining task. Due to its
stochastic nature, the learned SHA is amenable to statistical
techniques to estimate the machine power request for a certain
part-program, thus predicting machine energy consumption.
Unlike ML models, human-interpretable SHA not only provide
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TABLE I
LIST OF SYMBOLS

Fig. 1. Example SHA modeling a machine/controller pair.

a specific energy estimation, but also lend themselves to wider-
ranging evaluations, e.g., bottleneck analysis and strategy
synthesis.

The proposed methodology is compared with a standard
baseline estimation of the energy computed as the sample
mean of the energy consumption of the machine during
the training period (irrespective of speed variations). Other
literature methods cannot be applied due to a lack of
information available for the problem at hand (e.g., part and
tool geometry, cutting parameters, material, NC part-program).

II. PRELIMINARIES

The models learned through L∗

SHA are SHA, a directed
graph-based formalism enabling modeling the temporal
evolution of complex systems’ behavior (e.g., machines).
Table I reports the symbols used in this paper for SHA. The
graph’s nodes (i.e., locations, which belong to set L) capture
the states through which the system cycles. Fig. 1a shows an
example of SHA with locations L = {l0, l1}: l0 represents the
initial idle state of the machine and l1 models a machining
task during which the machine requires energy.

SHA feature set W of real-valued variables whose time
dynamics are constrained through sets of Ordinary Differential
Equations (ODEs), called flow conditions [2], which model
physical behaviors and belong to {R → RW

}. Function
F assigns the set of flow conditions to each location,
constraining the behavior of real-valued variables of W
while in such location. In Fig. 1a, set W contains variables
P (resp. E) modeling the power request (resp. energy
consumption) of a machine. Both P and E are functions
of time t and an independent, randomly distributed term k,
indicated as P(t, k) and E(t, k), respectively. For all locations
li ∈ L , flow condition F(li ) constrains the time derivative
of P and E while in li , indicated as Ṗ(t, k) and Ė(t, k),
with domain R+ × R. The SHA of Fig. 1a is such that
F(li ) = ⟨Ṗ(t, k) = 0, Ė(t, k) = k⟩ holds for all locations li ∈

{l0, l1}, meaning that power request P(t, k) is constant in time,
while the consumed energy E(t, k) is linear in time with slope
k. SHA feature function D assigning a probability distribution
to each location. For our analysis, for every location li ∈ L ,
D(li ) characterizes the distribution of k (thus, P(t, k) and

E(t, k)) while in li (i.e., when the machine behaves as modeled
by location li ). Therefore, P(t, k) and E(t, k) behave as two
stochastic processes.

Edges of SHA between two locations model the transition
between two machine modes after the occurrence of a system
event. Every edge is labeled with: a guard condition (in green),
the event triggering the transition (in red), and an update
(in blue). The guard condition is a logical expression on
the variables in W : the expression must evaluate to true for
the edge to be able to fire (e.g., the edge from l0 to l1 in
Fig. 1b cannot fire if t < Tth1 holds). The update is a set
of instructions executed when the edge fires, computing new
values for variables in W . Such values can either result from
arithmetical expressions or by extracting a sample from a
known probability distribution. In Fig. 1a, any edge entering
a location li ∈ L is labeled with update ξli , which assigns a
sample from D(li ) [11] to k. For example, when the SHA
switches to l0, update ξl0 is performed, and a sample from the
distribution D(l0) is extracted and assigned to k.

Multiple SHA form a network and synchronize through
events by simultaneously performing a transition through
edges with the same event label. Given event c ∈ C , an edge
can be labeled either with c! or with c?. If an SHA in the
network takes an edge labeled with c!, another automaton
must take an edge labeled with the complementary label c?.
For example, the SHA in Fig. 1a (i.e., the machine) switches
from l0 to l1 when the controller fires event start1 and from
l1 to l0 when event stop occurs. Our analysis is limited to
input deterministic SHA (i.e., no location has more than one
outgoing edge with the same event label).

A trace is a sequence of events. For the network of
Fig. 1, sequence start1,stop,start1,stop is a possible
trace representing two working phases of the machine. The
number of events is the length of a trace. A timed trace is a
sequence of pairs (ti , ci ), where i is an integer, ti ∈ R+ is a
timestamp, and ci is the event occurring at time ti . Sequence
(Tth1 ,start1), (Tth1 + Tth2 ,stop), (2Tth1 + Tth2 ,start1),
(2Tth1 +2Tth2 ,stop) is a possible timed trace for the network
of Fig. 1. The duration of a timed trace is the last timestamp.

The controller features real-valued variable t to measure the
duration of the machining task performed by the automaton in
Fig. 1a while in busy and in idle modes. The ODEs describing
the dynamics of t are ṫ = 1 in both locations, as t simply
measures the time elapsing while the controller automaton is
in l0 and l1. Every location li of an SHA can be endowed with
an invariant, i.e., a condition over variables in W that must
hold as long as the SHA is in li . In Fig. 1b, the combination
of invariants of the form t ≤ Tthi, where Tthi is a constant
value such that i ∈ {1, 2} and Tthi ∈ Q+ hold, and guards
on outgoing edges of the form t ≥ Tthi ensures that edges
fire exactly when t = Tthi holds. As a result, the idle phase
(corresponding to the controller’s location l0) lasts Tth1 time
units, and the working phase (corresponding to the controller’s
location l1) lasts Tth2 time units (at the onset of the system all
variables are set to 0 unless differently specified).

L∗

SHA is applied to learn the following features of an
SHA modeling a machine through signals collected from
the field: 1) the set of locations L; 2) the set of edges,
and in particular, for each edge, its starting and target
locations, and the associated event label c ∈ C ; 3) for each
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location li ∈ L , flow conditions F(li ), chosen out of a set of
candidate functions; 4) for each location li ∈ L , probability
distribution D(li ).

Stochastic analysis of an SHA network can be carried
out, for example, through the Uppaal verification tool [15],
which extracts an arbitrarily large number of traces from the
SHA network and collects the time evolution of its variables.
In particular, by applying Monte Carlo-based simulations,
it is possible to compute the expected value of distributions
defined by means of functions max (maximum) and min
(minimum) applied to stochastic processes in W . For example,
given an upper bound τ and the automata of Fig. 1,
formula Eτ [max(E)] corresponds to the expected value of the
maximum energy required by machine executions that last at
most τ time units.

III. ASSUMPTIONS AND APPLICATION DOMAIN

This work produces an SHA of the machine that represents
machine power behavior in time while executing a certain part-
program and is used to estimate the associated machine energy
consumption. The proposed methodology requires:

• the signal related to the physical property under learning;
• the mined signals necessary for event mining, i.e., to

identify the events in the traces.
The learned SHA reflects the correlation between mined
signals and the physical property under learning. Machine
behavior is represented in terms of locations and edges, and
it is elicited from the analysis of the collected signals and the
temporal relationships among them. Since the final objective is
to represent machine energy expenditure, the physical property
under learning is the power request. The modeling problem is
tackled through partial knowledge of the machining task in
execution, so we consider only two mined signals:

1) a signal indicating whenever a part-program is executed
from which part load/unload events are mined;

2) the spindle rotary speed signal, since the spindle speed
is known as one of the most significant factors affecting
the energy consumption in machining.

The model learning phase is executed offline and exploits
signals acquired during machine production—i.e., a set of
signals (referred to as dataset) acquired during the execution
of a set of workpieces. Prior knowledge about the executed
part-programs is not required for the learning phase, and it is
not used in the algorithm. Then, given the mined signals of a
certain part-program, the learned model is used to represent the
behavior of the machine and to provide an estimate of machine
energy consumption using such mined signals to run a trace-
based simulation. The estimation phase does not require the
actual execution of the part-program on the machine.

A. Application Scenarios
To highlight the flexibility of the modeling approach,

we leverage three application scenarios, each representing
a typical use of industrial machines and with increasing
complexity for energy estimation. The assumptions for each
scenario are:

a. Scenario A (S A). The machine is used to process high
volumes of standard products. Thus, the machine is
assumed to be devoted to the machining of a single part
type, as when installed in automated transfer lines.

b. Scenario B (SB). The machine is used to process a
family of products. For example, machines are installed in
production lines dedicated to a set of product types with
similar features. For SB, we assume that the machine
works on different part types and that nB part-programs
are executed by the machine, one for each part type.

c. Scenario C (SC). The machine is used to produce highly
customized products. Machines are typically working as
stand-alone solutions, executing part-programs shaped
by client requests, where the production of individual
workpieces can be entirely different. For SC , the number
of part-programs executed by the machine is nC ≫ nB ,
where each workpiece may represent a new part type.

Scenarios S A and SB are two lab-scale applications and
scenario SC is a real industrial application. All scenarios
make use of datasets acquired from real machines. In S A and
SB, the machine is a vertical machining center (VGC1500)
equipped with a maximum power of 18.5kW and a maximum
spindle speed of 10,000rpm. Data are obtained through lab-
scale experiments executing dry-cutting end-milling tasks on a
steel workpiece. Additional details can be found in [17]. As for
SC , a traveling column machining center for extremely heavy
stock removal on workpieces (with a maximum payload of
5,000kg) with a maximum swing of 2100mm is considered.
The machine is equipped with a horizontal electro-spindle
(HSK100 45/70kW, maximum 10,000rpm, 5 linear axes), and
all auxiliary systems (i.e., high-pressure coolant fluid system,
cooling fluid filtering circuit, motor and axis chiller, chip
extracting system, air extractor). This machining center is
installed at a producer of hydraulic manifold blocks as a stand-
alone solution in the machining department, and it is connected
to an online monitoring system acquiring signals from the
field.

In all cases, the machine monitoring system integrated with
the PLC collected the spindle power signal—i.e., the physical
quantity under learning—the spindle rotary speed signal and
the clamping pressure signal related to the workpiece blocking
system. The latter has been used to mine part load/unload
events because high pressure indicates the workpiece is loaded.
Fig. 2 represents an example of signal acquisition during the
production of a workpiece in SC .

B. Domain Assumptions

The proposed methodology is developed and validated
under specific assumptions related to the application domain.

We assume that the selected mined signals are significant
for the estimation of machine energy, which is supported by
theoretical knowledge of chip removal processes. Although
many other cutting parameters (e.g., depth of cut, feed rate,
tool geometry) are involved, their effect is not explicitly
modeled. Such approximation is reasonable considering that
spindle speed is a commonly monitored signal, whilst
other information might need a significant effort to be
extracted.

We assume that the production of a workpiece is indepen-
dent of the sequence of previously produced workpieces and,
in turn, that the energy consumption is not affected, either.
To this end, the acquired signals are partitioned into portions
capturing a single part-program (i.e., the corresponding trace
respectively begins/ends with part load/unload events).
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Fig. 2. Example of acquisition for the industrial case (SC). The three signals acquired for the part-program are represented over time. Mined events are
marked green for part load, red for part unload, yellow for speed changes and blue for spindle reaching zero-speed (i.e., a stop).

We assume that the same acquisition frequency is
used for clamping pressure, spindle speed, and spindle
power so that signals are synchronous. Therefore, for each
power measurement, L∗

SHA requires a speed and a pressure
measurement with the same timestamp. Whenever acquisitions
are not synchronous, the signal with the least frequent
acquisitions must be used as a reference to batch other signals.

The SHA formalism assumes that there are finitely many
locations representing the machine’s behavior and events.
In this work, the term event indicates a significant variation
of a monitored signal, where a domain expert determines the
conditions for significance. Events capture pressure and speed
changes, which are possibly highly volatile due to sensor
noises or intrinsic variability of sources. Signals are pre-
processed to reduce the number of identified events.

We assume that the power request between two consecutive
events—i.e., between two consecutive changes of spindle
speed—is constant. In reality, as depicted in Fig. 2, the spindle
power signal varies between consecutive events, showing
that this assumption implies an approximation. Indeed, the
power request depends on several cutting parameters that
might vary even if the speed does not. Therefore, power
request is modeled as the result of a stochastic process, whose
distribution is assumed to be stationary in time but not known
in advance.

IV. PROPOSED METHODOLOGY

The proposed methodology’s workflow is represented in
Fig. 3. All phases are performed automatically and do not
require manual effort on the practitioner’s side.

A. Data Collection and Processing
Given the data-driven nature of the learning algorithm L∗

SHA,
the data collection (phase 1 in Fig. 3) is necessary to acquire
field data. A portion of the collected data is used for training
and the remaining for validation. As the output of the data
processing (phase 2 in Fig. 3), timed traces are extracted from
field data. Thus, data processing operations include (1) the
identification of events from mined signals (i.e., spindle speed
and clamping pressure in our case) and (2) the creation of
individual training traces by slicing signals.

Therefore, let us consider a mined signal x(t) and let
t = t0t1 . . . tn be the sequence of timestamps at which an
acquisition is performed. We indicate as L : R+ → C ∪ {⊥}

the labeling function that, given a timestamp ti , determines

whether an event in set C has occurred at time ti (L(ti ) = ⊥

holds if no event occurred at time ti ). Finally, data are sliced
into timed traces as a trace is intended to represent the
production of a single workpiece (i.e., from the loading of
the workpiece to the following unloading).

1) Event Mining: The considered mined signals are the
spindle speed and the clamping pressure. Let p(ti ) ∈ R+ be the
clamping pressure value measured at time ti and s(ti ) ∈ R+

be the spindle speed value measured at time ti . The machining
task starts only if the workpiece is loaded into the machine.
Events load and unload represent the beginning and
the end of part-program execution. The machine’s hydraulic
workpiece clamping system blocks the workpiece with a high-
pressure value. Thus, signal p(ti ) is used to identify load and
unload events for sudden clamping pressure variations (see
Eq.1, where pmin is the minimum pressure needed to block
the workpiece).

Variations in spindle speed might result in a different power
request. Thus, speed variations are events to be extracted
from signal s(ti ). The spindle speed signal is discretized
into a sequence of step-like signals (see Fig. 2) so that
small speed variations are not taken into account, and its
range, technologically limited to [0, smax], where smax is the
nominal maximum speed of the machine’s spindle, is divided
into m bins of equal width δs = smax/m (where m is a
configurable parameter). In the scenarios addressed in this
paper, smax = 10, 000rpm and m = 50 according to expert
knowledge. Events are identified whenever the spindle speed
signal changes from bin to bin; thus, we label start j (with
j = 1 . . . m) the event of the spindle reaching a speed within
the j-th range, defined as interval [( j − 1)δs, jδs). When the
spindle speed is s(ti ) = 0, the spindle stops (event stop).

Function L is fully given in Eq.1.

L(ti ) =



load, if i > 0 ∧ p(ti ) ≥ pmin ∧ p(ti−1) < pmin

unload, if i > 0 ∧ p(ti ) < pmin ∧ p(ti−1) ≥ pmin

stop, if i > 0 ∧ s(ti ) = 0 ∧ s(ti−1) > 0
start j , if i > 0 ∧ ( j − 1)δs ≤ s(ti ) < jδs∧

(s(ti−1) ≥ jδs ∨ s(ti−1) < ( j − 1)δs)

⊥, otherwise

(1)

For example, Fig. 2 marks with triangles the events identified
by function L given the sample field data (e.g., L(14:49) =

load, L(15:04) = start11, and L(15:29) = stop).
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Fig. 3. Diagram representing the proposed methodology, split between two macro-phases: model learning and usage for prediction. Each phase is associated
with a representation of its output and numbered according to the execution order.

Fig. 4. L∗

SHA’s workflow. Tasks are split between the learner and the teacher.
Diamonds represent a bifurcation depending on a condition. Solid arrows
connect two tasks executed sequentially, while dashed arrows represent a
function invocation.

2) Creation of Individual Traces: Sampled signals are
sliced to capture the machining of a single workpiece. To this
end, a simplified version of function L only identifies events
load and unload. Timestamps at which such events are
identified determine how signals are sliced before switching
to the model training phase. Let p ∈ N be the number
of identified events and t ′

= t ′

0t ′

2 . . . t ′

p−1 the sequence of
timestamps at which an event is identified (i.e., L(t ′

k) ̸= ⊥

holds for all k = 0, . . . , p − 1). The sequence of identified
events L(t ′

0) . . .L(t ′

p−1) constitutes a trace of length p and
duration t ′

p−1.

B. Training

The training dataset is fed to the L∗

SHA automata learning
algorithm (phase 3 in Fig. 3), followed by the post-processing
(phase 4 in Fig. 3) to obtain the SHA modeling the machine
power request in response to given events.

1) Automata Learning: L∗

SHA, first introduced in [16],
directly takes after the L∗ algorithm developed by Angluin [3]
for Deterministic Finite-state Automata learning and relies,
at its core, on the interaction between a learner and a
teacher. In L∗, the teacher is omniscient about the System
Under Learning (SUL). However, omniscience is unfeasible
for real-life black-box systems. Omniscience is sometimes
approximated through testing (i.e., an input is sent to the real
system to record the response behavior as output) [28], which,
for machining centers, would require ad-hoc experiments and

Fig. 5. Example SHA modeling a machine’s power request and energy
consumption. Each location is represented by its label, flow condition, and
probability distribution. Notation ẋ indicates the time derivative of a variable
x .

incur significant costs. For these reasons, in this work, the
teacher is a data-storing and -processing component. The
learner/teacher paradigm structures the software architecture
behind the proposed methodology and does not have a physical
counterpart. The physical component of the system consists
of the machining center with sensors bridging the gap with
the software component. Fig. 4 shows an overview of the
algorithm executed during phase 3 of the methodology, while
Fig. 5a and Fig. 5b are exploited as examples to illustrate
the steps of the algorithm. In compliance with L∗ (whose
correctness is formally proved in [3]), the teacher and the
learner provide different functions, which are all necessary
(if invoked in the proper order) to achieve the correct result.
The learner iteratively builds the hypothesis SHA, indicated
as Ahyp. The learner submits a query to determine a feature of
Ahyp based on field data. The teacher is in charge of storing
the accumulated knowledge about the SUL (i.e., field-collected
data, specifically mined signals, traces, and the spindle power
signal) and of processing such data to answer the learner’s
queries (e.g., applying hypothesis testing to identify the
empirical distribution of power consumption during a specific
machining operation). The accuracy of the teacher’s answers
depends on the techniques selected to implement the queries.
Ahyp is initialized with a starting location (e.g., init in Fig. 5).
The learning then proceeds in rounds where the learner refines
Ahyp based on the teacher’s answers to queries.

For each location li ∈ L of Ahyp, the learner must assign a
flow condition (i.e., function F(li )) and empirical probability
distribution X (li ). To this end, the learner submits queries to
the teacher, which exploits field data processed and labeled
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as per Section IV-A to reply. The learner submits a mi
query to determine the flow condition. The teacher identifies
the best fit for the signals from a pre-determined set M of
candidate functions constraining physical variables subject
to uncertainty. To this end, the teacher exploits Derivative
Dynamic Time Warping (DDTW) [14], which calculates the
misalignment between two time series through warping along
the x-axis and by comparing their first derivatives. In this
application scenario, set M only contains tuple ⟨P(t, k) =

k, E(t, k) = kt⟩ of stochastic processes with random
parameter k, which is, thus, always returned as an answer to
mi queries.

As per Section II and Section III-B, each location is
characterized by the distribution of a random parameter—
i.e., constant value k of variable P . The learner submits ht
queries to the teacher to determine the distribution of k after
the occurrence of events in a specific trace. Being power
request stochastic, two portions of the power request signal,
although unidentical, may capture the same behavioral state
of the machine (i.e., be represented by the same location
of the automaton under learning). For each field-collected
population K ⊂ R+ of average spindle power demand,
the learner submits a ht query to the teacher. For each
previously identified population K ′

⊂ R+, the latter performs
a two-sample Kolmogorov-Smirnov test [23] to determine
whether K and K ′ derived from the same distribution.
If this is the case, K and K ′ are merged, and the resulting
empirical distribution is returned as the answer to the ht
query. Otherwise, K constitutes a new population, and the
teacher returns its empirical distribution as the answer to the
ht query. For example, let us assume that at the beginning of
a learning round, the hypothesis SHA is as in Fig. 5a, and
the learner submits a ht query to determine the empirical
distribution underlying the mean power samples associated
with trace trex = ⟨load,start1,stop,start2⟩. If the
trace identifies a new machine’s behavior, the ht query returns
a different empirical distribution than the one assigned to
location l2.

Once all locations of Ahyp are labeled with a flow condition
and an empirical distribution, the learner checks whether
Ahyp is well-defined. If Ahyp is not well-defined, it is not
amenable to simulation and cannot thus be returned by L∗

SHA.
The conditions for well-definedness are: 1) all edges connect
existing locations (Ahyp is closed); 2) all edge targets are
deterministic as per Section II (Ahyp is consistent). If either
of the two conditions is unmet, the learner modifies Ahyp.
If Ahyp is not closed, the learner adds a new location. For
example, after identifying the new empirical distribution for
trace trex, adding the location labeled as busy2 in Fig. 5b makes
the SHA closed. If Ahyp is not consistent, the learner splits a
location into two new ones to solve the non-determinism. After
modifying Ahyp, new mi and ht queries must be submitted.

As the final step of the round, it is necessary to check
whether Ahyp correctly captures all traces known by the
teacher. To this end, the learner asks the teacher for a
counterexample (shortened as c.ex. in Fig. 4) through a cex
query. A counterexample is a trace of which the teacher
stores observations but is not compliant with Ahyp. If a
counterexample exists, a new round of learning is necessary
for the learner to properly modify Ahyp (i.e., a new location

Fig. 6. Example post-processed SHA modeling machine energetic behavior.
Updates are in blue.

Fig. 7. Controllers reproducing traces with the machine SHA in Fig. 5b.
Each location has a name label and an invariant.

and/or new edges are added to the SHA). If the teacher finds
no counterexample, L∗

SHA terminates and returns Ahyp.
2) Post-Processing: Post-processing (phase 4 in Fig. 3)

makes the learned SHA amenable to simulation. Specifically,
edges of the learned SHA are extended with updates while a
distribution estimate is assigned to each location. An example
of post-processed SHA is shown in Fig. 6.

The SHA learned through L∗

SHA features, for every location
li ∈ L , an empirical distribution identified by ht queries.
L∗

SHA has no constraints on the specific shape of distribution
functions; therefore, empirical functions identified by ht
queries may converge to any arbitrary distribution.

Let X (li ) ⊆ R+ be the sample set underlying the empirical
distribution assigned to li ∈ L . The Gaussian Kernel Density
Estimation (KDE) method [21], [24] is applied to X (li ),
for each li ∈ L , to estimate D(li ). KDE is a non-parametric
method to estimate the probability density function of a
random variable based on kernels as weights that do not
imply any prior distribution. Gaussian KDE uses the normal
kernel function. KDE requires the proper selection of a kernel
smoothing parameter, called bandwidth, which is calculated
through Silverman’s approximation method [27]. For all
locations li ∈ L of the learned SHA, the empirical distribution
is replaced with the kernel density estimator of D(li ).

C. Validation
The objective of the validation phase is to assess the

accuracy of a machine’s energy estimate obtained from its
learned SHA model. If the accuracy is deemed sufficient by
the domain expert, then the SHA model can be released and
thus become the predictor of the machine’s energy expenditure
during the execution of a possible machining trace (i.e., the
usage macro-phase in Fig. 3). Otherwise, the SHA model is not
accurate enough, and new training traces should be collected
(loop in Fig. 3) to improve its accuracy. The validation dataset
is used to validate the SHA resulting from post-processing.
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The validation phase consists of two distinct activities, the
compatibility check (phase 5 in Fig. 3) and the trace-driven
simulation (phase 6 in Fig. 3), both relying on the notion of
trace compatibility.

Verifying whether a trace is compatible with the machine
SHA entails the generation of a controller SHA to compose a
SHA network. The controller SHA mimics the timed sequence
of events of the trace under analysis. The trace determines the
structure of the controller SHA, which, thus, does not require
learning through L∗

SHA. In all controller SHA, t ∈ W is a real-
valued variable that grows uniformly with time (i.e., ṫ = 1
holds in all locations). An edge labeled with c! with c ∈ C
cannot fire (thus, time cannot flow) unless another SHA in the
network has an edge enabled with label c?. If all edges of
the controller fire successfully, the machine SHA captures the
trace under analysis—hence, the trace is compatible with the
learned SHA. For instance, let us assume that the validation
dataset contains two traces, ⟨load,start1,stop,unload⟩

and ⟨load,start1,start2,unload⟩ with events at times-
tamps ⟨10, 13, 21⟩. Fig. 7 shows the two controller SHA
mimicking the first and second trace, respectively, whose
compatibility with the machine SHA in Fig. 6 needs to be
verified. The controller in Fig. 7a mimics a trace compatible
with the machine SHA in Fig. 6, while the trace mimicked
by the SHA in Fig. 7b is incompatible because the edge from
l2 to l3 cannot fire.

The compatibility check filters the validation dataset
to identify traces that are compatible with the SHA
under analysis. Trace-driven simulation is then executed for
compatible traces only, as the machine’s SHA does not model
the machine’s energetic behavior in response to sequences
of events defining incompatible traces. If the number of
compatible traces is found to be insufficient, the training
and validation datasets should be re-calibrated (if possible,
based on data availability) to iterate the learning and obtain
a SHA with a better compatibility metric. To perform the
compatibility check, the machine SHA is paired with the
controller SHA mimicking the timed trace under analysis, and
the resulting SHA network is simulated through the Uppaal
tool. The tool generates a number of runs of the system in
response to the events of the trace under analysis (fired by
the controller SHA). Whenever an edge incoming location
li ∈ L fires, update ξli draws a sample of k from estimated
D(li ) through an acceptance/rejection algorithm [8]. Uppaal
estimates the expected energy Eτ [max(E)] consumed by the
machine to execute the trace over the simulated time τ ,
which is equal to the duration of the timed trace. Finally, the
estimated energy consumption is compared against field data
to assess the learned model’s accuracy.

V. NUMERICAL RESULTS

The methodology is applied to scenarios S A and SB (see
Section III-A) to evaluate the accuracy of the energy estimate
by varying the number of traces used in L∗

SHA training. Results
obtained by applying the methodology to SC (i.e., the real
industrial use case) are described separately. Experiments on
all three scenarios have been performed on a machine running
Ubuntu 22.04 with 64GB of memory and 4 cores.1 Trace-based
simulation is performed using Uppaal v.4.1.24.

1L∗

SHA implementation available at github.com/LesLivia/lsha

TABLE II
PART-PROGRAMS (TASK NUMBER AS IN [17])

TABLE III
SUMMARY OF EXPERIMENTS

TABLE IV
S A AND SB : EXAMPLE OF NOMINAL SPINDLE SPEEDS ([RPM])

FOR A GENERATED PART-PROGRAM (PART TYPE i )

A. Description of Experiments
We designed a set of experiments to evaluate the

performance of the proposed methodology in scenarios
of increasing complexity, as described in Section III-A.
Numerical results have been obtained for the following 9
problem instances (IDs from 1 to 9). A summary is in
Table III:

• Six instances of S A are created starting from literature
data. 27 machining tasks have been executed to acquire
the spindle power with dedicated measures, as in Table VI
of [17]. Spindle speed and clamping pressure signals
have been generated according to the design information
provided in [17]. The six part-programs in Table II, each
one intended for the production of a single workpiece,
have been randomly designed from [17]: part types
i, i i, i i i require a sequence of 6 tasks (thus, with trace
length p = 14), and part types iv, v, vi require 12 tasks
(thus, with trace length p = 26). Tasks can be repeated
to execute a certain part type (e.g., task 26 in type i) and
can be shared between part types (e.g., type i and i i i).
The part mix includes a single part type: IDs from 1 to
6 refer to part types i to vi , respectively. Training and
validation datasets have been generated by concatenating
the available signals and adding white noise.

• Three instances of SB are generated following the
approach described for S A, except that each instance
includes a mix of nB = 3 part types: ID=7 corresponds
to types i, i i, i i i , ID=8 to iv, v, vi , and ID=9 to i, iv, vi .

A training dataset is used for model learning, and the
proposed methodology is applied to problem instances by
increasing the number Ntr of training traces (Section V-B).
We consider Ntr = 3, 10, 20 for each produced part type.

A validation dataset is considered for each of the 9 problem
instances so that the learned SHA are evaluated. In more detail:

• S A instances (ID1–ID6) are validated over Nval =

30 traces for, on average, 11.1h of acquisition per
instance;

• SB instances (ID7–ID9) are validated over Nval =

90 traces (i.e., 30 traces for each involved part type)
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TABLE V
L∗

SHA RUNNING TIME ([s]) BROKEN DOWN BY THE INSTANCE NUMBER
(ID), PRODUCED PART MIX, NUMBER OF LOCATIONS (|L|), AND

EDGES (|E |) OF THE LEARNED SHA, AND NUMBER OF TRAINING
TRACES Ntr WITH RELATED ACQUISITION TIME ([h])

corresponding, on average, to 36.6h of acquisition per
instance.

The number of traces compatible with the learned SHA is
provided in Section V-C. As a measure of accuracy for the
learned SHA, we exploit the mean relative error MREest
(Section V-D). Let E j,est be the energy consumption estimated
through the proposed methodology for validation trace j (with
j = 1 . . . Nval). Let E j,ref be the reference energy consumption
of trace j computed from the spindle power signal. We define
the relative percentage error RE j,est for validation trace j as
follows: RE j,est =

|E j,ref−E j,est|

E j,ref
· 100. Then, the mean relative

percentage error MREest is computed over the Nval traces.
In addition, the proposed methodology is compared with

the baseline estimation of the energy (Section V-D). Similarly
to estimate E j,est, the relative percentage error RE j,BL and its
mean MREBL are computed.

B. Training Results

The size of the training dataset is proportional to Ntr and to
the execution time of the part-program (i.e., to the time needed
to acquire a single trace). The acquisition time is reported in
Table V for each part type i − vi . For instances of S A, the
average part-program execution time to obtain a single part is
1331s (22.19 minutes). Thus, the training dataset for a single
instance of S A includes, on average, 1.1h, 3.7h, and 7.4h of

Fig. 8. Output of L∗

SHA for S A, part type i , Ntr = 10 training traces.

data for, respectively, Ntr = 3, 10, 20. Similarly, an instance of
SB includes, on average, 3.7h, 12.2h, and 24.4h of data for,
respectively, Ntr = 9, 30, 60.

In all experiments, the running time of L∗

SHA (i.e., the
computation time required by the algorithm to perform the
learning) increases with the volume of the training dataset and
the complexity of the learned SHA.

Concerning the SHA complexity, the number of locations
and edges of the learned SHA (reported in Table V)
indicates how the SHA complexity varies between different
experiments. As Table V shows, the value of Ntr does not
impact the number of locations and edges of the learned SHA
because the training dataset for S A and SB always includes
at least one trace for each product type. More precisely, for
each S A instance, all traces obtained from the corresponding
mined signals and fed as input to L∗

SHA feature the same
sequence of events, as the produced workpieces belong to
the same part type. Also, each instance of SB includes three
part types, but at least one trace for each part type appears in
the training dataset. Therefore, all learned SHA capture such
traces, irrespective of Ntr.

Figure 8b shows an example of learned SHA, obtained
for part type i with Ntr = 10. Machining tasks constituting
the part-program of part type i (see Table II) feature the
spindle moving at three different nominal speeds (Table IV).
Accordingly, the data processing of the speed signal captures
three events start8, start12, and start16 in addition to
stop, load and unload events, which are trivially captured
in all traces. The learned SHA has seven locations (in addition
to the default l0 location). Based on the estimated D(li ),
we can differentiate among locations l2, l4, l6, and l7—where
the cutting process is in execution and the spindle requires
non-negligible power—and locations l1, l3, and l5—where the
spindle stops and does not require any power. Locations l1, l3,

and l5 are reached after either load, unload, or stop
events, as expected. Fig. 8a shows an example of a density
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TABLE VI
ESTIMATION ERRORS BROKEN DOWN BY INSTANCE ID AND THE

NUMBER OF TRACES Ntr USED FOR L∗

SHALEARNING

function estimated using the KDE method, specifically D(l2).
Although there are 6 machining tasks, the learned SHA
has 4 locations modeling active machine’s modes (l2, l7, l6,
and l4), while the remaining locations model the machine’s
idle modes. Indeed, as shown in Table II, task nr. 26 is
repeated twice, and location q1 captures both repetitions.
Also, task nr. 16 is not considered statistically different from
task nr. 26; thus, L∗

SHA groups them into a single location.
Furthermore, locations modeling machining tasks (l2, l4, l6,
and l7) only have outgoing edges labeled with the stop
event. Similarly, locations modeling idle states (l1, l3, and l5)
only have outgoing edges with event labels starti , with
i ∈ {8, 12, 16}. As a consequence, if a simulation of the SHA
of Fig. 8b is run, it is impossible to observe two consecutive
stop events or two consecutive starti events, as this never
occurs in the input field data.

C. Compatibility of Validation Traces
Perfect compatibility is achieved in all instances of S A

as a consequence of domain assumptions (S A assumes
the production of a single part type). Similarly, perfect
compatibility is achieved in all instances of SB. Even if the
part mix includes nB = 3 part types, it has been assumed
that all part types are experienced during the training phase.
Therefore, all validation traces for ID1-ID9 are compatible
with the learned SHA.

D. Validation Results and Energy Estimate
Each learned SHA is paired with a controller SHA

mimicking a compatible trace, and a pair is defined for every
trace in the validation dataset. Each SHA pair is imported into
Uppaal to generate Nval runs through simulation.

As discussed in Section I-A, existing techniques are not
directly comparable to our methodology due to more restrictive
sets of working assumptions (i.e., others are not applicable
to these scenarios). Therefore, we exploit a sample mean as
the baseline for the energy consumption metric. However,
we recall that while the baseline is a simple numeric
value, the human-interpretable learned models (amenable to
several purposes other than energy estimation) represent the
methodology’s core result. Table VI reports the estimation

errors obtained while comparing the SHA-based estimates of
the energy consumption with the actual energy consumption
as per the validation dataset. Obtained estimates yield, in the
worst case, MREest = 1.393% and MREest = 4.482%,
respectively. Errors increase with trace length and with the
product mix, specifically:

• S A: The estimation obtained through the learned SHA is
slightly less accurate than the baseline (i.e., MREest >

MREBL) in 16 cases out of 18 due to approximations
introduced to fit distributions, which do not come
into play with the baseline. On the other hand, the
learned model (including such distributions) remains
more informative than the simple point estimate while
keeping a high degree of accuracy (MREest < 1.4% holds
in all cases).

• SB: The learned SHA is more accurate than the baseline
in all instances (i.e., MREest < MREBL). The learned
SHA can capture the differences among the three
produced part types using the spindle speed signals,
whereas the baseline estimate only considers an average
part type.

The baseline model is highly accurate for simple instances, but
its performance worsens as problem complexity increases. The
proposed methodology, instead, performs satisfactorily with
more complex problems thanks to its ability to recognize tasks.

VI. REAL INDUSTRIAL CASE

This section describes the industrial application exploited
to validate our methodology (i.e., scenario SC and instance
ID10). Recall that the part mix is unknown, and each product
is highly customized. Therefore, the trace mined from each
acquisition differs from the others, and experiencing all part
types at training time is unfeasible. The training and validation
datasets have been collected from the production environment
over the course of three weeks and contain 114 different traces
of length p ∈ [6, 21] (i.e., each trace includes 6 to 21 events).
Timed traces last on average 1.44h, which contributes to the
complexity of the addressed industrial case.

We present the results obtained by training L∗

SHA with
Ntr = 5, 7, 9, 15, 20 traces—corresponding to, approximately,
5.5h, 8h, 13h, 15.5h, and 18.5h of acquisition, respectively.
Note that the limited number of traces actually represents a
significant acquisition effort for the application field. Training
results are reported in Table V (ID = 10). The run time needed
for algorithm training increases from 9.4 minutes (568 s) to
13.4 hours (48252 s) as Ntr increases. Compared to S A and
SB, the run time required to obtain the learned SHA for
SC is significantly larger and implies a trade-off between the
computation effort and the size of the training dataset.

Differently from S A and SB, the learned SHA locations
and edges increase. Since the sequence of events changes for
each training trace of SC—capturing a possibly new part type
that is being produced—the structure of the learned SHA can
vary significantly as the size of the training dataset increases.

Figure 9 shows the original and estimated power signals
obtained with, for example, the SHA learned for SC with
Ntr = 9 by simulating the trace mined from the signals shown
in Fig. 2. As expected, the results collected in Table VI (ID =
10) show that errors decrease as the number of training traces
increases. The improvement is more evident in SC than in S A
and SB because each new trace might incorporate significant
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Fig. 9. Example of a sampled signal of the spindle power for SC (the same shown in Fig. 2) and power signal generated through Uppaal by simulating the
behavior of the learned SHA. Events are marked as in Fig. 2.

new knowledge. The MREest improves from 37.67% to
20.81% with 15 additional traces. Despite errors being larger
compared to S A and SB, the advantage of using the learned
SHA compared to the baseline is evident, with an error gap
(calculated as MREBL − MREest) of approximately 60%.

Numerical results for SC are obtained using Nval =

94 traces, all different from one another and unseen during
training. Therefore, a trace for SC may capture a different
part-program, with a new sequence of tasks and/or never-
before-seen tasks. As the number of traces in the training
dataset increases, the probability of facing never-before-seen
part types or tasks decreases. When a trace is not compatible
with the learned SHA, partial compatibility is checked by
generating a controller that mimics its longest compatible
prefix.

In the validation dataset, 12, 27, 32, 49, and 56 traces are—
at least partially—compatible with the SHA learned with Ntr =

5, 7, 9, 15, 20, respectively. The average number of compatible
events grows from 31% with Ntr = 5 to 53% with Ntr = 20 of
the original trace length. SC displays a lower compatibility
ratio than S A and SB due to the degree of customization
of the involved part types, which yields a very diverse part
mix. Nevertheless, the compatibility ratio increases with the
value of Ntr. Moreover, should a desired trace be found to
be incompatible, it is possible to add the trace to the training
dataset and to update the SHA by repeating the training (thus
guaranteeing its compatibility in the newly learned SHA).

VII. CONCLUSION

The presented methodology allows practitioners to reliably
estimate the energy consumption of machining tasks when the
part mix cannot be exhaustively tested during model training
and when information about the nature of the machining tasks
is unavailable or costly to obtain. The methodology can be
fully automated in practice, thus entailing minor manual effort
on the practitioner’s side, and intrinsically open to iterative
self-enhancements, e.g., by iteratively adding new traces to
the training dataset. Obtained results show that the proposed
method is fast and that it achieves very high accuracy in
estimating machine energy consumption when the part mix
is limited (MREest ≤ 1.393% for S A and MREest ≤ 4.482%
for SB). The potential impact of the proposed approach has
been investigated over a highly variable scenario resulting in
MREest = 22.52% with only 9 part-programs used for training.
The capability of capturing never-before-seen part-programs
is shown in scenario SC , where the learned L∗

SHAcan process
new, yet at least partially compatible, traces.

The methodology can be extended to include other mined
signals, such as the machining tool. In the future, we will
investigate the impact of information on the estimate’s
accuracy. In addition, traces giving rise to behaviors that differ
significantly with respect to a defined baseline might point

to unexpected behaviors in machines; therefore, the proposed
approach can become the foundation of a smart monitoring
component. Future research efforts will focus on the estimation
of never-before-seen sequences of events, currently labeled
as incompatible with the learned model. This extension is
paramount and might require the estimation of transition
probabilities to pass from one machine state to another. Finally,
the ability to handle general flow conditions constraining
the machine power signature over time can be a significant
extension. To this end, theoretical knowledge of the cutting
process will be useful to guide the proposed approach.
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