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Human–Robot Interaction Based on Cooperative
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Abstract— This article aims to design an assistive controller
for physical Human-Robot Interaction (pHRI) based on Dynamic
Cooperative Game Theory (DCGT). In particular, a distributed
Model Predictive Control (dMPC) is formulated based on the
DCGT principles (GT-dMPC). For proper implementation, one
crucial piece of information regards human intention, which is
defined as the desired trajectory that a human wants to follow
over a finite rolling prediction horizon. To predict the desired
human trajectory, a learning model is composed of cascaded
Long-Short Term Memory (LSTM) and Fully Connected (FC)
layers (RNN+FC). Iterative training and Transfer Learning (TL)
techniques are proposed to adapt the model to different users.
The behavior of the proposed GT-dMPC framework is thor-
oughly analyzed with simulations to understand its applicability
and the tuning of its parameters for a pHRI assistive controller.
Moreover, real-world experiments were carried out on a UR5
robotic arm equipped with a force sensor was installed. First,
a brief validation of the RNN+FC model integrated with the
GT-dMPC is proposed for the iterative procedure and the TL.
Finally, an application scenario is proposed for co-manipulating
two objects and comparing the obtained results with other
controllers typically used in the pHRI. Results show that the
proposed controller reduces the required force of the human in
completing tasks, even in the presence of unknown and different
loads and inertia. Moreover, the proposed controller allows for
precise reaching of the target point and does not introduce any
undesirable oscillations. Finally, a subjective questionnaire shows
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that the proposed controller is, in general, preferred by different
users.

Note to Practitioners—This work presents a method to design
an assistive controller to help a human perform physically
coupled shared tasks with a robot. The target applications of
this work are co-handling tasks of large or heavy objects. Such
tasks require two agents to be performed easily, and the proposed
work aims to make the robot a companion for the human partner.
The proposed approach also quickly adapts to new users or tasks,
making it feasible for real production systems or daily scenarios.
Another possible target application is the co-manipulating large
flexible components such as carbon fiber plies. This application
would require small modifications, particularly in how the force
is exchanged. Some additional/different sensors should be used,
such as vision to map object deformations with virtual forces. The
present work does not directly consider these kinds of applica-
tions. Indeed, this work strictly relies on force measurements that
are not reliable when dealing with flexible materials, at least in
a compression state. Such an issue will be investigated in future
works by using vision systems to measure a virtual force that
allows this method to be applicable even in the case of flexible
components.

Index Terms— Physical human–robot interaction, learning
human intention, human intention identification, dynamic coop-
erative game theory, model predictive control.

I. INTRODUCTION

IN TODAY’S industrial scenarios, robotic assistants are
continuously being studied for several applications such as

handling components, welding, and assembly. Human-Robot
Collaboration (HRC) [1], [2], [3], is the study of collaborative
processes in which human and robot agents work together to
achieve shared goals. Alongside the HRC, Human-Robot Inter-
action (HRI) focuses on studying interactions between humans
and robots. To develop collaborative applications between
humans and robots, different aspects of their interaction must
be addressed, including modeling human behavior [4], possi-
bly involving machine learning techniques [5], perception of
the human [6], and natural communications channels such as
forces or natural languages [7].

In the industrial scenario, a valuable role of robotic
assistants is to help humans by cooperating and reducing
fatigue and long-term musculoskeletal disorders. The physical
Human-Robot Interaction (pHRI) [8], [9] is the study of the
interactions between humans and robots that happen through
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a physical communication channel, namely an exchange of
forces. Leveraging the methods of pHRI, the robot can
serve as an assistant for the human, helping in manipulating
heavy loads [10], [11] or positioning precisely around a
target pose [12], [13], always caring for the human’s safety
[14].

For these purposes, three prominent aspects can be identi-
fied to deserve particular attention. First, the robot controller
should be intrinsically safe and compliant. Second, the interac-
tion between the human and the robot should be modeled for
use in the robot control. Finally, anticipating human intentions
allows the robot to assist. Therefore, a method for predicting
human intention should be introduced.

A. Motivations and Contributions

Humans and robots will work side by side in the future,
and robots should adapt their behavior according to the
current task and person they are working with. For this
purpose, it is fundamental that the robot understands human
intentions through low-level communication channels, such
as force exchanges. Therefore, in this work, we address the
human-robot objects co-manipulation application, providing
the robot with predictive capabilities enhanced by continuous
prediction of the desired human motion intention.

By extending the previous work of some of the authors [15],
this work presents the implementation and inclusion of the
RNN+FC predictive model into a Game-Theoretic distributed
Model Predictive Control, capable of fully exploiting the long-
term prediction. Moreover, the GT-dMPC control framework is
tested with different co-manipulated objects, trajectories, and
target poses that are known or unknown to the robot. Other
works address the human-robot object transportation. For
example [16], [17] use a motion capture system to understand
human intentions, or [18] divides the task into subtasks with
different priorities. These works do not make any prediction
of future directions, which can be very helpful to anticipate
human intentions, providing better assistance. Reference [19]
proposes LSTM to predict human forces instead of the desired
motion direction, not allowing for including the direction
anticipation in the control problem. Moreover, these works
do not directly provide a formulation of the interactive task as
a system with various agents acting on it. With the proposed
GT-dMPC framework we allow for optimal control computed
on a receding horizon, hence accounting for uncertainties,
and for control correction, which typically happens in pHRI.
Indeed, in those cases, human models present uncertainties and
require online adaptation of the control strategy. Game theory
is the study of mathematical models of strategic interactions
among rational agents. Therefore, Game Theory allows for the
description of multiple agents interacting with an environment,
and it perfectly suits the pHRI problem, where humans and
robots must interact to solve a task. Compared to the pre-
vious work, the RNN+FC model is trained more generally,
avoiding pre-computed trajectories. Indeed, in this case, the
trajectories are computed for each new trial with the BiTRRT
motion planner within the Moveit! framework. This work also
addresses reaching target points for which the model is not
trained, showing that it can still provide the human with

proper assistance. Finally, the results evaluating the application
also include a questionnaire to test subjective appreciation
of the proposed controller compared to other state-of-the-art
controllers. Indeed, subjects’ preferences may vary according
to different tasks and control modes of the robot, and must
always be considered towards smooth HRI [20].

The main contributions of this work are summarized as
follows:
• application of a cooperative Game-Theoretical distributed

Model Predictive Control (GT-dMPC) to the pHRI sce-
nario, evaluation of the proposed GT-dMPC performances
in simulations along with experimental evaluations;

• training of the RNN+FC in the Cartesian space in the
presence of unknown loads and inertia, and its integration
into the GT-dMPC framework.

II. RELATED WORKS

This section addresses the three main topics discussed in
this work to design the assistive controller. First, control
techniques for the pHRI are presented, focusing on using
the Impedance/Admittance control. Then, Game-Theoretical
modeling of the Human-Machine interaction is analyzed since
it represents a powerful method for describing interactions
between rational players, as in the pHRI case. Finally,
we present a review of the human intention prediction,
which is fundamental information to implement the proposed
control.

A. Physical Human-Robot Interaction

The most widespread control technique for smooth and
compliant pHRI relies on Impedance/Admittance Control [21].
Indeed, the Impedance Control allows the robot’s motion to be
governed by the mass-spring-damper system’s dynamics, sub-
ject to an external force, allowing passive and smooth motion
and reaction to external forces. With the aim of better assisting
the human operator, the impedance control parameters and
set-point can vary during a task. One approach builds on
online adjusting the impedance reference set-point [22], [23],
smoothly letting the mass-spring-damper dynamics govern the
motion from the current pose to the target pose. An example of
the adaptation of the impedance set-point according to inter-
action with a human can be found in [24], where the reference
trajectory is shaped to ensure it is within the constrained task
space. This approach is more often used in standard industrial
applications such as trajectory-following applications where
contacts might be foreseen [25] or assembly processes where
the target position is known with a certain tolerance and minor
adjustments should be allowed [26], [27]. A different approach
aims at modifying online the mass, spring, and damping
parameters [28], [28], [29], [30] to change the robot behavior.
Indeed, typically in pHRI applications, underdamped motions
are desired for large and fast motions, while overdamped
behavior is more desirable for small and precise motions [31].
Such control methods are typically used in Manual Guid-
ance, Programming-By-Demonstration, and trajectory learning
frameworks [32], [33], [34], where the human guides the robot
tip by directly grasping it to teach a prescribed trajectory.
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This method can also handle external forces such as contacts,
as proposed in [35]. Finally, there exist control methods that
combine both approaches [36], [37], [38]. In these scenarios,
the robot should assist during the motion by also allowing a
passive motion, even in the case of partially known tasks [39].
To have the robot work as an assistant and ensure system
passivity, we keep the impedance control parameters constant
rather than make them variable. In this way, the robot’s motion
at the end effector can be seen as a system that follows the
dynamics of the mass-spring-damper system, subject to two
external control inputs: the human interaction force and an
additional assistance term that the robot can provide in terms
of a virtual force. With this problem transformation (i.e., robot
and human acting with a fixed system), the objective is to
define the assistance term. The human and the robot can be
seen as two agents acting on the same system. By adequately
defining their objectives, Game-Theoretical formulation can
describe this interaction. Game theory, in fact, is the study of
interactions among rational decision-makers, and it becomes
Dynamic Game Theory (DGT) when it deals with dynamic
systems. The next subsection will review applications of GT
to pHRI.

B. GT Modeling of Human-Machines Interaction

In the literature, Game-theoretical formulations of the pHRI
problem exist. GT formulation can be found in [40], and
similarly, [41], and in [42] and [43], to implement Role Arbi-
tration laws exploiting the Nash Equilibrium concept. In these
works, the robot allows the human to lead the action but does
not directly provide additional assistance. References [44],
[45], and [46] propose a universal game-theoretical framework
that addresses various game-theoretical behavior under specific
control parameter tuning care. These works mainly investigate
the Non-Cooperative scenario. In [47] a thorough analysis of
the Cooperative and Non-Cooperative modeling of pHRI is
presented, highlighting the strengths and weaknesses of the
two models, as well as their actual applicability to real-world
scenarios. Some authors also investigated the GT formulation
in [48], by adopting the Cooperative formulation of the GT
problem to pHRI. Indeed, the Cooperative formulation allows
players to achieve better outcomes from the game [49]. These
works rely on the Differential GT formulation, which rep-
resents an extension of the optimal control to the multiple
agents’ scenario. Reference [50] presents the use of both
differential models (cooperative and non-cooperative) with
application to the Role Arbitration by dynamically switching
between the two during a task.

Being humans unpredictable and not completely reliable,
to take into account online modifications, we implement
a Model Predictive Control (MPC) formulation of the GT
problem. Typical formulations rely on the distributed Coop-
erative Model Predictive Control (dMPC), presented in [51].
Theoretical GT-dMPC modeling of different human behaviors
(Non-Cooperative [52], Cooperative [53], and others [54],
[55], [56]) have been presented, involving Linear-Quadratic
formulation of the game, both from an Optimal Control
and a Model Predictive Control perspectives. Experimental

evaluations of such models are presented in [57] and [58],
showing that GT-based formulation better describes the
driver’s behavior than the driver’s classic steering control
strategy.

These works represent an exciting and solid background,
showing the modeling of human-machine interactions based
on GT-dMPC frameworks. Despite this, no implementation of
the GT-dMPC framework is presented for the pHRI. Moreover,
implementing the GT-dMPC requires knowledge of human
intention. The previous works are limited to modeling the
interaction and taking this information for granted or imposing
the target path on humans. They do not directly address
how human intention can be identified online without prior
knowledge.

C. Human Intention Prediction

The two main research branches that aim at understanding
the desired human intention of motion rely on (i) model-based
and (ii) data-driven approaches.

The model-based approach builds on modeling the human
arm with the standard impedance model [59], [60]. This
approach requires estimating the human arm impedance
parameters. The main drawback of this approach is that such
parameters are subjective, time-variant, and depend on the
specific task considered. For example, lifting an arm on the
vertical plane has different parameters with respect to opening
the same arm on the horizontal plane, and so on. Therefore,
such a physical human arm model presents low flexibility
and generalization. A different approach is to implement a
control-oriented modeling of the human, considering it as a
feedback controller [61], [62], with control gains as unknown
parameters to be recovered. This approach requires a control
model that might introduce modeling errors and parameter
estimation techniques. Finally, in [63], the human intent is
obtained by double integrating the estimated acceleration
imposed on the robot admittance control.

The data-driven approach aims at training Machine Learn-
ing algorithms based on collected data (either real-world or
synthetic) and builds a model that transforms inputs into
outputs. Among the various, Neural Networks (NN) achieve
excellent results in approximating complex non-linear sys-
tems with high uncertainties. In particular, when dealing
with sequences (either logical or temporal), Recurrent Neural
Networks (RNN) implements efficiently NN. Indeed, RNNs
account for previous events, allowing information to persist
over a specific horizon. There are various types of RNN [64],
vanilla RNN, Gated recurrent unit (GRU), and Long-Short
Term Memory (LSTM) are the most common types. In par-
ticular, the LSTM [65] architecture outperforms the classical
RNN and is now widely adopted to solve multiple problems
where the sequential pattern of the data may store important
information, such as speech recognition. The same reasoning
applies to human intent estimation since the previous motion
state may be a manifestation of the intent.

Indeed, various works adopt RNN architectures for the
prediction of human motion. Vision-based data are usually
exploited [66], [67], [68], as cameras provide a clear under-
standing of the scene and can detect the human skeleton
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without requiring any contact to feed both LSTMs and GRUs
models. Reference [69] presents the AutoRegressive Integrated
Moving Average (ARIMA) model for the visual identification
of the elbow motion of a human. The main drawback of using
vision-based information is that specific hardware is required,
and image data are pretty complex to process, increasing the
time required for training.

To overcome camera-related issues, other works exploit
different data information. In [70], the input data to the
LSTM model are read via Force MyoGraphy (FMG). Multiple
subjects are used to train the model, but the approach is
not general. A sensor based on electromyography (EMG)
signals acquired from human arm muscles is used in [71].
In this work, the authors propose using a NN to classify
the intended direction of human movement. This work limits
the classification of the desired direction of motion to allow
the robot to assist. Despite this, no prediction of future motion
intentions regarding the desired trajectory is addressed. Also,
Gaussian processes can be used, such as in [72] and [73]. The
first proposes identifying human motion intention interacting
with an exoskeleton via a sparse Gaussian process. The
second models the human arm as 7 degrees of freedom (DoF)
impedance and estimates the intention as the human force by
the Gaussian Process. In [74], the motion intention prediction
of the human is based on an autoregressive (AR) model for
teleoperation. Reference [75] proposes a controller capable of
learning human behavior and providing assistive or resistive
force. The human behavior is estimated via a Recursive Least
Squares method through measured force. In [76], an Adaptive
Neural Network estimates the joint coordinates of the human
lower limb interacting with an exoskeleton for rehabilitation.
In contrast, [77] predicts human motion intention by online
learning without training. In [38], the model is based on
Radial Basis Function Neural Networks (RBFNN). In this
work, an updating law adjusts the NN weights online to guar-
antee estimation accuracy even when human motion intention
changes. Still, the prediction horizon is one step. Interestingly,
[78] and [79] propose an LSTM to predict the reference
set-point at the next step but do not address any adaptation to
new users or objects. In addition, [79] proposes training and
using LSTM to predict the reference one time instant but does
not adapt the model to new users, so each new human has to
record the complete set. Finally, some of the authors’ previous
work addresses a model composed of LSTM cascaded with
Fully Connected (FC) standard NN layers [80]. Such a model
is iteratively trained to adapt the model to understand the
interaction better. Transfer Learning (TL) is proposed to adapt
the same model to new users, trajectories, or co-manipulated
objects, showing the capacity for generalization and long-term
prediction.

In this work, we extend the previous work to the 3D
Cartesian space and exploit its long-term prediction, including
it in the GT-dMPC framework.

III. GAME-THEORETIC DISTRIBUTED MPC

This section presents the human-robot system modeled
as a Cartesian impedance with two separate external forces
provided by the human and the robot. The problem is then

reformulated as a Dynamic Cooperative Game and included
in a distributed Model Predictive Control framework. Finally,
the model for human intention identification is presented.

A. System Modeling

The robot motion at the end effector is modeled as a
Cartesian impedance:

Mi a(t)+Di v(t)+Ki ∆x(t) = uh(t)+ur(t) (1)

where Mi, Di and Ki ∈R6×6 are the desired inertia, damping,
and stiffness matrices, respectively; a(t), v(t) and ∆x(t) ∈
R6 are the Cartesian accelerations, velocities and delta posi-
tions at the end-effector, with ∆x(t) = x(t)− x0(t) with x0(t)
the equilibrium position of the virtual spring, and uh(t) ∈
R6 and ur(t) ∈ R6 represent the measured human and virtual
robot effort applied to the system. The robot contribution ur
can be seen as an additional assistance the robot provides
to the human. The Cartesian coordinates in x are defined
according to [81], with the vector x = [pT θ T ]T where pT

are the position coordinates and θ T the set of Euler angles1

that defines the rotation matrix describing the end-effector
orientation. We can write the vector containing the linear and
angular velocities as v = [ṗT ωT ]T with ṗ and ω the linear and
velocity.

Linearizing equation 1 around a working point, it is possible
to write the system in linear state space as:

ż = Az+Bhuh +Brur

y = C z (2)

where z = [∆xT vT ] ∈ R12 is the state space vector, A is the

state matrix A12×12 =
[

06×6 I6×6

−M−1
i Ki −M−1

i Di

]
, and B is the input

matrix B12×6
h = B12×6

r =
[

06×6

M−1
i

]
with 06×6 ∈ R6 denoting the

zero matrix, I6×6 ∈ R6 the Identity matrix and C the output
matrix of the system that converts z to y.

Finally, since the robot controllers accept commands in
discrete time and data are collected in discrete time, we rewrite
the system described in 2 in discrete time.

z(k +1) = Ad z(k)+Bd,huh(k)+Bd,rur(k)
y(k) = Cd z(k) (3)

with Ad , Bd,h and Bd,r indicating the discrete versions of the
matrices A, Bh and Br, and k indicating the current time instant,
z(k + 1) the evolution of the system at the next step, and Cd
the output matrix that converts z(k) to y(k). Notably, feeding
the robot with the reference position in the joint space rather
than Cartesian space is common. It is possible to obtain the
reference velocity in the joint space through:

q̇re f (k) = J(q)+ẋ(k) (4)

where the q̇re f (k) ∈ Rn are the reference velocities in
the joint space, n represents the number of joints, and

1This choice assumes that the angular rotation maintains limited values in
the target applications, mainly along one rotation axis, as they work when
taken far from the critical points.
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Fig. 1. The schema for the cooperative GT distributed MPC.

J(q)+ is the pseudoinverse of the analytical Jacobian matrix.
Joint positions are then computed via a simple integration.
Assume q̇≃ q̇re f (k) considering that today’s robots have excel-
lent tracking performance in the frequency range excitable by
the operator.

B. Distributed Model Predictive Control

According to the dMPC presented in [51] the system in (3)
can be augmented as

za(k +1) = Aaza(k)+Bh,auh +Br,aur

ya(k) = Ca za(k) (5)

with za = [zT zT ]T , Aa = blkdiag(Ad , Ad), Bh,a = [Bh Bh]T

and Br,a = [Br Br]T , and Ca ∈ Rm×24 is defined based on the
desired output. Conforming to the MPC formulation, defining
the predicted horizon as Np and the control horizon as Nc, the
system in (5) can be written as

Y (k) = Fz(k)+ΦhUh(k)+ΦrUr(k) (6)

where Y ∈ RmNp is the predicted output and is equal to

Y (k) =


y(k +1)
y(k +2)

...
y(k +Np)

 =


Cd z(k +1)
Cd z(k +2)

...
Cd z(k +Np)

 (7)

F ∈ RmNp×24 is the free response matrix, equal to:

F =


CaAa
CaA2

a
...

CaANp
a

 (8)

and Φi ∈RmN p×6Nc , with subscript i = h,r denoting the human
and robot, are matrices representing the forced response

Φi =


CaBi,a 0 . . . 0

CaAaBi,a CaBi,a . . . 0
CaA2

aBi,a CaAaBi,a . . . 0
...

...
. . .

CaANp−1
a Bi,a CaANp−2

a Bi,a CaANp−Nc
a Bi,a


(9)

The two vectors Uh(k) and Ur(k) ∈R6Nc are the input vectors
along the horizon that must be defined.

Consider also that the human and the robot have their
reference trajectories. Define with Yre f ,h(k) = [yre f ,h(k +
1), yre f ,h(k + 2), . . . , yre f ,h(k + Np)] the trajectory a human
would like to follow over the next Np timesteps if there is

no interaction with the robot. Similarly, Yre f ,r(k) = [yre f ,r(k +
1), yre f ,r(k + 2), . . . , yre f ,r(k + Np)] denotes the trajectory
planned by a motion planner that the robot would like to follow
over the next Np timesteps if there is no interaction with the
human.

The tracking errors can be written in compact form as

Eh = Y (k)−Yre f ,h(k) (10)
Er = Y (k)−Yre f ,r(k) (11)

and finally the augmented system tracking errorEa is defined
as,

Ea(k) =



y(k)− yre f ,h(k +1)
y(k)− yre f ,r(k +1)

y(k +1)− yre f ,h(k +2)
y(k +1)− yre f ,r(k +2)

...
y(k +Np−1)− yre f ,h(k +Np)
y(k +Np−1)− yre f ,r(k +Np)


(12)

According to [53] and [56], the human and the robot have
the objective of minimizing a cost function that depends on
the tracking error and the control effort required, defined as

Ji(k) =
N

∑
l=1

ei(k + l)T Qi,i ei(k + l)+ e j(k + l)T Qi, j e j(k + l)

+ui(k + l)T Ri ui(k + l)

=
N

∑
l=1

[
ei(k + l)T e j(k + l)T ][

Qi,i 0
0 Qi, j

][
ei(k + l)
e j(k + l)

]
+ui(k + l)T Ri ui(k + l)

=
N

∑
l=1

ea(k + l)T Qi ea(k + l)+ui(k + l)T Ri ui(k + l)

(13)

with i, j = {h, r} subscripts denoting the human and robot
matrices. In equations (13), Qi, j defines the weight that the
human and the robot assign to their own and the opponent’s
reference tracking error, ei(k+ l) = y(k+ l)−yre f ,i(k+ l) refers
to the tracking errors foreseen for the human and the robot at

time step k+ l, with ea(k+ l) =
[

eh(k + l)
er(k + l)

]
, and uh(k+ l) and

ur(k + l) are the control inputs of the human and the robot at
time step k + l. Defining then

Q̃i(k) =

Qi
. . .

Qi

 (14)

R̃i(k) =

Ri
. . .

Ri

 (15)

equations (13) can be rewritten in compact form as

Ji(k) = Ea(k)T Q̃i Ea(k)+Ui(k)T R̃i Ui(k) (16)
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C. Cooperative Game-Theoretic Problem Formulation

In a cooperative game, the players agree to cooperate by
sharing a common objective. The common objective is a
weighted sum of the singular objectives, and the weights are
the bargaining outcome. The bargaining is defined by a set
of parameters {αi, i = 1 : Nplayers, ∑

N
i=1 αi = 1, 0 < αi < 1},

which weight the contribution of each player.
The shared objective is defined as

Jgt(k) = α Jh(k)+(1−α)Jr(k) (17)

It is then possible to define the cooperative matrix of the
weights on the system state as Qgt = α Q̃h +(1−α) Q̃r, and
the cooperative matrices of the weights on the control input
of the human and the robot as Rgt,h = α R̃h and Rgt,r =
(1−α) R̃r, respectively. Therefore, from (17), the Coopera-
tive Game-Theoretic single objectives of the two players are
defined as

Ji,gt(k) = Ea(k)T Qgt Ea(k)+Ui(k)T Rgt,i Ui(k) (18)

The GT-dMPC problem for the Cooperative Game Theoretic
pHRI can then be summarized as

min
ui

Ji,gt = Ea(k)T Qgt Ea(k)+Ui(k)T Rgt,i Ui(k), i = {h,r}

s.t. Y (k) = Fz(k)+ΦhUh(k)+ΦrUr(k). (19)

Following [51] and [56], the solution of problems (19) can
be computed as

U∗ =
[
U∗

h
U∗

r

]
=

[
I Kh

Kr I

]−1 [
Lh 0
0 Lr

][
Zh
Zr

]
(20)

in which, defining

Si = (ΦT
i QgtΦi +Rgt,i)−1

Φ
T
i Qgt , i = {h,r} (21)

the gains are computed as

Ki = SiΦi (22)
Li = [−SiFi Si] (23)

and

Zh = Zr =



zgt(k)
yre f ,h(k +1)
yre f ,r(k +1)

...
yre f ,h(k +N)
yre f ,r(k +N)


(24)

Finally, to implement the receding horizon logic, only the
components of U∗

h and U∗
r relative to the next step are used,

hence uh(k) = U∗(1) and ur(k) = U∗(1+N). Note that while
the Yre f ,r comes from a motion planner and is known, the
same does not apply to Yre f ,h. Therefore, a method to identify
the human intention is necessary, and it is introduced in the
next section. In particular, we define with human intention the
desired trajectory that the human wants to follow over a finite
rolling prediction horizon, i.e., Yre f ,h.

Fig. 2. The control schema with the RNN+FC model.

IV. HUMAN INTENTION PREDICTION

This section introduces the method to predict the desired
human trajectory.

As also discussed in [38], the human arm dynamics in
interaction with a robot at its tip can be described as

−Chv−Kh(xre f ,h− x) = uh, (25)

with Ch and Kh damping and stiffness matrices of the human
arm. Assuming that Ch = Ch(x, ẋ) and Kh = Kh(x), the desired
human motion can be defined as

xre f ,h = F(x, ẋ,uh). (26)

The function F is nonlinear and time-variant. The problem
becomes even more complicated if the human and the robot
interact while transporting a large object, with additional iner-
tia and different contact points. Therefore, this work proposes
using a Recurrent Neural Network (RNN), cascaded with a
Fully Connected (FC) layer (RNN+FC), to learn the complex
human dynamics and provide the robot with the desired
trajectory over the next horizon. In particular, among the
various types, this work proposes the adoption of Long-Short
Term Memory (LSTM), which has proven to have better
performances for long-time series than the basic RNN.

The proposed method aims to identify and predict, over a
finite rolling horizon, the desired human trajectory, given the
history over a finite horizon. The RNN+FC model takes the
last p time instant as input and predicts the human desired
trajectory over the next Np steps. The model accepts as inputs
the actual robot positions and velocities x and v as defined in
section III-A, the measured wrench the human exerts uh, and
the nominal robot trajectory Yre f ,r. At the current time instant
k, the input data are X = {x(k− p), . . . , x(k)} and V = {v(k−
p), . . . , v(k)} containing the positions and velocities of the
past p time instant, respectively, Uh = {uh(k− p), . . . , uh(k)}
containing the human interaction wrench over the past p time
instant and Yre f ,r = {Yre f ,r(k− p), . . . , Yre f ,r(k)} containing the
reference trajectory of the robot of the past k time instant.
The output of the model is a finite sequence of reference
positions in the horizon ranging from time k + 1 to k + Np,
defined as Ŷre f ,h = {ŷre f ,h(k + 1), . . . , ŷre f ,h(k + Np)}, where
(̂·) denotes an estimate. A schematic view of the proposed
model integrated into the GT-dMPC framework, with inputs
and output highlighted, is visible in Figure 2.

A. Iterative Training

The RNN+FC model requires training its parameters to
learn an approximation of the function (26). The training needs
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data, and data collection is a tedious process. It is sometimes
possible to generate such data with simulations [82]. Unfortu-
nately, in the case of pHRI, it is very challenging to simulate
realistic force interaction. Moreover, in the proposed control
schema, predicting the desired trajectory directly influences the
control inputs, as visible from (20), making it even more com-
plex to set up a realistic simulation scenario. Therefore, data
are collected on a real setup adopting the following procedure.
An iterative training procedure is proposed to overcome the
problem that a particular model influences the robot’s behavior.
Initially, because no trained model is available, the first dataset
D0, is collected letting Ŷre f ,h = Yre f ,r. With D0 it is possible
to train a model M0 which depends on the first dataset only
M0 = M0(D0). At this point, it is possible to use M0 to
predict the future desired human trajectory. A second dataset
D1 is collected, with the difference that Ŷre f ,h = Yre f ,r does
not hold anymore, and Ŷre f ,h = M0(X ,V,Uh,Yre f ,r) is used
instead. Note that the robot’s behavior changes accordingly.
A second model M1 = M1(M0, D0) is trained. This procedure
is iterated for K times until a stop criterion is reached, and
the model MK = MK(Mk−1, Dk−1) is finally ready for usage.
A stopping criterion can be based on the prediction error,
defined as the average of the Root Mean Square Error (RMS),

eRMS =
1
L

L

∑
T=1

√√√√ 1
Np

T+Np

∑
k=T

(∥Ŷre f ,h(k)−X(k)∥)2, (27)

where Ŷre f ,h(k) is the predicted human intention at time instant
k, X(k) the measured poses, L is the length of the trajectory,
and N p is the prediction horizon. The iterative procedure stops
when ||ek+1

RMS− ek
RMS||< tol.

B. Transfer Learning

The procedure described in section IV-A is time-consuming,
as it requires time for data collecting and model training.
Moreover, despite being good at prediction, the final model
obtained MK is tailored and trained on a specific subject and
task. Making the model as general as possible is theoretically
feasible by collecting multiple data involving different subjects
and tasks, creating a vast dataset, and finally training the model
with it. Such an approach requires knowledge in advance of
all the possible tasks and objects that can be co-manipulated
and a massive experimental campaign with different people to
acquire the dataset. To overcome this issue, we propose a much
more efficient solution that relies upon making the model
adaptive instead of general by letting the previous model’s
knowledge be transferred into a new model that describes
similar features, the so-called Transfer Learning (TL). TL is
a widely adopted method to speed up training starting from a
pre-trained model. A widely used TL strategy in fields such
as computer vision or NLP domains consists of “freezing”
some model layers and re-train only a few layers on new data,
which means having fewer parameters to be tuned compared
with the complete model. Similarly, we propose to freeze the
RNN part of the model that has more parameters to be tuned,
and fine-tune only the final FC layers [83], [84]. In doing
this, we follow the insight that the RNN learns the features of

TABLE I
TRACKING PERFORMANCES

the pHRI (e.g., a force in a direction means that the human
wants to steer the system in the same direction, an increasing
force means the human is accelerating), while the FC layer
learns how a specific user does interact (e.g., how much force
a particular user uses to steer the system, how fast a specific
user accelerate the system, etc.). With the TL approach, it is
possible to quickly adapt the model MK to new users and
additional objects co-manipulation, with little data collection
and fast training, leading to MT L = MT L(MK , DK).

V. GT-DMPC AND RNN+FC MODEL EVALUATION

This section presents simulations of the GT-dMPC frame-
works presented in section III to understand its performances
for different values of the main parameters, with the objective
of understanding the set that better fits with the pHRI appli-
cation. Then the training procedure of the RNN+FC model is
explained and evaluated.

A. GT-dMPC Performances Analysis

The GT-dMPC framework presented in section III is sim-
ulated with different parameters tuning. For the simulation,
only one dof is considered. The system is discretized at
0.008 seconds. The parameters analyzed are the prediction
horizon Np = {0.04, 0.16, 0.4} which correspond to 5, 20,
and 50 timesteps horizons, the bargaining solution parameter
α = {0.2, 0.5, 0.9}, and the weight of the robot’s cost
function for the control input Rr = {0.001, 0.0005, 0.0001}.
The parameters of the human cost function cannot be made
variable arbitrarily because they are descriptive of the intrinsic
human behavior and must be recovered with inverse techniques
such as in [85] and [86]. In this work, an average sufficiently
descriptive is used, resulting in Qh,h = diag([1,0.0001]),
Qh,r = diag([0,0]) and Rh = 0.0005. The impedance param-
eters of (1) are set to mi = 10, ci = 100 and ki = 0. The
two references are given as Yre f ,h(k) = sin(k : k + Np) and
Yre f ,r(k) = 0.5sin(k : k +Np).

To compare the tracking performances of the proposed
controller with different tuning, we define a tracking error
index as

etrac =
∫ t

0
∥Yre f ,h−x∥dt (28)

Note that we are interested in designing an assistive controller,
and the objective is to reduce the tracking error of the desired
human reference trajectory. Table I presents results for the
simulated scenarios of the etrac index. As visible, with high
values of α(= 0,9), the system tends to follow the human
reference closer than the robot’s one. Therefore, since this
work aims to define an assistive controller for the human, it is
suggested to use high values of α , thus allowing for better
assistance from the robot. On the contrary, according to GT
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Fig. 3. The iterative training and transfer learning schema. On the left, the initial dataset D0 is used for training an initial model. The iterative training is
depicted in the dashed box. After the convergence of the main model, on the right, a new short dataset collection is done with new scenarios. Finally, the
model is updated by the transfer learning procedure.

Fig. 4. Qualitative evaluation of tracking performances according to different
tuning parameters of the GT-dMPC controller. Low values of Rr and long
prediction horizons generally allow human reference tracking performances.

formulation, with α = 0,2, it should be the human that helps
the robot follow its reference. This situation is not realistic.
In fact, humans do not know the robot’s reference. Moreover,
it is unnatural for the human to assist the robot, and it prevents
the human from being assisted. So low values of α should be
discarded.

Figure 5 shows some of the system tracking simulations.

B. RNN+FC Prediction Performances

The prediction performances of the RNN+FC are evaluated
in this subsection. The robotic platform used for the tests is
a UR5 robot, with a Robotiq FT300 mounted at the tip for
measuring the human interaction force. Right after the FT
sensor a lightweight 3D-printed handle is mounted allowing
the human to grasp the robot at the end effector. The weight
and inertial components of the handle are negligible so that
it does not affect the force measurements. To evaluate the
performances, we consider a collaborative motion along the
x–y plane. The experiments want to simulate a situation in

Fig. 5. The trajectories visible on the monitor. The red box is the obstacle,
the green cross is the current position, and the red dot is the robot reference.
The training uses trajectories 5a, 5b, and 5c. Trajectory 5d is for the evaluation
and TL.

which a human and a robot are moving together along a
trajectory, and the human, at a certain point, needs to deform
the trajectory (e.g., because there is an obstacle that the robot
doesn’t know in between).

1) Dataset Collection: For the model’s training, we collect
the robot’s actual poses and velocities from the robot’s con-
troller. The interaction force is measured at the robot tip via the
FT sensor. An external computer provides the robot with nom-
inal trajectories and streams real-time commands. The data are
sampled at 8 milliseconds. Three nominal robot trajectories are
defined: linear, curved, and sinusoidal. The three trajectories
are visible in Figure 5a, 5b, and 5c, respectively. The human
must follow three trajectories visible on a monitor and deform
them to avoid an obstacle that appears randomly at some point
in the trajectory. The robot does not know the position of the
obstacle.

A single operator performed 20 repetitions for each trajec-
tory for a total of 60 trials for each iteration. Despite the stop
criterion (27) being matched after 1 iteration, we decided to
perform 4 iterations to evaluate if iterating more can produce
some improvement. The RNN+FC model has input data
collected in the 125 time instant precedent, and the prediction
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Fig. 6. Experimental setup: a Robotiq FT300 sensor is at the robot tip; a
monitor shows the reference trajectory.

horizon is set to 50 time steps. The LSTM model comprises
3 layers with 250 nodes, and the FC comprises two fully-
connected layers, with 100 output nodes predicting the x–y
trajectory for a horizon of 50 time instants. The learning rate,
decay function, and the optimizer of the RNN+FC model are
obtained with Optuna [87]. The model is trained for 25 epochs.

The impedance parameters are Mi = diag(10,10), Ci =
diag(100,100), and the stiffness is set to null Ki = diag(0,0),
as typically in pHRI. The mass and damping coefficients have
been hand-tuned to allow smooth motions. The cost of the two
players are set as Qh,h = Qr,r = diag([1,1,0.0001,0.0001]),
Qh,r = Qr,h = 02×2 and Rh = Rr = diag([0.0005,0.0005]).
The human cost function parameters Qh,h, Qh,r and Rh are
recovered via Inverse Optimal Control (IOC) as in [85], and
an average value is used. The robot parameters Qr,r, Qr,h, and
Rr are set equal to the human’s to mimic a person. Different
tuning may result in more assistive behavior, which might be
desirable. Finally, the parameter α = 0.8 is chosen to allow
sufficient assistance. The value of α allows high assistance
and the robot to recover the position of the robot set-point
autonomously. Figure 6 shows the setup.

2) Iterative Model Adaptation: First, the iterative procedure
is analyzed. During this phase, the trainings are based on
data collected by a single subject. The eRMS in (27), and the
maximum error defined as

eMAX = max
(

max
(√

∥Ŷre f ,h(k)−X(k)∥2

))
(29)

are used to evaluate the prediction performance of the
RNN+FC model at each iteration. Note that the maximum
error happens when the human suddenly imposes a force on
the system to deviate from the nominal trajectory. In this
case, in the time instants before this happens, the model has
no information that can suggest that the trajectory is going
to be modified. At each iteration, a model is trained based
on the data collected. Figure 7 presents results of the eRMS
and eMAX indices for four iterations for a prediction horizon
of 50 timesteps. Each bar shows the average and standard
deviation computed over five complete trajectories.

It is clearly visible that the two errors are dramatically
reduced after the first iteration. Therefore, with just a couple of
training the model is ready to be used. The average prediction

Fig. 7. eRMS from (27) and eMAX from (29) at the various iterations.

Fig. 8. Model Evaluation: the prediction at the various model iterations Mk .
The maximum prediction horizon is considered (0.4s). In solid black, the
prediction at each time instant. In dashed red, the executed trajectory. X and
Y axes represent the Cartesian position in meters.

error is in the range of a few millimeters, and the maximum
error does not exceed 10 millimeters. Note that these results
are presented for a prediction horizon of 50 timesteps. Despite
this, varying the prediction horizon may also lead to different
convergence rates, requiring more iterations. Moreover, we are
considering only two Degrees of Freedom (DoFs) in this case,
while considering more DoFs may also require more than two
iterations to show no sensible improvements.

Figure 8 shows the executed and predicted trajectory at each
iteration using the adapted models.

3) Transfer Learning Adaptation: To evaluate the Transfer
Learning capabilities to adapt the model to new users, we con-
sider the same eRMS and eMAX used for the iterations. First,
we evaluate the model’s capability to predict human intent with
a new trajectory not used during the training. To measure this,
the same subject that trained the full model performs the new
set of experiments. Then, TL learns the new trajectory and
compares the errors. The TL allows for reducing both errors,
making it comparable to that of the known trajectories. Then,
five new subjects are asked to perform the three trajectories
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TABLE II
TIME REQUIRED FOR EACH STEP. THE ITERATION REQUIRES A LOT

OF TIME, WHILE THE TL PROCEDURE CAN ADAPT THE
MODEL QUICKLY WITH A FEW DATA

TABLE III
TIME REQUIRED FOR EACH STEP. THE ITERATION REQUIRES A LOT

OF TIME, WHILE THE TL PROCEDURE CAN ADAPT THE
MODEL QUICKLY WITH A FEW DATA

used during the training and deform them by directly grasping
the robot at the tip. Finally, the subject that trained the base
model grasps a panel of 106× 82cm assisted by the robot.
By adding the object, different forces are exchanged. Table II
shows the average of the eRMS and eMAX for the three different
cases. All the values are given as mean and standard deviation
over five repetitions of the tasks. The results regarding the
subjects is the average of the results of each subject. The TL
improves the predicting performances for the case of different
subjects, making the average error after the TL comparable to
the error of the iterated model, about 2mm. The TL decreases
the errors also for the case of the co-manipulated object.

4) Time Required: Table III shows the time required for
each iteration’s dataset collection and model training, com-
paring it with the TL time. The iterative procedure takes
about two hours for each iteration. The TL approach allows
performing this procedure only once. After that, the model can
be adapted to new situations in about 10 minutes, thanks to
the TL approach. The computation runs on a laptop with Intel
i7 and NVIDIA GeForce 1050.

VI. APPLICATION TO COLLABORATIVE TRANSPORTATION

The proposed approach exploiting the RNN+FC predic-
tive model into the GT-dMPC framework is evaluated with
experiments involving two different co-manipulated objects for
three sets of experiments each. Five new subjects, not known
to the RNN+FC model, with different levels of experience
with robots, aged between 28 and 36 years old, with different
heights [170-193cm] and weights [72-98kg], performed the
experiments.

The experiments involve the full motion along the Cartesian
positions (x–y–z). Three sets of experiments are designed,
involving two different components. The first component is
a granite brick weighing about 3.6 kg, which is usually used
for calibration. The second component is a composite board
(size 900×700 mm), an aeronautical component assembled in
the cargo area of airplanes. The proposed GT-dMPC controller
is compared with two other standard controllers used in pHRI,
the Manual Guidance (MG), and the Impedance Control (IC),
namely. The two objects and the collaborative setup are visible
in figure 9.

The experiments are composed of the following steps.

Fig. 9. The two setups used to perform Transfer Learning and comparison
with MG and IMP controllers.

1) Itertive Training: The training is carried out in this
stage without any tool or co-manipulated object. The robot
mounts a lightweight 3d-printed handle to allow the human
to grasp it right after the FT sensor. The trajectories are
computed with Moveit!, and the human is allowed to deform
the nominal robot trajectory in the x–y–z Cartesian space
along the translational degrees of freedom. The RNN+FC
model has 375 hidden layers in the RNN, and it outputs
the prediction of the human desired positions in the x–y–z
coordinates. A total of five iterations are performed to train and
adapt the model to learn the actual interaction. The iterative
training procedure output is the model M4, which is trained to
collaboratively reach a precise target T0 without any additional
inertia.

2) Transfer Learning: After that, the model M4 can be
adapted via TL to co-manipulate different objects with differ-
ent users. Each new subject is asked to reach the target point
co-manipulating an object, using the GT-dMPC controller, and
the model M4 predicts the desired motion. The target point
is the same one used for the iterative training procedure T0.
Each subject, for each of the two objects, performs 15 reaching
tasks to the target T0. After the dataset collection, TL training
is quickly performed, and the comparison of the GT-dMPC
controller with the IMP and MG can be performed.

3) Reaching Tasks: Three different reaching tasks are
defined. The first requires the co-manipulation of the objects
and the reaching of the same target used during the training
T0. Each subject performs such a reaching task five times with
the three controllers. After that, a brief questionnaire is filled
out. Then, a new target T1 is defined. The subjects are asked to
reach it in two different conditions. In the first case, the target
T1 is also known to the robot, defined in this case as T1,k,
and Moveit! computes a nominal trajectory from the home
position to T1,k. The second case still involves reaching the
target T1, but now it is unknown to the robot (T1,u), and the
trajectory computed connects the home position to the target
pose T0. After each set, the same questionnaire is filled out,
and the subjects are asked to score different performances for
each controller.

The following performance indexes are defined to evaluate
the performances of the proposed controller compared with the
MG and the IMP controllers. Since the objective of the
proposed work the design an assistive controller, we consider
as performance indexes the required force to move the object,
the precision of positioning such an object to a target position,
and the smoothness of motion to measure the naturalness of the
interaction. The force Root Mean Squared error is considered
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over the entire trajectory, defined as

fRMS =

√
1
L

L

∑
k=0
∥ fk∥2, (30)

with L denoting the length of the trajectory and ∥ fk∥ the
module of the measured interaction force at time instant k.

To measure the precision in reaching the target pose,
we defined a tolerance δ . The distance from the target pose
is defined as the Euclidean distance as d(c, t) = ∥xc − xt∥,
with subscripts c and t denoting the current and target pose,
respectively. As a performance index, we compute the average
d(c, t) for two seconds after the first occurrence of d(c, t) < δ .
The precision performance index is defined as

davg =
1
n

n

∑
k=0

d(c, t)k. (31)

It is important to note that the average over a time horizon
gives a measure of the precision of reaching a target and the
stability with which such a target is reached over time.

To measure the smoothness of the interaction, the
Spectral-Arc Length (SAL), as defined in [88].

Finally, we proposed a questionnaire to the subjects to
evaluate subjective performance indexes which give an intu-
ition of the naturalness of the interaction. In the proposed
questionnaire the subjects are asked to score five points:
• assistance: measures the overall assistance felt by the

users provided by the different controllers;
• naturalness: measures how natural the interaction was

perceived by the subjects in completing the tasks;
• smoothness: measures how smooth the interaction was;
• effort: measures the required force perceived by the

subjects during the interaction;
• detection of intention: measures how well the robot

correctly intended the subjects’ motion intention during
motion.

A. Results

As an illustrative example, figure 10 shows the actually
executed trajectory, the predicted portion of the trajectory
each time instant, and the nominal robot trajectory, during
the execution of the first reaching task, involving the lumped
mass and the initial target pose T0.

The results of the fRMS index are presented in figure 11.
In general, it is visible that the IMP controller is the one that
requires the higher force to co-manipulate the objects in both
cases. This is because the IMP controller has a virtual spring
that always tries to restore the current pose to the nominal
robot trajectory and applies a force opposite to the trajectory
deformation imposed by the subject. The GT-dMPC and MG
controllers show similar performances. In the case of lumped
mass, the GT-dMPC slightly performs better, showing that the
RNN+FC model has learned the interaction model even if a
payload is applied.

The results of the davg are shown in figure 12. In this
case, the IMP controller performs well when the target pose
is known to the controller, as the virtual spring applies a
force to move the robot towards it. Despite this, the additional

Fig. 10. Predicted, executed, and nominal trajectories for the co-manipulation
of lumped mass object.

Fig. 11. Force RMS, measured as in (30), for the three tasks and the three
controllers.

Fig. 12. Average distances, measured as (31) for the three tasks and the
three controllers.

payload is not considered by the IMP controller. Therefore,
humans must still apply vertical force to reach the target
pose properly. Moreover, when the human wants to reach a
target different from the nominal one, the IMP cannot provide
any assistance. On the contrary, the IMP controller tends to
reach its known target, deriving from the human one. The MG
controller cannot provide any assistance to reach the target
pose, and its performances strictly depend on each subject’s
capabilities. The GT-dMPC controller performs better than the
two others in almost all three cases regarding the mass task.

The SAL index shows that the proposed GT-dMPC con-
troller performs comparably to the other two controllers in
most cases. In general, the MG controller allows smooth
motions because it has a passive behavior, and the IMP
controller allows smooth motion because it tends to follow
the nominal trajectory, which is typically computed to avoid
too high acceleration in pHRI tasks. It is interesting to see
that the GT-dMPC with the active assistive contribution shows
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Fig. 13. Average SAL for the three tasks and the three controllers.

TABLE IV
SUBJECTIVE QUESTIONNAIRE SHOWING THE

PERCENTAGE OF RESPONSES COUNT

comparable performances and that the introduced assistance
does not worsen the SAL index. Moreover, in the unknown
reaching task, the IMP controller is incapable of any assis-
tance, making it hard to deform the trajectory and precisely
reach the target. In this case, the SAL is more negative
(indicating more jerky trajectory execution), and the robot’s
behavior introduces oscillations. Results of the SAL compu-
tation are visible in figure 13.

Finally, the questionnaire results are presented in table IV.
Note that the presented results are an aggregate of the singular
scores given after each task to each controller. Therefore, the
results presented are, in some cases, contradictory. This hap-
pens because, for example in the IMP case, the IMP controller
is very assistive for the tasks involving the reaching of a known
target but is not assistive at all if the target is unknown to
the controller. Therefore the same subject can perceive high
assistance in some cases and low in others. We present an
aggregate of the results to give an overall performance of the
controllers, and to evaluate also their flexibility.

The GT-dMPC controller is the one that shows higher
assistance, with most of the scores ranging between 3 and
4. The MG controller also shows good results, with about
one-third of the scores equal to 3. This can be interpreted
as the humans like a slightly damped interaction as this can
sometimes help in being precise and damps the load descent,
letting the human perceive a little assistance in terms of
“gravity compensation”. The IMP controller shows various
and different scores. This happens because it can be quite
assistive in cases where the target pose is known. In such
cases, the IMP controller helps with precise positioning by
applying an attractive virtual force. For the same reason,

it applies an attractive virtual force in the vertical direction
to the nominal vertical target, partially relieving the human
operator and giving the impression of sustaining the weight.

Naturalness evaluates how natural is perceived the inter-
action by the user. The GT-dMPC controller shows great
performance, with the majority of the scores in 4, indicating
that the proposed controller allows natural pHRI. Also the MG
controller shows good performance, as its passivity guarantees
a natural behavior of the robot. Despite this, it is perceived
as a little less natural since it does not provide any support
and the humans felt to be the only ones in charge of the
task. Compared with the other two, the IMP controller does
not show significant results. This is mainly because it has a
reference trajectory that tends to follow, introducing forces that
sometimes are not following the desired motion of the human.

Regarding smoothness, the GT-dMPC performs slightly
better than the MG controller, with great results for both.
In this case, the IMP controller is also evaluated with good
scores, only slightly lower than the other two controllers. This
can still be because the IMP controller, reacting to external
forces that the additional inertia can produce, might oscillate
a little, even in proximity to the target position.

The effort is measured as the lower, the better since it was
asked to score how much effort each subject should put into
completing each task. In this case, the GT-dMPC scores are
in the lower half, showing that the proposed controller is
capable of relieving the users from carrying the weight and
also allows trajectory deformation according to the desired
user intention without requiring excessive interaction force.
The MG controller performances are in the upper half of the
range. This is because it does not require any particular force
to deviate from the nominal trajectory. Still, it cannot assist
in reducing the perceived weight of the co-transported object.
The IMP controller has different scores, either they are high
or low. This happens because in some tasks when the target
is known, the IMP controller assists in quickly reaching the
target and lifting the weight, and applying a reactive force in
the vertical direction. On the contrary, when the user wants
to deviate from the nominal trajectory, as in the case of
an unknown target, the user should apply a higher force to
counteract the attractive virtual force to the nominal trajectory.

Finally, the perceived Detection of Intention is evaluated.
The GT-dMPC is the controller that better gives the impression
of detecting where the human wants to go and provides
proper assistance. The MG controller also shows good results
because it smoothly allows motions according to human desire.
The IMP scores are slightly different, as in the case the
target is known, the human can think that the robot properly
understands the intention of reaching a desired point, but when
the target it is not known it does not.

VII. DISCUSSION

The method proposed in this manuscript addresses an
assistive controller framework for pHRI specifically intended
for large/heavy rigid object co-manipulation. Despite this,
with minor modifications, this framework could possibly
involve the co-manipulation of flexible objects such as large
sheets/composite material plies. These new scenarios require
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some adaptation of the framework. First of all, the F/T
sensor used in this case will no longer be reliable as flexible
components can transmit forces only in traction. Therefore,
techniques to estimate the exchanged “force” must be imple-
mented, as in [89], to infer human intentions. Moreover, the
model is likely to be trained again from scratch. TL might still
work and adapt the model, but performances will be increased
by re-training the model. This topic will be deeply addressed
in future works. At the current status, the RNN+FC model
is trained to predict changing human intention, such as in
the case of obstacle avoidance or different target reaching.
In general, the model given some historical inputs is capable
of predicting a future desired trajectory. Since this prediction
happens every 25 Hz, approximately, a new prediction is
available every 40 ms, making sudden changes in human
intention detectable with reasonable time response. This is
visible from figure 8 in the time instants where the human
deviates from the horizontal trajectory. The model suddenly
starts to predict a bend trajectory for the next steps. The model
is trained for specific tasks that can still generalize several
human behaviors. The model itself knows how a human
wants to stay in a stop or how the human wants to move
and even deviate from a trajectory. These human behaviors,
can generalize most of the situations that can happen during
collaborative transportation: standing stop, moving towards
a goal, and deviating from it for any reason (intermediate
obstacle, different target, etc). Suppose a new task is faced
(e.g., the collaborative transportation of flexible plies). In that
case, if it still presents similarities to the two proposed in
the experiments, it is possible that with minor adjustments
of the model it can still work. Suppose a new task, such as
a shared driving task, must be addressed. In that case, it is
reasonable to adopt a different model, or at least the proposed
model has to be trained on totally new data collected with
the new system from scratch (the force will be applied as a
torque on a steering wheel, and Cartesian wrenches cannot
be used anymore as input for the learning model). Consider
a sawing task, where the human grasps the saw from one
side and the robot from the other. In this case, other perfor-
mance evaluations would be very interesting to better evaluate
the prediction performances. This would require experiments
designed ad-hoc for an index that might substantially deviate
from the purpose of the proposed work, in its current form,
and will be investigated in future works. In this case, there
would be sudden changes in the trajectory, and possibly, the
model would require new training with a different dataset.
Despite this, the proposed work does not consider such a
scenario, and in large/heavy objects, co-manipulation, such
behavior would probably never happen, especially because the
inertia of the co-manipulated object does not easily allow for
such behavior. Moreover, such kind of model can be used
in social robotics to describe the desired path a human can
follow while walking. This allows a mobile robot to approach
or avoid humans in cases such as airports, hospitals, and
hotels. Having a preview of the human direction allows for
predicting where the human wants to go and gives additional
input to the path planner. In this case, the same architecture
can be used, trained on a different dataset and fine-tuned

online for different humans, or categories of humans. Another
interesting application involves medical robots, or teleoperated
robots in general. In those cases, having the human intention
information allows the robot to move towards the human goal,
reducing possible uncertainties given by the actual human
behavior. This is of utmost importance in surgical robotics,
where predicting the desired human trajectory might allow
for smoothing a trajectory online. Considering the dataset
collection, one could ask what happens if the dataset contains
data from different users. In general, having a more general
model trained on different users might help a little in the
generalization of human behaviors, at the cost of requiring
longer dataset collection and training time. Moreover, the
authors noted that the prediction improvement is given mainly
by the TL step, which represents the actual personalization
step. The “baseline model” provides the training with a stable
base, but the TL procedure is the step that actually fits a
model (either the single-user or the multi-user) to a specific
user. In an Industrial scenario, this would require days since,
for each training iteration, a new dataset must be collected
with several subjects, possibly the ones that collected the base
dataset. Still, a TL step would be necessary to personalize
the prediction. The aim of this work is indeed to make
the prediction personalized rather than generalized, and we
preferred to show a method that requires only one long training
and very quick adaptation. Other performance evaluations,
despite being for sure interesting, would require experiments
designed ad-hoc for an index that might substantially deviate
from the purpose of the proposed work. Consider for instance
a sawing task. In this case, the authors agree that there are
sudden changes in the trajectory. Despite this, the proposed
work does not consider such a scenario, and in large/heavy
objects co-manipulation such a behavior would probably never
happen, especially because the inertia of the co-manipulated
object does not easily allow for such a behavior. Considering
also the case of collaborative applications, the maximum
allowed speed is 250mm/s. With such a velocity, rapid changes
are not easy to happen.

VIII. CONCLUSION

This work proposes the use of a distributed
Game-Theoretical Model Predictive Control (GT-dMPC)
combined with a Recurrent Neural Network cascaded with
Fully Connected layers (RNN+FC) capable of predicting
the desired trajectory of a human to design an assistive
controller for the physical Human-Robot Interaction. The
set of parameters describing the GT-dMPC performances
is analyzed in simulations to understand which set of
parameters better suits the requirement of assistance to the
human. The RNN+FC model involving iterative training and
transfer learning is deeply evaluated. It has been shown that
iterative training allows the model to fit better with human
intention, and such a procedure can significantly reduce
prediction errors. As iterative training is time-consuming
in data collection and model training, transfer learning is
proposed to quickly adapt the model to new users, trajectories,
and co-manipulated objects. These two main components
are finally combined to design an industrial-like scenario,
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to perform experiments on the human-robot co-manipulation
of large/massive objects. The proposed controller is compared
with Manual Guidance and Impedance Control by evaluating
different performance indexes and a subjective questionnaire.
Results show that the proposed controller can provide
better assistance in various tasks by reducing the required
interaction force and allowing better precision in stable
positioning around a target pose. The assistive component
does not introduce any additional oscillation, allowing natural
interaction with the human. The final subjective questionnaire
shows that the users generally appreciate the proposed
controller better than the other two.

Future works will address a model capable of learning
human intention according to variable α . This will allow
online Human-Robot Role Arbitration, with the possibility of
changing the robot’s behavior according to the task’s state.
Moreover, a model to allow online learning and adaptation
will be investigated.
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