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ABSTRACT Autonomous vehicles need to continuously analyse the driving context and establish a
comprehensive understanding of the dynamic traffic environment. To ensure the safety and efficiency
of their operations, it would be beneficial to have accurate predictions of surrounding vehicles’ future
trajectories. AVs can adjust their motions proactively to improve road safety and comfort with such
information. This paper proposes a novel approach to predict the future trajectories of interacting vehicles,
through a model of potential spatial-temporal interactions. A unique kernel function that emphasises risk-
awareness was developed to extract spatial dependencies. The established model was trained and evaluated
with the publicly available Highway Drone Dataset and Intersection Drone Dataset. The performance
of the developed model was assessed with eight state-of-the-art methods. An ablation study and safety
analysis were also conducted to evaluate the proposed risk-awareness kernel function. Results show that
the proposed model’s inference speed is over eight times faster than the commonly used LSTM-based
models. It also achieves an improvement of over 8% in prediction accuracy when compared with the
state-of-the-art model.

INDEX TERMS Stochastic trajectory prediction, Risk awareness, Spatial-temporal modelling, Autonomous
Vehicles

I. INTRODUCTION

REcent studies have shown that human factors, such as
speeding, drunk driving, and distracted driving, have

the strongest influence and are responsible for 80-90% of
road traffic accidents [1]. Thus, replacing human drivers with
more reliable solutions would potentially mitigate the ma-
jority of catastrophic traffic events by reducing human error.
This potential in improving travel safety is one of the primary
anticipations that motivates research and investments into
autonomous vehicles (AVs) and advanced driver-assistance
systems (ADAS) [2].

Most existing AV controllers are designed in a reactive
manner, therefore focusing on the current state of other road
users [3]. While this reactive design can suffice the goal of
navigating AVs without collision under most circumstances,
their inability to infer driver intent can lead to conservative

driving strategy and affect traffic efficiency. Instead, if AVs
were to predict surrounding traffic conditions based on past
information [4], they would have more opportunities to
proactively plan and execute safety manoeuvres, improving
road safety and driving comfort while minimising conflicts
with other road users.

Predicting trajectories accurately requires considering a
multitude of factors that influence vehicle motion behaviour.
These factors can be broadly categorised into two types:
map-based and map-free. Both categories use historical
trajectories of vehicles to predict their future paths, with
the former also integrating HD maps. However, HD maps,
while providing valuable contextual information, have started
to reveal some issues in their application [5]. Similar to
other AV systems, researchers have begun to investigate
how to conduct trajectory predictions without depending on
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HD maps. Recent studies [6], [7] have shown that map-free
methods can surpass map-based approaches in terms of both
prediction accuracy and processing speed. Consequently, this
paper exclusively concentrates on map-free methods.

Meanwhile, it should be noted that while human drivers’
behaviours tend to preserve some tendencies, but they are not
deterministic and their reactions to the same driving scenario
may differ at each time [8]. Factors affecting this behaviour
include the driver’s eagerness to finish the trip, time of the
day, weather conditions, among others [9]. More importantly,
even if the driver maintains the same intention, the execution
could differ in speed and pattern, resulting in different
manoeuvres [10]. Thus, this study generates a stochastic
multimodal prediction of vehicles’ future trajectory to ensure
AVs’ safety operation.

While many studies have been proposed to predict vehicle
trajectories [3], [4], [11]–[26], there is a lack of a thorough
comparison of these methods, especially for deep learning
studies [3], [4], [12], [15]–[26]. Meanwhile, although col-
lision risks were estimated in some studies [11], [13], they
were mainly used for the selection of candidate manoeuvres,
which would restrict the influence of driver’s risk awareness
on their driving decision.

Furthermore, in many existing research studies, spatial
relations are commonly treated as fully connected, without
distinguishing their individual influences. This approach sig-
nificantly limits the interpretability of the model, making it
challenging or even impossible to comprehend the results
it produces. This lack of interpretability poses a significant
obstacle to the safety certification and widespread adoption
of AVs. Addressing this issue, Explainable Artificial Intelli-
gence (XAI) provides a solution by enabling human users to
better understand, interpret, and trust the outputs generated
by AI-powered systems. By incorporating explainability, we
can ensure that only meaningful variables contribute to the
output, thereby guaranteeing that the models capture accurate
causality. In order to enhance explainability, our research
introduces risk-awareness in spatial relations, thus improving
the overall explainability of the model.

The primary contributions of this study are outlined as
follows:

1) We propose a novel approach to model the spatial-
temporal interactions for vehicle trajectory prediction,
which achieves an improvement of over 15% in predic-
tion accuracy when comparing with the state-of-the-art
model.

2) A unique kernel function that emphasises risk-
awareness is developed to dynamically extract spatial
dependencies between vehicles in the scene. The influ-
ence of this kernel function is evaluated in an ablation
study.

3) We create an enhanced safety protection layer based
on the stochastic vehicle trajectory predictions, which
evolves with the prediction horizon to incorporate the
increasing uncertainties in predicted positions.

4) A unified comparison analysis is conducted to evaluate
the proposed method’s prediction accuracy, inference
speed and distributional performance with state-of-the-
art models.

This paper is structured into five sections. Section 2 briefly
reviews some relevant literature, while Section 3 explains the
adopted methodology. Afterwards, the obtained results and
discussion of analysis are presented in Section 4. Finally,
Section 5 discusses the findings and limitations of this study
and suggests potential future works.

A. Related Work
Extensive research efforts have taken place over the last
decade in the area of AV safety and trajectory prediction,
underpinned by rapid advances in sensing technologies and
the intense pace of AV deployment efforts. For the purposes
of this study, we conducted a literature review for approaches
based on deep-learning. An overview of reviewed literature
is presented in Table 1.

B. Deep learning Studies
Trajectory prediction is fundamentally a time-series classi-
fication or generation problem, which makes it particularly
suitable for the application of deep learning techniques. Long
Short-Term Memory (LSTM) methods, based on Recurrent
Neural Network (RNN) architectures, have been especially
prominent amongst the reviewed literature, as they are ca-
pable of extracting long-term relations amongst the various
actors in their models. Existing LSTM-based models can
consider fixed number of surrounding vehicles [3], [15], [16]
or dynamically capture them over an occupancy grid [17].

However, although these models can implicitly infer the
dependencies between vehicles, they can lose information of
their relative positions. To compensate this deficiency, Deo
and Trivedi [12] enhanced LSTM to improve the extraction
of spatial relations. They added convolutional social pooling
layers, which generate a context vector consisting of a
compact representation of vehicle interactions. Instead of
focusing only on vehicles, He et al. [19] used Multiple
Layer Perceptron (MLP) and LSTM to develop a unifying
framework that can predict trajectories of different road
agents, such as vehicles, pedestrians and cyclists.

To better extract spatial relations, graph-based methods
have been increasingly adopted for trajectory prediction.
They denote vehicles as nodes, with their interactions rep-
resented using edges. Spatial information is then captured
using Graph Convolutional Networks (GCNs) or Graph
Attention Networks (GATs). For example, Zhao et al. [20]
assumed a full connection between all vehicles in the scene
and applied a set of two-layer GCNs to capture their spatial
relations. However, these fully connected edges lead to
equivalent interactions among vehicles, regardless of their
respective positions, which is not realistic in the real-world
driving context. To better address the different influences
of interactions, Jeon et al. [21] used Edge-enhanced Graph
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TABLE 1. Summary of Literature

Author Approach Features
Altché and Fortelle [3] LSTM nine surrounding vehicles

Woo et al. [15] LSTM lane-changing manoeuvre, four surrounding vehicles

Deo and Trivedi [16] LSTM stochastic prediction, six surrounding vehicles

Kim et al. [17] LSTM+occupancy grid region of interest

Deo and Trivedi [12] Enhanced LSTM convolutional social pooling

Zhao et al. [18] LSTM+convolutional network multi-agents prediction

He et al. [19] LSTM+MLP different road agents

Messaoud et al. [4] LSTM+attention multi-head attention

Zhao et al. [20] LSTM+graph GCN

Jeon et al. [21] LSTM+graph Edge-enhanced GCN

Li et al. [22] LSTM+ graph temporal convolutional layer

Li et al. [23] GRU+graph additional trainable graph

Dong et al. [24] LSTM+graph GAT, different road agents

Zhang et al. [25] TCN lane-changing manoeuvre

Strohbeck et al. [26] TCN rasterised image and vehicle state information as input

Li et al. [27] TCN, pooling, attention local and global interaction

Chen et al. [28] graph transformer non-autoregressive approach with low prediction latency

Liao et al. [29] LSTM, MLP, attention, DGG incorporate human behaviour and traffic psychology

Liao et al. [30] LSTM, GCN, Linformer, pooling, DGG adaptive structure-aware interactive graph convolutional network

Chen et al. [31] LSTM, attention, GLU intention-specific feature fusion

Convolutional Networks, a variant of conventional GCNs, for
the prediction of vehicle trajectories. This approach obtains
a weighted adjacency matrix through the edge-enhanced at-
tention mechanism, which calculates the edge feature matrix
using two paired vehicles’ relative position and velocity.
Another GCN-based study was implemented by Li et al. [23].
Unlike the previous two studies, they incorporated a 2D
Temporal Convolutional layer after the graph operation. They
also added a trainable graph to the fixed graph representation
of the scene to mitigate performance degradation in urban
traffic scenarios [22]. The temporal correlations in these
studies were captured using LSTM [20], [21], [23] and Gated
Recurrent Unit (GRU) [22].

While GATs have been used in several studies for pedes-
trian trajectory prediction, its application to vehicle trajectory
prediction is limited, with only one publication identified
[24]. Similar to [19], this model can also predict trajectories
of other road agents by defining an attention circle and
limiting potential conflicts only among the road users within
this circle, the radius of which is determined by agent
speeds, prediction times, and agent lengths. Additionally,
the semantic map was used as an input that also included
traffic rule information. Other attention mechanisms are also
increasingly used in recent studies. For example, Chen et
al. [28] introduce a novel non-autoregressive graph trans-
former that incorporates a self-attention module to address
dynamic variations in social behaviour and a graph attention
module to depict interactions between vehicles. This non-
autoregressive approach enables the model to achieve both
diverse trajectories and low prediction latency. Liao et al.
developed two models, BAT [29] and MFTraj [30]. Both

models integrate human features into trajectory prediction,
incorporating a behaviour-aware module based on dynamic
geometric graphs (DGGs) to capture the behavioural fea-
tures of road users. In a recent study, the Human-Like
Trajectory Prediction (HLTP) model integrates human cog-
nition and decision-making processes through an advanced
teacher-student knowledge distillation framework [32]. The
”teacher” model, featuring an adaptive visual sector, simu-
lates the visual processing capabilities of the human brain,
specifically the occipital and temporal lobes. Meanwhile,
the ”student” model emphasises real-time interaction and
decision-making, akin to the roles of the prefrontal and
parietal cortices.

Another trend in existing deep learning studies is to use
Temporal Convolutional Networks (TCNs) as an alternative
for time-series prediction. TCNs employ casual convolu-
tions and dilations to handle sequential data with their
temporality and large receptive fields. As a variant of the
convolutional neural networks, TCNs can alleviate RNN’s
accumulated error problem while achieving comparable or
even better performance when predicting sequential data
[33]. Two TCNs-based studies were identified. The first
study [25] focused on predicting vehicle’s long-term lane-
changing behaviours and trajectories. The prediction accu-
racy was benchmarked with two traditional neural networks,
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN). The TCN-based method was found to
achieve better performance when considering the prediction
accuracy and computational cost. Another TCN-based model
was developed by Strohbeck et al. [26]. This model was
evaluated using the Argoverse Motion Forecasting Dataset
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TABLE 2. Prediction Accuracy Comparison on NGSIM (RMSE in Metre)

Model
Prediction Horizon (s)

1 2 3 4 5
CS-LSTM [12] 0.61 1.27 2.09 3.10 4.37

M-LSTM [16] 0.58 1.26 2.12 3.24 4.66

MATF [18] 0.66 1.34 2.08 2.97 4.13

UST [19] 0.58 1.20 1.96 2.92 4.12

UST-180 [19] 0.56 1.15 1.82 2.58 3.45

GISNet [20] 0.33 0.83 1.42 2.14 3.23

GRIP++ [22] 0.38 0.89 1.45 2.14 2.94
TCN-SA [27] 0.4 1.1 2.14 2.87 4.08

BAT [29] 0.23 0.81 1.54 2.52 3.62

MFTraj [30] 0.38 0.87 1.52 2.23 2.95

STDAN [31] 0.42 1.01 1.69 2.56 3.67

and validated with the Argoverse Baseline and a CNN-based
Multiple-Trajectory Prediction (MTP) model. Li et al. [27]
consider both local and global features in their study. They
utilise a social convolutional pooling layer to capture local
interaction features between vehicles and a multi-head self-
attention layer to capture global interaction features.

C. Performance Evaluation
While some studies were evaluated with different pub-
lic datasets [24] or collected their private training data
[17], Next Generation Simulation (NGSIM) is found to be
the most commonly used dataset for trajectory prediction.
Among the identified 20 deep learning-based studies, 11 of
them published their prediction accuracy with the NGSIM
dataset, with a prediction horizon ranging from 1s to 5s. The
prediction accuracy of these models evaluated with NGSIM
is summarised in Table 2.

Table 2 reveals that no single model achieves the best
performance across all prediction horizons. In general, BAT,
GISNet, and GRIP++ are the top-performing models. BAT
excels in shorter prediction horizons (≤2s), GISNet in the
medium range (3-4s), and GRIP++ in longer terms (≥4s).
Specifically, BAT improved prediction accuracy by 30.30%
and 2.41% compared to the second-best model, GISNet,
in short prediction horizons. This improvement highlights
the benefit of incorporating driving behaviour in short-term
predictions. Conversely, GISNet demonstrates promising per-
formance across all prediction steps, ranking first in the
medium range (3-4s) and second in other horizons. It is
noteworthy that both GISNet and GRIP++ utilise GCNs
to capture spatial relations between vehicles, resulting in
significant accuracy enhancements.

Overall, graph-based approaches employing GCNs or
GATs demonstrate superior ability to capture spatial rela-
tions among vehicles. The surrounding vehicles in most
existing studies are either selected within a predefined area
of interest [3], [12], [15], [16] or by simulating the ef-
fect of sensor detection [17]. While this selection process
increases the similarity to the current traffic environment,

insufficient information about the entire driving context can
cause prediction errors. From human drivers’ perspective,
their anticipation of driving is highly concerned with the
risk of collisions. They tend to pay more attention to road
agents posing higher level of risks.

Considering the temporal domain, among the three TCN-
based studies [25]–[27], only TCN-SA [27] provides results
on the NGSIM dataset, where it achieves a middle level
of performance. It is noteworthy that another TCN-based
model [26] achieves better prediction accuracy than the UST
model [19] on the Argoverse dataset. However, as shown in
Table 2, the prediction accuracy of UST is not among the top
tier. Therefore, it remains challenging to determine whether
LSTM-based or TCN-based models can achieve better pre-
diction accuracy overall. Although TCNs theoretically offer
faster inference speeds due to their parallelism [33], there
has been limited analysis on this hypothesis within vehicle
trajectory prediction studies.

This paper aims to fill these gaps by proposing a novel
approach that combines TCNs for capturing temporal corre-
lations and risk-enhanced GCNs for extracting social inter-
actions among vehicles. By evaluating the risk of collision,
surrounding vehicles are automatically selected, and their
differentiated influence on other vehicles is accounted for,
enhancing the accuracy and explainability of the model.

II. Methodology
This section consists of the dataset preparation, the formula-
tion of the research problem, the model’s specification and
the prediction of future trajectory.

A. Problem Description
Given a set of N vehicles in the scene with their past track
information sit = (xi

t, y
i
t), i ∈ {1, 2, . . . , N}, observed over

a period t ∈ {1, 2, . . . , Tobs}, this study aims to predict
the possible future trajectories of these vehicles ŝit over a
time horizon t ∈ {Tobs+1, Tobs+2, . . . , Tpred} concurrently.
The proposed model predicts all vehicle trajectories for ten
future frames (2s) based on observations over the past twenty
frames (4s).

B. Model Architecture
The architecture of the proposed model is illustrated in Fig.
1. It consists of three paimary components: (i) a GCNs
module for extracting spatial features, (ii) a Temporal Con-
volutional Networks (TCNs) module for capturing temporal
correlations, and (iii) a decoder module for predicting future
trajectories.

1) Spatial Feature Extraction
To capture spatial interactions, an undirected graph repre-
sentation of vehicle trajectories is constructed at each time
step t, represented as Gt = (Vt, Et). Each node vit ∈ Vt, i ∈
{1, 2, . . . , N} corresponds to a vehicle within the scene, and
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FIGURE 1. The architecture of the proposed model

each pair of vehicles (i, j ∈ {1, 2, . . . , N}) is connected
via edge eijt ∈ Et. The spatial relations between vehicles
within each graph Gt is represented by a weighted adjacency
matrix At, where the edge weight eijt is determined by a risk-
awareness kernel function [34]. This kernel incorporates both
longitudinal and lateral risks between vehicles, formulated
as:

eijt =

{
0, if i = j

r
lonij

t ∗ rlatijt , otherwise
(1)

where r
lonij

t and r
latij
t quantify the longitudinal and lateral

risks between vehicle i and vehicle j at time t, respectively.
The computation of these risk values can be described as,

r =


0, ifd ≥ dmin ≥ 0

1− d−dmin,b

dmin−dmin,b
, ifdmin ≥ d 0

1, otherwise

(2)

dmin =
[
vjτ + 1

2τ
2ajmax a +

(vj+τaj
max a)

2

2aj
min b

− v2
i

2ai
max b

]
+

(3)

dmin b =
[
vjτ + 1

2τ
2ajmax a +

(vj+τaj
max a)

2

2aj
max b

− v2
i

2ai
max b

]
+

(4)

where [x]+ = max{x, 0} for either direction, d is the
distance between vehicle i and j, dmin is the guaranteed safe
distance, dmin b is the minimum safe distance, vi and vj are
the current velocity of vehicle i and j, τ is the response time,
ajmax a is the maximum acceleration of vehicle j, aimax b

and ajmax b are the maximum deceleration of vehicle i and
vehicle j, and ajmin b is the minimum deceleration of vehicle
j. Following recommendation from existing literature, τ
is set to 1.5s [35]. Following the findings of Bokare and
Maurya [36], the recommended accelerating and braking
parameters of each agent category are summarised in Table
3.

As the graph representation is undirected, it can be
noted that eijt = ejit , which indicates that the influence

TABLE 3. Acceleration/Braking Parameters for Risk Computation (m/s2)

Parameter car truck bus cyclist pedestrian
amax a 2.9 1.0 1.0 2.0 0.5

amax b 3.9 4.0 4.5 6.0 0.8

amin b 1.0 0.8 1.0 1.5 0.2

of vehicle interaction is assumed equal between vehicle i
and vehicle j. Although this assumption contravenes human
driving patterns, as drivers tend to spend more attention to
leading vehicles than those at their rears, it should be noted
that whatever the relative positions of the vehicles are, the
risk posed on them to be involved in a collision should
be the same. Moreover, as the proposed prediction model
shares past kinematic information of all vehicles within the
scene, they have same anticipation of traffic movements
and intentions to avoid collisions. Therefore, the undirected
graph representation is adopted in this study.

As suggested by Kipf and Welling [57], the adjacency
matrix can then be normalised as,

Ât = Λ
− 1

2
t ÃtΛ

− 1
2

t (5)

where Ãt = At + I and Λt =
∑

j Ã
ij
t , I denotes and

identity matrix.
The output of the lth layer can be denoted as,

H l = σ
(
ÂtH

l−1W l
)

(6)

where W l is the trainable weights at layer l, H l−1 is the
output of the (l − 1)th layer, σ is the activation function.

2) Temporal Feature Extraction
Temporal dependencies are captured using TCNs, which
offer a robust alternative to Recurrent Neural Networks
(RNNs). Unlike RNNs, TCNs avoid issues like accumulated
error propagation and are computationally efficient [33]. A
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customised 3-layer TCN is employed to process historical
trajectory data across varying temporal scales effectively.
The output of the lth layer can be denoted as,

H l = σ

(
k−1∑
i=0

W l ·H l−1[t− d · i] +Bl

)
(7)

where k = 3 is the kernel size, W l is the trainable weights
at layer l, t is the time index, d = [1, 2, 4] is the dilation rate,
and Bl is the bias of the lth layer.

At each time step, the absolute positions of all vehicles are
transformed into a localised coordinate frame and embedded
into fixed-length vectors. The spatial features derived from
GCNs are concatenated with these positional embeddings,
creating combined feature vectors. These vectors are then
processed by the TCN module to capture both spatial and
temporal relations among vehicles.

3) Future Trajectory Prediction
The variety loss proposed by Gupta et al. [37] is adopted to
generate multiple reasonable and realistic future trajectories.
A shared random noise z is concatenated with the extracted
embeddings before being sent to the decoder as input. The
noise is randomly sampled from N (0, 1). The hidden state
vector can be presented as,

h = m || z (8)

where m represents the combined spatial-temporal fea-
tures and z denotes the added random noise.

These concatenated vectors are sent to the MLP-based
decoder (3 layers) and twenty possible future trajectories are
computed at each step.

The model is trained to minimise the variety loss, com-
puted by choosing the trajectory with the minimum ADE to
ground truth. The loss function can be denoted as,

Lvariety = min
k

∥ ŝki − si ∥2, k ∈ {1, 2, ..., 20} (9)

where si is the ground-truth trajectory of vehicle i during
the prediction horizon, ŝki is the kth possible trajectories of
vehicle i.

C. Evaluation Metrics
To evaluate the performance of the model, ADE, FDE
and NegativeLog Likelihoood (NLL) are implemented as
evaluation metrics. ADE measures the root mean squared
error average between the ground truth and the predicted
trajectory, while FDE calculates the offset at the endpoints.
Mean NLL is used to evaluate the variance and multi-
modality between the ground truth trajectory and stochastic
predictions [38]. At each timestep, Gaussian Kernel Density
Estimate (KDE) is performed to obtain the probability
density function of the sampled trajectories, which is then
used to compute the average NLL of the ground truth
trajectory.

ADE =
1

NTpred

N∑
i=1

Tpred∑
t=1

∥ ŝit − sit ∥2 (10)

FDE =
1

N

N∑
i=1

∥ ŝiTpred
− siTpred

∥
2

(11)

KDE =
1

Nσ
√
2π

N∑
i=0

e−
1
2 (

ŝi−si
σ )2 (12)

NLL = − 1

N

N∑
i=1

logP (ŝi|si) (13)

III. Results and Discussion
The proposed model was developed with PyTorch, an open-
source machine learning Python library. The training and
evaluation were implemented on a Desktop PC (CPU: In-
tel(R) Core(TM) i9-9940X CPU @ 3.30GHz, GPU: 2 x
NVIDIA GeForce RTX 2070 Super). The model was trained
using Adam optimiser for 200 epochs with a learning rate
of 0.001 and a batch size of 128. ReLU was used as the
activation function of all networks, and a dropout rate of 0.2
was adopted.

This section has been divided into four parts to present the
obtained results. First, an example of the constructed graph
is illustrated to demonstrate the proposed risk-awareness
kernel function. Second, a sample of the prediction results
is presented. Afterwards, a benchmark analysis is conducted
to compare the performance of this model with existing
studies. Finally, an ablation study is undertaken to evaluate
the proposed kernel function further.

A. Data Preparation
This study used two publicly available datasets for training
and evaluation, the Highway Drone Dataset (highD) [19] and
Intersection Drone Dataset [39]. Both datasets were collected
by the same research group at RWTH Aachen University
following the same methodology.

The highD dataset was established by recording traffic
flow at six different locations on German motorways using
drones. Each drone covers a road segment of approximately
420m and includes trajectories of 110,000 vehicles, record-
ing 5,600 completed lane changes within the observation
area. In total, the dataset comprises 447 driven hours and
covers a total driven distance of approximately 45,000km.
The inD dataset was recorded at four unsignalised junctions
in Aachen, covering areas from 80x40m to 140x70m. In
total, the dataset consists of 10 driven hours. It records
11,500 trajectories, comprising pedestrians, bicycles, cars,
trucks, and buses.

Compared with the most widely used NGSIM dataset
reviewed in the previous section, the highD and inD dataset
prevails in several aspects: the data length, vehicle variety,
and accuracy of the extracted trajectories. More importantly,
it should be noted that the typical positioning error in
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FIGURE 2. Sample of constructed graph

FIGURE 3. Sample of prediction results

highD and inD is less than 10cm, which provides much
better accuracy of vehicle trajectories and minimises the
requirements for additional post-processing.

During preprocessing, a reconstruction of the data was
carried out into the preferred structure to facilitate the
proposed study, as well as a downsampling to 5 Hz to reduce
the computation. This restructured dataset was divided into
three subsets for training, validation and test purposes, with
a ratio of 7:1.5:1.5.

B. Risk-Awareness Graph Construction
A sample scene was selected to demonstrate the proposed
risk-awareness graph. As shown in Fig. 2, the plot above
shows a frame of the vehicle sequence data. While there are
more vehicles in this frame, this segment was selected for
demonstration. There are six vehicles along this 100m road
segment, and they are split into three car lanes. The average
speed of these six vehicles is 96.53 km/h, with the maximum
speed to be 111.42 km/h of vehicle ID9 and the minimum
speed to be 77.12 km/h of vehicle 23.

The graph constructed using the risk-awareness kernel
function is shown in the subplot below. The weight of edges
ranges from 0 to 1, and a larger weight value indicates a more
substantial social influence between vehicles. Noticeably, if
the weight of an edge is zero, this edge is then removed for
a clear illustration. As shown in the graph, large risk indices
occurred between vehicles in the same lane. This is because
the vehicles travel fast, and there are no lane-changing events
in this selected sample.

Meanwhile, vehicle ID16 and ID23 are associated with
larger risk values. This is because the vehicular physic
parameters when computing risk index are differentiated to
reflect different vehicle types. As both vehicles are trucks,
they have severer restrictions on braking capability and are
more prone to collisions. Thus, their associated risks are
higher.

Moreover, as risk index is defined according to the limit of
vehicle dynamics, a positive value can be acquired between
vehicles within a more reasonable scope. While this leads to
a larger graph at each frame, it ensures a more comprehen-
sive spatial relation is extracted. Thus, AVs can have more
thorough anticipations of the scene. Even if vehicles perform
unusual risky manoeuvres at a distance, host AVs can still
have enough time and space to avoid collisions.

C. Trajectory Prediction Example
A sample is illustrated in Fig. 3 to present the prediction
results of the proposed method. The solid lines represent the
4 seconds past trajectories, the dashed lines are the stochastic
predictions for the future 2 seconds, and the marked lines are
the ground truth for the same period. Although the prediction
errors vary among the six vehicles presented in this sample,
the average ADE of these vehicles is 0.40m with a standard
deviation of 0.38m. Meanwhile, the average FDE and its
standard deviations are 1.02m and 0.66m, respectively. As
the average travelling speed of these six vehicles is about
104.4 km/h, the prediction accuracy is very promising in
this context.

D. Performance Evaluation
Benchmark Models. With the sample result presented, a
benchmark analysis with some state-of-the-art approaches
was conducted to evaluate the performance of the proposed
model. It should be noted that some of the selected methods
were commonly used in assessing the performance of newly
proposed trajectory prediction approaches, and the others
represent the key milestones and more recent techniques in
this field of research. Therefore, these baseline models were
selected to evaluate the performance of the model proposed
in this study.

• V-LSTM: Vanilla LSTM is one of the classical methods
for time-series prediction. Its application in trajectory
prediction uses a single LSTM to encode the motion
history of the ego vehicle without considering its spatial
interactions with surrounding vehicles.
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• S-LSTM [40]: Social LSTM is initially developed
for pedestrian trajectory prediction. Each pedestrian
is modelled using an LSTM. The hidden states of
pedestrians within a specific area are pooled using fully
connected social pooling to preserve spatial interac-
tions.

• CS-LSTM [12]: Convolutional Social LSTM is de-
signed for vehicle trajectory prediction. It uses con-
volutional layers with social pooling and generates a
multimodal prediction based on six manoeuvres.

• S-GAN [37]: Social GAN models each pedestrian mo-
tion with an LSTM, and the hidden states of pedestrians
are pooled using global pooling. GAN is used to
generate multimodal prediction results.

• STGAT [41]: Originally developed for pedestrian tra-
jectory prediction. It is a seq2seq model which uses one
LSTM for each pedestrian’s motion state. Meanwhile,
the spatial interactions are extracted with Graph Atten-
tion Network (GAT), and an extra LSTM models the
temporal correlations between interactions.

• GRIP++ [22]: GRIP++ ranked first in the 2019 Apol-
loScape trajectory competition and achieved top accu-
racy with the NGSIM dataset, as listed in Table 2. It
uses fixed and dynamic graphs for spatial relations and
a two-layer GRU for trajectory prediction, applicable
to various traffic agents like vehicles, pedestrians, and
cyclists.

• Social-STGCNN [42]: Originally developed for pedes-
trian trajectory prediction, Social-STGCNN uses
Spatio-Temporal Graph Convolutional Neural Networks
(ST-GCNN) to extract spatial and temporal relations
from spatio-temporal graphs. It introduces a weighted
adjacency matrix to model social influence between
pedestrians, achieving notable improvements in predic-
tion accuracy and speed.

• STDAN [31]: STDAN introduces a novel spatial-
temporal dynamic attention network for vehicle tra-
jectory prediction. It incorporates a driving intention-
specific feature fusion mechanism, allowing the adap-
tive integration of temporal and social features for
maneuver-based, multi-modal trajectory prediction.

Since these baseline models were initially proposed for
different purposes and were trained with various datasets,
they were retrained using the same dataset in this study to
facilitate the evaluation on a unified basis. Same training
parameters were adopted, and the comparison was imple-
mented with an observation horizon of 4s and a prediction
horizon of 2s. The comparison mainly focuses on the accu-
racy of the prediction results and inference speed.

Prediction Accuracy Performance. The comparison re-
sults between the proposed method and the other eight
models were summarised in Table 4. For the highD dataset,
the proposed model outperforms all others, achieving the
best accuracy with an ADE of 0.43m and an FDE of 0.79m.
In comparison, STDAN, which previously represented the

state-of-the-art, achieves an ADE of 0.47m and an FDE of
0.81m. Despite STDAN’s strong performance, the proposed
model achieves an additional improvement of 8.51% in
ADE and 2.47% in FDE. This improvement underscores the
superior prediction accuracy of the proposed method. Among
the existing models, V-LSTM exhibits the most significant
prediction errors, likely due to its reliance solely on motion
history and lack of spatial interaction considerations. This
highlights the importance of incorporating spatial features
into vehicle trajectory prediction to account for the inter-
actions between vehicles, which can lead to more accurate
results.

In the inD dataset, CS-LSTM achieves the best ADE
of 0.66m, indicating its strong performance in average
displacement prediction. However, Social-STGCNN records
the lowest FDE of 1.28m, outperforming other models in
terms of final displacement accuracy. The proposed model
performs well, with an ADE of 1.07m and an FDE of 1.29m,
placing it among the top models for final displacement but
slightly behind in average displacement.

Social-STGCNN’s performance, while notable, requires
further discussion. Although it ranks third in prediction
accuracy, this model was initially designed to predict pedes-
trian trajectories, where it has achieved state-of-the-art per-
formance. The fundamental principles and scales involved
in pedestrian trajectory prediction differ significantly from
those required for vehicle trajectory prediction, potentially
limiting Social-STGCNN’s ability to generalise to vehicle
scenarios. In this study, the model was used as a benchmark,
and only limited adaptations were made to ensure vehicle
data were appropriately scaled and transmitted. No further
modifications were applied to the model’s core specifica-
tions. Thus, with more targeted adjustments and calibrations,
its accuracy in vehicle trajectory prediction could potentially
be improved.

A general trend observed when comparing the two datasets
is the degradation in performance for most models when
tested on the inD dataset. This is despite the fact that vehicles
in the inD dataset generally move slower. The likely explana-
tion lies in the more complex interactions among vehicles in
the intersection scenarios found in the inD dataset. Social
pooling and graph-based models, which are designed to
capture pairwise interactions, struggle to extract higher-order
relationships in these more complex environments. This may
explain why CS-LSTM achieves better performance in the
inD dataset, as its convolutional social pooling mechanism
aggregates information from multiple neighboring vehicles
simultaneously and captures the collective influence of all
vehicles within a specific spatial area. The ability to handle
these high-order interactions more effectively allows CS-
LSTM to perform better in scenarios involving complex
vehicle interactions, such as intersections.

Inference Speed Performance. As shown in Table 4,
the advantage of extracting spatial relations with Tempo-
ral Convolutional layers over LSTM is revealed. All three
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TABLE 4. Prediction Performance Comparison with highD and inD (RMSE in Metre)

Model
highD inD

Inference speed (s)
ADE (m) FDE (m) ADE (m) FDE (m)

V-LSTM 1.68 2.23 4.75 4.86 0.102

S-LSTM 1.01 1.87 1.67 3.60 0.204

CS-LSTM 0.96 1.84 0.66 1.35 0.641

S-GAN 1.27 1.93 2.22 4.25 0.955

STGAT 0.69 1.34 1.14 2.08 0.943

GRIP++ 0.51 0.91 0.72 1.65 0.022

Social-STGCNN 0.94 1.57 1.24 1.28 0.013
STDAN 0.47 0.81 0.81 1.51 0.016

Proposed model 0.43 0.79 1.07 1.29 0.023

models (GRIP++, Social-STGCNN and the proposed model)
obtain significant improvements in inference speed than
LSTM-based models. Social-STGCNN achieves the best
performance among all models in comparison. It is over 73
times faster than the slowest method (S-GAN) and about
1.23 times faster than the STDAN, the fastest LSTM-based
model. As the proposed model needs to construct the risk
graph to determine the spatial relations at each timestep, it
has not achieved the best performance in inference speed.
However, it still obtains a notable improvement than most
existing models and is about four times faster than V-LSTM
and over 41 times faster than S-GAN.

Distributional Performance. As ADE and FDE can not
compare the distributions produced by generative models,
NLL is adopted to evaluate the variance and multimodality,
without assumptions about the output’s distribution [38].
The state-of-the-art stochastic model (STGAT) is used for
evaluation. The proposed model was evaluated over time
to investigate the performance changes along the prediction
horizon. Results of 1000 sampled trajectories are shown in
Fig. 4, and error bars are bootstrapped at 95% confidence
intervals. As the average NLL of the proposed model is
smaller than STGAT at every prediction step, it indicates
our model’s consistent multimodal modelling capacity.

E. Ablation Study of Risk-awareness Kernel Function
Since the kernel function for computing the adjacency matrix
represents the social influence between vehicles, it would be
beneficial to evaluate if the proposed approach can effec-
tively capture the essence in spatial relations while remaining
computationally efficient. Thus, another two commonly used
kernel functions were adopted to benchmark the performance
of the proposed approach using the highD dataset.

The first kernel function is to treat all vehicles within the
neighbourhood area equally. The spatial relation captured
with this kernel function is similar to some reviewed studies
[3], [15]–[17]. This kernel function can be represented as,

eijt =

{
1, if ∥ sit − sjt ∥2 < threshold

0, otherwise
(14)

FIGURE 4. Mean NLL across prediction horizon

Meanwhile, the second kernel function is based on the
relative distance between two vehicles to model their social
impacts [42]. It can be easily interpretable, despite the
vehicles’ dynamic relations, spatially closer vehicles tend
to have a more significant influence on each other. It also
correlates that human drivers tend to pay more attention to
vehicles in closer proximity. This kernel function can be
denoted as,

eijt = 1−
∥ sit − sjt ∥2
max length

(15)

where max length is the length of the road segment.
Both kernel functions were implemented for comparison.

As listed in Table 5, the first kernel function has the worst
prediction accuracy. This is because this kernel function only
considers vehicles within the neighbourhood and does not
differentiate the levels of their social impacts. The neigh-
bourhood area selected with fixed thresholds can lose the es-
sential information that determines the driver’s motivations.
Moreover, assuming vehicles within the neighbourhood have
the same social impacts on the ego vehicle can also lead to
severe issues. Different vehicle positions and dynamic states
can pose distinct levels of danger and stress on the ego driver.

VOLUME , 9

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2025.3530268

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Feng et al.: Preparation of Papers for IEEE OPEN JOURNALS

Meanwhile, the second kernel function performs better than
the first, improving 43.3% in ADE and 21.0% in FDE.
While it confirms the benefits of differentiating the social
impacts between vehicles, solely depending on distance is
insufficient to determine the spatial relations. This is because
surrounding vehicles at the same distance can pose distinct
social impacts on the ego vehicle. Thus, although the second
kernel function can differentiate the social relations between
most vehicles, they can lead to a false adjacency matrix in
some cases. The proposed risk-awareness kernel function
compensates for these drawbacks and improves 42.8% in
ADE and 51.2% in FDE.

TABLE 5. Ablation Study (RMSE in Metre)

Model ADE (m) FDE (m) Inference time (s)
Equation 12 1.36 2.05 0.016

Equation 13 0.77 1.62 0.012

Proposed model 0.43 0.79 0.023

From the perspective of inference speed, while all three
kernel functions achieve fast inference speed, the proposed
kernel function is the slowest among them. It is mainly
caused by additional variables and calculations required to
construct the graph representation of the scene at each time
step.

With the comparison of prediction accuracy and inference
speed, it can be noted that the proposed risk-awareness kernel
function can better extract the essential spatial relations be-
tween vehicles and yield improved performance in predicting
the future trajectory of vehicles. Although its inference speed
is slower than the other two kernel functions, it is still much
faster than LSTM-based models and should be sufficient for
most applications.

IV. Conclusion
This paper presented a novel approach for vehicle trajectory
prediction by modelling the spatial-temporal interactions
among vehicles. The proposed model was trained and evalu-
ated using the publicly available Highway Drone Dataset
and Intersection Drone Dataset, demonstrating promising
improvements in both prediction accuracy and inference
speed compared to eight existing methods. An ablation
study further validated the effectiveness of the risk-awareness
kernel function, highlighting its contribution to enhancing the
model’s explainability.

The primary contribution of this research lies in the
development of a stochastic vehicle trajectory prediction
method that models vehicular spatial-temporal interactions.
A novel risk-awareness kernel function was introduced to
construct a weighted adjacency matrix, effectively capturing
the spatial relationships between vehicles. The model em-
ploys GCNs to extract spatial features and TCNs to model
temporal dependencies. The combination of these features
in a decoder produces a stochastic, multimodal prediction of
future vehicle trajectories.

Despite the promising results, the map-free nature of the
proposed approach presents limitations, particularly in more
complex road geometries, such as urban environments. The
use of relatively simple road structures in the datasets may
have contributed to the observed high accuracy, with the
model’s performance deteriorating when applied to the inD
dataset, which features more intricate road layouts. Future
work will focus on evaluating the model with data from
more complex road segments to further test its robustness.
Moreover, to address the limitations observed in complex
datasets such as inD, future research will focus on inte-
grating hypergraph representation learning into the current
model. By leveraging hyperedges to capture higher-order
interactions among road agents, this approach will enable
the model to extract and represent spatial relations and
interaction dynamics more effectively. Such advancements
are expected to significantly improve the model’s ability to
handle scenarios with intricate traffic dynamics, enhancing
risk-awareness and prediction accuracy. Additionally, the po-
tential trade-offs between incorporating map information and
maintaining model scalability will be explored to enhance the
model’s applicability in diverse traffic scenarios.
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[3] F. Altché and A. de La Fortelle, “An lstm network for highway
trajectory prediction,” in 2017 IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC), 2017, pp. 353–359.

[4] K. Messaoud, I. Yahiaoui, A. Verroust-Blondet, and F. Nashashibi,
“Attention based vehicle trajectory prediction,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 1, pp. 175–185, 2021.

[5] Z. Wang, J. Zhang, J. Chen, and H. Zhang, “Spatio-temporal context
graph transformer design for map-free multi-agent trajectory predic-
tion,” IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp.
1369–1381, 2024.

[6] J. Lian, S. Li, D. Yang, J. Zhang, and L. Li, “Encoding the intrinsic
interaction information for vehicle trajectory prediction,” IEEE Trans-
actions on Intelligent Vehicles, vol. 9, no. 1, pp. 2600–2611, 2024.

[7] J. Schmidt, J. Jordan, F. Gritschneder, and K. Dietmayer, “Crat-
pred: Vehicle trajectory prediction with crystal graph convolutional
neural networks and multi-head self-attention,” in 2022 International
Conference on Robotics and Automation (ICRA), 2022, pp. 7799–7805.

[8] Y. Feng, S. Pickering, E. Chappell, P. Iravani, and C. Brace, “Driving
style analysis by classifying real-world data with support vector
clustering,” in 2018 3rd IEEE International Conference on Intelligent
Transportation Engineering (ICITE), 2018, pp. 264–268.

[9] Y. Feng, P. Iravani, and C. Brace, “A fuzzy logic-based approach for
humanized driver modelling,” Journal of Advanced Transportation,
vol. 2021, pp. 1–13, 2021.

[10] Y. Feng, S. Pickering, E. Chappell, P. Iravani, and C. Brace, “Driving
style modelling with adaptive neuro-fuzzy inference system and real
driving data,” in Advances in Human Aspects of Transportation,
N. Stanton, Ed., 2019, pp. 481–490.

[11] S. Ammoun and F. Nashashibi, “Real time trajectory prediction
for collision risk estimation between vehicles,” in 2009 IEEE 5th
International Conference on Intelligent Computer Communication and
Processing, 2009, pp. 417–422.

[12] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in 2018 IEEE/CVF Conference on Computer

10 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2025.3530268

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Vision and Pattern Recognition Workshops (CVPRW), 2018, pp. 1549–
15 498.

[13] A. Eidehall and L. Petersson, “Statistical threat assessment for general
road scenes using monte carlo sampling,” IEEE Transactions on
Intelligent Transportation Systems, vol. 9, no. 1, pp. 137–147, 2008.

[14] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system
for learning statistical motion patterns,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1450–1464,
2006.

[15] H. Woo, M. Sugimoto, J. Wu, Y. Tamura, A. Yamashita, and H. Asama,
“Trajectory prediction of surrounding vehicles using lstm network,”
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
196589931.

[16] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of
surrounding vehicles with maneuver based lstms,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), 2018, pp. 1179–1184.

[17] B. Kim, C. M. Kang, S. H. Lee, H. Chae, J. Kim, C. C. Chung,
and J. W. Choi, “Probabilistic vehicle trajectory prediction over
occupancy grid map via recurrent neural network,” 2017. [Online].
Available: https://arxiv.org/abs/1704.07049.

[18] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao,
Y. Wang, and Y. N. Wu, “Multi-agent tensor fusion for contextual
trajectory prediction,” 2019. [Online]. Available: https://arxiv.org/abs/
1904.04776.

[19] H. He, H. Dai, and N. Wang, “UST: Unifying spatio-temporal context
for trajectory prediction in autonomous driving,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 5962–5969.

[20] Z. Zhao, H. Fang, Z. Jin, and Q. Qiu, “Gisnet:graph-based information
sharing network for vehicle trajectory prediction,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–7.

[21] H. Jeon, J. Choi, and D. Kum, “Scale-net: Scalable vehicle trajectory
prediction network under random number of interacting vehicles
via edge-enhanced graph convolutional neural network,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 2095–2102.

[22] X. Li, X. Ying, and M. C. Chuah, “Grip++: Enhanced graph-based
interaction-aware trajectory prediction for autonomous driving,” 2019.
[Online]. Available: https://arxiv.org/abs/1907.07792.

[23] X. Li, X. Ying, and M. C. Chuah, “Grip: Graph-based interaction-
aware trajectory prediction,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019, pp. 3960–3966.

[24] B. Dong, H. Liu, Y. Bai, J. Lin, Z. Xu, X. Xu, and Q. Kong,
“Multi-modal trajectory prediction for autonomous driving with
semantic map and dynamic graph attention network,” 2021. [Online].
Available: https://arxiv.org/abs/2103.16273.

[25] Y. Zhang, Y. Zou, J. Tang, and J. Liang, “Long-term prediction
for high-resolution lane-changing data using temporal convolution
network,” Transportmetrica B: Transport Dynamics, vol. 10, no. 1,
pp. 849–863, 2021. [Online]. Available: https://doi.org/10.1080%
2F21680566.2021.1950072.

[26] J. Strohbeck, V. Belagiannis, J. Müller, M. Schreiber, M. Herrmann,
D. Wolf, and M. Buchholz, “Multiple trajectory prediction with deep
temporal and spatial convolutional neural networks,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 1992–1998.

[27] Q. Li, B. Ou, Y. Liang, Y. Wang, X. Yang, and L. Li, “Tcn-sa: A social
attention network based on temporal convolutional network for vehicle
trajectory prediction,” Journal of Advanced Transportation, vol. 2023,
pp. 1–12, 2023.

[28] X. Chen, H. Zhang, Y. Hu, J. Liang, and H. Wang, “Vnagt: Variational
non-autoregressive graph transformer network for multi-agent trajec-
tory prediction,” IEEE Transactions on Vehicular Technology, vol. 72,
no. 10, pp. 12 540–12 552, 2023.

[29] H. Liao, Z. Li, H. Shen, W. Zeng, D. Liao, G. Li, and C. Xu, “BAT:
Behavior-aware human-like trajectory prediction for autonomous driv-
ing,” in Proceedings of the 38th AAAI Conference on Artificial
Intelligence, vol. 38, no. 9, 2024, pp. 10 332–10 340.

[30] H. Liao, Z. Li, C. Wang, H. Shen, B. Wang, D. Liao, G. Li, and C. Xu,
2024.

[31] X. Chen, H. Zhang, F. Zhao, Y. Hu, C. Tan, and J. Yang, “Intention-
aware vehicle trajectory prediction based on spatial-temporal dynamic
attention network for internet of vehicles,” IEEE Transactions on

Intelligent Transportation Systems, vol. 23, no. 10, pp. 19 471–19 483,
2022.

[32] H. Liao, Y. Li, Z. Li, C. Wang, Z. Cui, S. E. Li, and C. Xu,
“A cognitive-based trajectory prediction approach for autonomous
driving,” IEEE Transactions on Intelligent Vehicles, vol. 9, no. 4, pp.
4632–4643, 2024.

[33] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling,”
2018. [Online]. Available: https://arxiv.org/abs/1803.01271.

[34] E. Candela, Y. Feng, P. Angeloudis, and Y. Demiris, “Quantitative
risk indices for autonomous vehicle training systems,” 2021. [Online].
Available: https://arxiv.org/abs/2104.12945.

[35] H. Han, S. Kim, J. Choi, H. Park, J. H. Yang, and J. Kim, “Driver’s
avoidance characteristics to hazardous situations: A driving simula-
tor study,” Transportation Research Part F: Traffic Psychology and
Behaviour, vol. 81, pp. 522–539, 2021.

[36] P. Bokare and A. Maurya, “Acceleration-deceleration behaviour of
various vehicle types,” Transportation Research Procedia, vol. 25, pp.
4733–4749, 2017.

[37] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “So-
cial gan: Socially acceptable trajectories with generative adversarial
networks,” in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2018, pp. 2255–2264.

[38] B. Ivanovic and M. Pavone, “The trajectron: Probabilistic multi-agent
trajectory modeling with dynamic spatiotemporal graphs,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV),
2019, pp. 2375–2384.

[39] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein,
“The ind dataset: A drone dataset of naturalistic road user trajectories
at german intersections,” in 2020 IEEE Intelligent Vehicles Symposium
(IV), 2020, pp. 1929–1934.

[40] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 961–971.

[41] Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling
spatial-temporal interactions for human trajectory prediction,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV),
2019, pp. 6271–6280.

[42] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-
stgcnn: A social spatio-temporal graph convolutional neural network
for human trajectory prediction,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 14 412–
14 420.

V. Biography Section

Yuxiang Feng is a Research Associate and Lab
Manager at the Transport Systems and Logistics
Laboratory (TSL), Imperial College London. He
received a BEng in Mechanical Engineering from
Tongji University and an MSc in Mechatronics
and PhD in Automotive Engineering from the
University of Bath. His main research interests
include environment perception, sensor fusion and
artificial intelligence for robotics and autonomous
vehicles.

Qiming Ye is a Postdoctoral Research Fellow
at the Future Cities Laboratory Global of ETH
Zurich. He received PhD in transportation engi-
neering from Imperial College London, and BEng
and MEng Degrees from Tongji University. His
research focuses on developing AI-based tools
to for intelligent allocation of road space usage
in the era of autonomous vehicles transport, and
adaptive planning of charging infrastructure for
electric vehicles.

VOLUME , 11

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2025.3530268

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Feng et al.: Preparation of Papers for IEEE OPEN JOURNALS

Eduardo Candela was a PhD student at the
Transport Systems and Logistics Laboratory and
Personal Robotics Laboratory at Imperial College
London. He holds a MSc in Operations Research
from the Massachusetts Institute of Technology,
BSc in Industrial Engineering and Mechatronics
from Instituto Tecnologico Autonomo de Mexico.
His research focuses on safety modelling of ve-
hicle systems, and strategic decision making for
Autonomous Vehicles using reinforcement learn-
ing and optimisation.

Jose Javier Escribano Macias is a Lecturer
at the Centre of Transport Engineering and Mod-
elling, Imperial College London. He joined CTS
in October 2015 as part of the EPSRC Centre
for Doctoral Training (CDT) in Sustainable Civil
Engineering and was awarded his Ph.D. in March
2021. His research focuses on collaborative vehicle
control, optimisation of last-mile logistics, urban
air mobility, and machine learning and game the-
oretical models.

Bo Hu was born in Hefei, China, in 1989. He
received the B.S. degree in automotive engineer-
ing from Chongqing University of Technology
(CQUT), Chongqing, China, in 2011, and the M.S.
and Ph.D. degrees in automotive engineering from
the University of Bath, Bath, U.K., in 2012 and
2016, respectively.,He is currently an Associate
Professor with the Key Laboratory of Advanced
Manufacturing Technology for Automobile Parts,
Ministry of Education, CQUT. His current research
interests include machine learning based control of

intelligent and connected vehicles and modeling and control of advanced
boosted engine systems.

Yiannis Demiris (SM’03) received the B.Sc.
(Hons.) degree in artificial intelligence and com-
puter science and the Ph.D. degree in intelligent
robotics from the Department of Artificial Intelli-
gence, University of Edinburgh, Edinburgh, U.K.,
in 1994 and 1999, respectively. He is a Professor
with the Department of Electrical and Electronic
Engineering, Imperial College London, London,
U.K., where he is the Royal Academy of Engineer-
ing Chair in Emerging Technologies, and the Head
of the Personal Robotics Laboratory. His current

research interests include human-robot interaction, machine learning, user
modeling, and assistive robotics. Prof. Demiris is a Fellow of the Institution
of Engineering and Technology (IET), and the British Computer Society
(BCS).

Panagiotis Angeloudis is Professor of Trans-
port Systems & Logistics and Head of the Trans-
port Systems and Logistics Laboratory (TSL),
based in the Centre for Transport Engineering
and Modelling (CTEM) at Imperial College Lon-
don. Before establishing TSL, Panagiotis held a
JSPS Research Fellowship at Kyoto University.
He previously obtained a PhD in Transportation
at Imperial College London and spent periods as
a research analyst at DP World and the United
Nations in Geneva. His research focuses on the

study of networks, optimisation methods and multi-agent systems, as well
as their applications in autonomous transport systems, urban infrastructure
and logistics.

12 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2025.3530268

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


