
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/OJITS.2022.1234567

Managing Risk in the Design of
Modular Systems for an Autonomous

Shuttle
THOMAS DRAGE∗, KIERAN QUIRKE-BROWN∗, LEMAR HADDAD∗, ZHIHUI LAI∗, KAI LI

LIM†, AND THOMAS BRÄUNL∗, SENIOR MEMBER, IEEE
1The REV Project, The University of Western Australia, Perth, WA 6009 Australia

2Dow Centre for Sustainable Engineering Innovation, The University of Queensland, Brisbane, QLD 4072 Australia
3Institute of Transportation Studies, UC Davis, Davis, CA 95616 USA

CORRESPONDING AUTHOR: Kai Li Lim (e-mail: kailim@ucdavis.edu).

ABSTRACT This paper presents an analysis and implementation of a robust autonomous driving system
for an electric passenger shuttle in shared spaces. We present results of a risk assessment for our vehicle
scenario and develop a flexible architecture that integrates safety features and optimises open-source
software, facilitating research and operational functionality. Identifying the Robot Operating System (ROS)
framework’s limitations, we incorporate our own control measures for autonomous, unsupervised operation
with enhanced intelligence. The study emphasises algorithm selection based on application requirements to
ensure optimal performance. We discuss system improvements, such as monitoring node implementation
and localisation algorithm selection. Future work should explore transitioning to a real-time operating
system (RTOS) and establishing standardised software engineering practices for consistent reliability. Our
findings contribute to effective autonomous shuttle systems in shared spaces, promoting safer and more
reliable transportation solutions.

INDEX TERMS autonomous vehicles, safety systems, functional safety, autonomous shuttle bus

I. INTRODUCTION

THIS paper presents the ongoing research on electric
vehicles, vehicle automation, and autonomous driving

systems at The Renewable Energy Vehicle (REV) Project,
The University of Western Australia (UWA). Our current
endeavour involves the development of a highly automated
electric passenger shuttle bus for use as a self-driving people
mover and last-mile transport solution on the university
campus. This bus is designed to adapt and plan its route
dynamically, with all sensory and navigation processing on-
board, eliminating the need for external communication sys-
tems or remote servers. To achieve this, we have integrated
and enhanced both hardware and software components to
ensure reliable and safe operation [1].

Mass produced passenger cars have incorporated levels
of automation since the introduction of adaptive cruise
control in the 1990s and advances in cost of sensors and
computational abilities have driven widespread adoption
of advanced driver assistance systems (ADAS) in the last
decade. Indeed, such features have tended towards being
labelled as autonomous driving however they all require

the presence of an alert supervising human driver and are
incapable of executing a high level journey goal [2]. The
Society of Automotive Engineers (SAE) defines “Levels of
Driving Automation”, from zero to five, with the lower three
being considered driver support and the upper automated
driving [17]. The Autopilot and Full Self-Driving offerings
from American car manufacturer Tesla achieve just SAE
Level 2, whilst Level 4/5 systems, which will lead the way
to making human drivers redundant may become publicly
available to the market in the late 2020s [3].

One significantly desirable aspect of automation of the
road transport system is the improvement in safety by means
of eliminating the opportunity for human error which results
from a variety of factors including fatigue, intoxication,
distraction and skill [4]. The basis for the presumption that
an autonomous car is safer is consistency of performance and
unwavering compliance with rules. However, in reality the
dynamically changing nature of public roads, for example
by unexpected ingress of a pedestrian to the roadway or
the bursting of a tyre on another vehicle, means it is not
possible to avoid all incidents and making an automated

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Drage et al.: Autonomous Shuttle Risk Management

decision which is minimises harm is legally, ethically and
practically complex [5]. Indeed, we must instead utilise
layers of automation which not only perform their objective
function but seek to minimise or control risk to the vehicle
and other traffic [6].

The development of Level 3+ Autonomous Driving Sys-
tems (ADS) poses significant risks to both people and
infrastructure due to the need for intricate software-driven
electromechanical systems to ensure safe driving behaviour
in complex and ever-changing environments [7]. Although
autonomous vehicles are often touted as having the potential
to reduce collision rates and improve traffic safety, current
technology has yet to deliver on these promises [8]. At a
more basic level the automation itself must be sufficiently re-
liable that it doesn’t make an error under reasonably expected
conditions or fail to operate during navigation in a way which
in fact causes an accident or near miss. This requires research
and modelling of failure modes in sensors [9] and algorithms,
particularly those involving machine learning methods [10].
Data collected from various autonomous driving trials has
shown that this has not yet been achieved and an autonomous
“driver” is many times more dangerous than the average
human [11]. Thus significant progress is needed in the areas
of safety and reliability, particularly in relation to vehicle
automation systems and human intervention when necessary.

Historically, the automotive industry has relied on the
ISO 26262 standard for ensuring the functional safety of
electronic and software systems in vehicles [12]. However,
it is known that this standard does not extend in scope to
fully satisfy the design requirements for highly autonomou
vehicles due to the changed potential impacts of a component
failure and the limited availability or applicability of human
intervention as a control [13]. This standard, derived from
IEC 61508 [14], has recently been supplemented by ISO/PAS
21448:2019, which provides guidelines for the design and
validation of Level 1 and 2 Advanced Driver Assistance
Systems (ADAS) and ADS, with scope for application to
higher levels of automation [15]. The latter emphasises not
only hardware failure, but also functional insufficiencies
and reasonably foreseeable misuse of ADS. International
regulations have also been published recently, including
UN-R157 [16] on the basis of which Mercedes-Benz has
been granted approval for their now commercially available
SAE Level 3 DRIVE PILOT system [17]. Mercedes-Benz
publicise their application of standards [18] including ISO
26262 and ISO/PAS 21448 to facilitate the safety assessment
of their self driving platform, as do other car manufacturers
such as Ford [19] who seek to develop autonomous driving
systems (ADS) which are able to be validated and approved
when their products are ready for release to the consumer
market.

In this paper, we describe a comprehensive system archi-
tecture based on fail-safe design principles, drawing from
established industrial practices which target compliance with
e.g. IEC 61508/61511. Our system includes control and safe-

guarding hardware and software components, and utilises the
Robot Operating System (ROS) middleware for automation
and AI implementation [20], [21]. We also discuss measures
taken to ensure that our system meets the required reliability
targets.

The main contributions of this paper are:

• Development of a flexible and modular system archi-
tecture for an autonomous shuttle bus that integrates
safety features and optimises open-source software.
This facilitates research while ensuring reliable and safe
operation.

• Implementation of additional control measures within
the ROS framework to enhance system robustness and
meet safety and reliability criteria for autonomous
operation without a human supervisor. This includes
modules like a monitoring node for system health
checks.

• Selection, tuning and improvement of open-source ROS
packages for key functions like navigation, localisation
and path planning to optimise performance and reli-
ability. This involved testing and comparing different
algorithms.

• Analysis of system failures and reliability before and
after improvements to the architecture. Quantitative
metrics like mean time between failures were used
to evaluate contributions to system robustness. Areas
optimised included system initialisation, localisation,
and fault tolerance.

II. BACKGROUND
The REV Project acquired a pre-existing electric shuttle
bus equipped with drive-by-wire hardware, but lacking any
software. To repurpose this vehicle, a new compute node
(Jetson AGX Xavier) and additional sensors (SBG Ellipse-D
RTK-GNSS with IMU) were installed alongside the existing
eight LIDARs (4 SICK, 2 Velodyne and 2 ibeo Lux). A new
hardware subsystem was implemented to send drive com-
mands to the shuttle’s motor controllers. We opted for the
Linux operating system and ROS robotics framework [22],
selecting and modifying various ROS packages to enable
autonomous driving on the university campus (Fig. 1). This
autonomous shuttle bus project builds on our previous work
developing an autonomous Formula-SAE car capable of
detecting and navigating a racecourse marked by traffic
cones [23] (Fig. 2).

It is important to note that our current focus is on devel-
oping a shuttle bus for use in pedestrian areas. Our target is
to not require a human monitor to achieve the required risk
reduction; allowing fully autonomous operation. Instead, we
identify risks associated with component or system failure
and implement appropriate safeguards, such as emergency
stop procedures. However, further research is needed to
validate this approach in more complex environments, such
as road traffic systems. Moreover, we also consider and
address potential accidents resulting from the application of

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



FIGURE 1: The nUWAy autonomous shuttle bus, designed
for on-campus use.

FIGURE 2: The REV Formula-SAE Autonomous vehicle, a
precursor to the nUWAy autonomous shuttle bus project.

safety measures themselves, which are analogous to cases
of slow driver reaction to disengagement during high-speed
freeway driving.

Our research aims to contribute to the advancement of
autonomous vehicle technology by improving safety and reli-
ability. By integrating state-of-the-art hardware and software
components, we strive to develop a robust, fail-safe system
architecture that meets industry standards while providing
a practical solution for last-mile transportation needs on
university campuses.

III. PROBLEM DESCRIPTION
The design of a systems architecture for special-purpose
autonomous research vehicles which operate in a shared
space presents unique challenges. Firstly, the vehicle must
achieve its desired operational targets safely and reliably.
Secondly, the development process must be accessible to
multiple researchers and re-usable for different applications
of specific deployments of such low-volume systems. REV
has developed multiple such systems, which have supported
research for over ten years, with evolution enabled by the
increasing availability of compact, high-performance com-
puting hardware [20], [24], [25]. As ROS has evolved as

the de-facto standard for such projects [26], we leverage the
ecosystem, but in doing so, introduce potential safety and
reliability problems managed by the techniques described in
this paper.

ROS [22] is a convenient middle-ware framework for
robot and autonomous vehicle development. It provides a
publish/subscribe type messaging system with many pack-
ages, drivers and additional fast prototyping and development
tools. These tools provide an excellent avenue to produce
research as one can focus on a single aspect without concern
for other areas. However, this system has several drawbacks
that make it less reliable for real-world applications, par-
ticularly for non-technical users. Being a loosely coupled
framework gives rise to a significant scope of outcomes in
terms of software quality, particularly as projects become
complex. Thus it becomes necessary to enforce architectural
guidelines [27] or add additional software to improve robust-
ness.

ROS provides a software framework that uses nodes to
run different aspects of the navigation stack. These nodes
communicate over the ROS backbone, allowing the user
to focus on their primary area of research. However, ROS
packages do not implement any reliability standards. In
addition, many of the open-source ROS packages can cause
unexpected errors when applied in different scenarios. One
major issue with ROS is its typical process node starting
sequence; in larger systems, manually starting up each node
would be too time-consuming, so launch files are provided
for an automated system start. These launch files will start
each node in the file with the given parameters; however,
little attention is given to the order in which nodes are started
up and whether or not those nodes are started correctly. A
common system failure is due to critical nodes starting out
of sequence.

Another concern for ROS is the lack of system health
monitoring. Nodes may fail silently in the background lead-
ing to unusual and often undesirable behaviour. For instance,
the waypoint manager node may terminate abnormally,
which leaves the system stranded, as no further waypoints
will be added to a path. Nodes that fail silently may have
other system nodes that depend on them. This failure can
lead to a knock-on effect of node failures due to missing
dependencies. A system designed without fault tolerance will
not be able to restart or return to service once a failure has
occurred.

In critical systems, such as driving algorithms for au-
tonomous vehicles, these errors can result in catastrophic
failures, from unintended property damage to injury and
loss of life. Therefore we have analysed the ROS based
system and implemented methods that make the system as a
whole more robust and reliable. The scope includes correct
configuration of the required nodes, detection of errors or
stopped nodes and reporting of faults to the users.

VOLUME , 3

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Drage et al.: Autonomous Shuttle Risk Management

Design

Systemisation

HAZOP

(Hazard Identification)

AV-LOPA

(Risk Assesment)

Safeguard

Requirements

Change

Management

FIGURE 3: HARA process flow.

IV. HAZARD AND RISK ANALYSIS
For risk assessment of our autonomous driving projects, we
utilise a three-step process shown in Fig. 3, consisting of
vehicle and ADS systemisation; then, HAZOP-style hazard
identification followed by a semi-quantitative risk assess-
ment (AV-LOPA) which is used to drive specification of
safeguarding requirements. Due to the experimental nature
of our vehicle systems and iterative design approach, this
process is repeated as features and modifications occur,
including the additions of safeguards themselves. These
activities are performed as a cross-functional team in a
workshop environment to provide breadths of experience
and knowledge, particularly during hazard identification.
Systematic application minimises the failure to identify
hazards created by new functionality. This paper presents
the results of the methodology described in [1] as applied
to the nUWAy shuttle bus and extends to the methods used
to achieve the safety requirements through the automation
system architecture and software framework design.

A series of five risk assessment workshops of approxi-
mately 2.5 hours each were held for the nUWAy shuttle bus,
examining four scenarios:

1) Manual (human) driving of the shuttle
2) Instrumented perception systems
3) Autonomous driving controls
4) Shuttle bus passenger operations

A total of 20 subsystems were examined across the
scenarios and a total of 103 hazards risk assessed. Hazards
were identified by the application of HAZOP guidewords
defined in [1] and the University’s corporate risk matrix was
applied to calibrate the risk tolerance of the assessment. The
outcomes are shown in Fig. 4, below, with the implication
that all risk ranks must be reduced to the ranking LOW by
application of appropriate safeguards.

Applying AV-LOPA per [1], we identified Independent
Protection Layers (IPLs) of sufficient risk reduction to man-

FIGURE 4: Count of hazards by risk rank.

age the hazards identified. These safeguards were defined to
be:

1) Independent: it should not have failure modes (e.g.
shared sensors) common to other safeguards used in
the scenario.

2) Effective: each IPL must be able to fully mitigate the
hazard.

3) Validatable: each IPL’s functionality must be able to
be assured and maintained.

In all cases except two, the risk was able to be reduced
to LOW. The most commonly applied safeguard related to
the nUWAy shuttle’s safety LIDAR curtain system which
utilises a safety PLC and four independent LIDAR sensors
to prevent collision. However, in the case of 7 hazards of
VERY HIGH risk ranking, the presence of an alert safety-
driver, equipped with an emergency stop switch was required
in order to rationalise the risk during autonomous driving
operations. These were all related to perception system
failure modes and required additional IPLs to be defined in
order to eliminate the requirement for a human supervisor
in the nUWAy shuttle.

Additionally, two cases of MEDIUM risk ranking were
identified for which insufficient IPLs were available and
related to a false emergency stop occurring whilst at speed.
The ranking of MEDIUM was obtained due to the high
likelihood of this occurring during testing and development
of the research vehicle and must be managed by a reduction
of likelihood through improvement of reliability of the
vehicle’s systems.

V. Safety and Reliability Requirements
In order to address the findings of Section IV, in particular
for operation without an alert safety-driver we require to
implement additional or alternative IPLs within the scope of
our control and automation architecture - specifically within
the high-level automation system. These IPLs are able to be
independent by virtue of separate sensors (to e.g. the LIDAR
safety curtain), a separate logic solver (a general purpose
computer instead of a safety PLC) and separate outputs

4 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



(active driving controls and alert systems). However, the
challenge is in ensuring that they are effective and able to be
validated, given the non-deterministic, non-realtime nature
of the ROS control framework employed. If an advanced
safeguard is implemented within a ROS node, and required
to act as an IPL for the purposes of AV-LOPA, we must
guarantee that:

1) The vehicle cannot proceed under automatic control
unless that node is active and fault-free.

2) That the node is continuously monitored for operation
according to its intended functionality and appropriate
actions, which are not unsafe in themselves, are taken
on detection of failure.

3) That monitoring functions cannot be disabled and have
full coverage of the faults and errors which could occur
within the target node.

4) That the node is sufficiently reliable that it performs
its function without introducing further risk.

5) Testing is performed to assess the performance and
correctness of any algorithms employed.

To achieve this within ROS we must implement the
monitoring and performance evaluation functionality in con-
junction with implementing the safeguards themselves. We
must also provide means to validate that the ROS middle-
ware and the operating system itself remain functional at all
times, or at least that failures are detected. Given that such
advanced safeguards may have multiple or unexpected failure
modes, the concept of proving their effectiveness through use
is expected, which can be accomplished through simulation
and field trials (IX). At the same time, we must consider
that nodes involved in continuous control must not introduce
additional risk than was additionally assumed in the HARA
through unreliability and thus apply the same constraints to
their implementation; the concepts of safety and reliability in
general are inextricably linked in a continuously controlled
intelligent system such as this.

VI. Control and Automation Architecture
The nUWAy shuttle bus system architecture follows that
of the prior Formula-SAE vehicle project, modified to suit
the architecture of the commercial vehicle. In addition to
the ECUs used in the drive control system, the shuttle bus
features an industrial safety PLC and a computer-based high-
level navigation system connected to a single CAN network.
The safety PLC provided by the shuttle manufacturer handles
basic sequence-control of the vehicle (e.g., interlocking doors
and brakes) and provides action for fault conditions and
detections from the perimeter LIDARs, which implement
a simple distance-based safety curtain. The safety PLC
contains software, however it is a simple logic system and
operates independently of any other computer-based systems
in the shuttle bus.

The high-level automation systems in our shuttle bus
comprise two main computers; an industrial x86 PC for han-

FIGURE 5: REV project nUWAy system interface controller.

dling IO and core navigational functionality, and an Nvidia
Jetson AGX Xavier, which provides accelerated execution of
deep learning based algorithms used for interpreting sensor
data. Load is distributed across the two computers based
on interfacing and computational requirements to ensure
maximal reliability. Both computers implement the Linux
operating system along with the ROS software framework.
All functionality is contained within ROS nodes, including
sensor interfacing, localisation, drive control and control of
outputs.

As the vehicle’s CAN bus specification is proprietary, for
driving and steering we developed an interface system based
on a TI Hercules automotive ARM microcontroller, certified
for ASIL applications (Fig. 5). This development also allows
us to implement additional drive-control and safety features
as part of our automation system outside of the “black
box” shuttle bus ECU. Additionally, it provides a hard-
wired interface to the safety systems, providing redundancy
and the opportunity to embed independent fault detection
monitoring for the high-level systems in reliable hardware.
Critical interfaces are implemented using isolated buses with
loopback circuits for constant error checking, ensuring that
any abnormal condition will stop the vehicle. A driver for the
interface system is implemented in ROS, allowing control of
the vehicle’s driving hardware systems and activation of the
safety system.

The nUWAy shuttle bus implements several layers of
safety systems shown in Fig. 6 designed to ensure that
fully-autonomous operation in an environment shared with
pedestrians is safe and efficient at all times. Our project has
extended the safety functionality beyond low-level hazard
mitigation systems and addresses the SOTIF and SOTAI
regimes.

The electric shuttle bus features some built-in low-level
safety features [28], which were assessed and credited as
applicable in our HARA process, including:

1) Obstacle detection: Four single-beam LIDAR sensors
form a detection area at a 30 cm height above ground
level and secure a 2 m collision-free safety zone around

VOLUME , 5

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Drage et al.: Autonomous Shuttle Risk Management

Safety PLC Interface Controller

Control & Supervisory Nodes

AI-Based Safety Nodes

Drive ECU

Safety Sensors

Complex

Sensors

Control Hardware

Safety Hardware

ROS Nodes (Software)

FIGURE 6: nUWAy Shuttle Multi-level Safety Architecture.

FIGURE 7: LIDAR point cloud of nUWAy shuttle.

the vehicle. (Fig. 7). However, this leaves the vehicle
blind to obstacles lower than 30 cm.

2) Emergency stops (e-stops): Pushing one of the four
in-vehicle stop buttons will immediately stop the ve-
hicle and disarm the doors.

3) Redundant braking systems: The vehicle features
multiple braking methods, including a fail-safe emer-
gency brake.

These functions are implemented using an industrial safety
PLC, which operates independently of the navigation system
and interconnects with the drive-control ECUs for speed
detection etc. This approach provides robustness in this
application and is well suited to the specialised vehicle,
however additional safeguards must be implemented at a
higher level by means of software within the autonomous
driving control system.

VII. Application of Software Framework
The Robot Operating System (ROS) is a widely adopted plat-
form for robotics and autonomous vehicle research projects.
It is utilised across various computing platforms, from em-
bedded controllers to multicore CPUs and GPUs, and in
numerous autonomous vehicles such as robots, driverless
cars, drones, autonomous boats, and robot manipulators.
However, its adoption within the industry is limited. Major

companies such as Argo AI, Audi, Volkswagen, and Ford do
not utilise ROS [29]. NASA/JPL employs ROS for develop-
ment projects and proof-of-concept builds but re-implements
flight systems without ROS [30]. One exception is the
startup Apex.AI, which is developing an OEM-independent
automotive operating system based on ROS [28].

The central concern regarding ROS is its reliability and
robustness, often deemed insufficient for safety-critical sys-
tems [31]. This project’s experience revealed that individ-
ual ROS software nodes, such as LIDAR sensor nodes,
are prone to crashing. Consequently, additional efforts are
necessary to ensure the overall vehicle system remains in
a safe state, including automated detection and recovery
operations to prevent collisions due to sensor information
loss. Alternatives to ROS include the DDS middleware
system [32], VxWorks [33], and other real-time operating
systems (RTOS). Despite the superior time and safety-critical
performance of these alternatives, particularly RTOS, the
modularity requirements of the framework led to the adop-
tion of ROS, as it provides inherent modularity through its
publish-subscribe architecture. It should be noted that ROS
1 lacks real-time capability, whereas ROS 2 incorporates
some real-time features and more recent integration with
commercial RTOS [23].

The IEEE Standard 1633-2016 defines software reliability
(SR) as the probability that software will not cause a system
failure for a specified time under specified conditions [34].
Unlike hardware, which is subject to wear and tear, software
failures are typically due to design faults caused by human
errors or oversight [35]. As such, software reliability is not
affected by external conditions, nor can it be improved by
running multiple instances of the same program for redun-
dancy. Instead, design diversity, or the use of different codes
performing the same task, can offer redundancy. Within
our framework, the SOTAI regime, applicable to complex
ROS nodes for autonomous navigation, is realised through
the implementation of three mechanisms which are detailed
in [1]:

1) Model Validation through Simulated Testing
2) Model Supervision through Diverse Architectures
3) Model Supervision through Hard-coded Constraints

VIII. Autonomous Driving Software Stack
The autonomous system was initially designed and deployed
using ROS with a mixture of in-house and standard open-
source packages. However, during initial testing, it was
determined that more suitable packages were available in
ROS 2, offering additional reliability features and the system
was converted to the long-term support release of ROS 2.
The following outlines the primary packages employed in
the nUWAy shuttle bus:

1) Nav2 stack [36]: ROS 2 offers a plugin library that
provides an array of resources for hot-swapping var-
ious solutions. Moreover, it establishes a system be-

6 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



haviour tree with associated recovery actions, typically
used to ensure sufficient progress towards the goal. If
adequate progress is not made, a fallback action, such
as alternate global path planning, may be performed.

2) Localisation and mapping: A crucial aspect for the
shuttle bus is the capacity to build and localise on
a given map. For map building, there are a limited
number of packages available, with the most prominent
being the SLAM toolbox [37], which utilises scan
matching to generate a smooth map. The Cartographer
package [38] was briefly considered but was found to
be only partially implemented in ROS 2. For local-
isation SLAM toolbox provides a service for loading
and localising a generated ”pose-graph” map, however
AMCL was selected as it better handles larger scale
maps. AMCL requires a separate map server, which is
available in Nav2.

3) Global planner: Nav2 includes several ”grid-based”
global planners as plugins, which use either Djikstra’s
or the A* algorithm to compute a path. NavFn and
Smac [36] were compared to evaluate potential benefits
from feasibility-based planners.

4) Local planner: The local planner selection proved
critical; Nav2 provides several local planner controllers
that can be ”hot-swapped”. The nUWAy shuttle bus
was tested with two primary packages: TEB (Time
Elastic Band) [39] and Regulated Pure Pursuit [36],
each with distinct advantages and disadvantages to
reliability.

While selecting, tuning, and improving suitable open-
source packages is crucial for creating a reliable driving
system, the key objective of this project is to maximise
reliability. This is achieved by establishing a monitor node
that assesses the overall system’s health and takes actions
accordingly to ensure reliability. The monitor node’s first
aim is to initiate each node sequentially in the correct order,
based on dependencies and resource requirements, to prevent
node failure and overuse of system resources. This approach
also eliminates race conditions in a distributed system, such
as the one on the nUWAy shuttle bus, by enabling a single
PC to monitor and control all nodes. On system startup,
the first node is activated, and the monitor listens on the
corresponding topic until node data is received, confirming
successful node initiation and allowing the subsequent node
to start.

Alternative system monitoring methods, such as heartbeats
and watchdogs are implemented in the hardware systems
and may be integrated between the monitoring node and
other services in future, however, critical systems running
under Nav2 are managed by a life cycle manager that handles
many of these capabilities. The monitor’s primary focus is
on flexibility to ensure the project’s scalability for future
research. An external incident recorder has been developed,
which activates when unexpected changes to the global path
occur and records current and planned trajectories, event

FIGURE 8: Multiple recorded shuttle drives between two
campus stops.

time, and camera data. This information feeds continuous
improvement of the system.

Lastly, the monitor node establishes several monitoring
sessions that captured critical information from the other
nodes which is used to enhance fault tolerance. Node failures
are determined by examining the current node list and
listening for data on corresponding topics; allowing detection
of faults in nodes that tend to fail silently. Once a failed node
is detected, information about its location, failure type, and
restoration methods is logged.

IX. Evaluation of Autonomous Driving
The performance of the autonomous driving system is eval-
uated across their respective subsections.

A. Optimising nUWAy Shuttle Path Accuracy
Nine key stops across the breadth of the university campus
are defined with routes between them experiencing high
pedestrian traffic, especially during peak times. Groups of
students further limit driving space. Fig.8 shows drives
between the Law School and Student Guild stops. GPS
accuracy and signal availability for Real-Time Kinematic
(RTK) corrections cause slight deviations in the bus’s starting
position. The current system demonstrates consistent naviga-
tion using a basic path planning system.

During initial testing, unsuitable software components
were replaced. Observations of student and pedestrian be-
haviour informed local planner selection. Initially, Navi-
gation 2 (Nav2) implementation of Timed Elastic Band
(TEB) was used for path planning due to its popularity. A
performance review [40] determined that TEB and NavFn
were superior in combination. However, TEB occasionally
generated incoherent paths (Fig. 9a), requiring manual inter-
vention.

Pedestrians seemed disoriented around the shuttle bus
during TEB’s operation due to abrupt direction changes. This

VOLUME , 7

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Drage et al.: Autonomous Shuttle Risk Management

led to selecting an alternative local planning algorithm. The
’regulated pure pursuit’ algorithm offers a simpler alternative
to TEB, functioning like a carrot on a stick. It lacks dynamic
obstacle avoidance but incorporates velocity scaling based on
obstacle proximity. It improved the shuttle’s route following
ability, and pedestrians could anticipate its path.

Initial trials of the ”regulated pure pursuit” algorithm
showed promising results on straight paths with minimal
interference. However, it struggled on corners (Fig. 9b). Two
primary solutions include using a different global planner to
address feasibility concerns or tuning inflation zones for safer
cornering.

Previously, the NavFn global planner was used in sim-
ple outdoor environments, while TEB handled unexpected
issues. However, NavFn does not consider path feasibility,
which may result in poor performance. Consequently, the
Smac planner provided by Nav2 was tested but proved
unsuitable due to its continuous global path adjustments.

The focus shifted to adjusting inflation zones for reliable
navigation along straight paths and safe cornering. Increasing
the inflation zone larger than the shuttle bus size resolved the
issue. Fig. 9c demonstrates the expanded inflation zone. The
light blue regions represent impassable lethal objects and a
decay value is set to gradually decrease the object’s severity.

B. Disengagement Events Analysis
This section evaluates the autonomous driving system per-
formance before implementing the monitor node. We used a
black-box testing approach due to the codebase’s complexity,
which includes open-source packages and student contribu-
tions. We characterised the system’s efficacy by the mean
time between failures (MTBF) during routine operations,
such as path planning and navigation. Failures were assessed
by their frequency, severity, and whether a system restart was
required. We identified four primary areas for optimisation
to improve system reliability and performance:

1) Low-level motor driver communication
2) System initialisation
3) Vehicle localisation

4) Miscellaneous driving challenges

Over three weeks, we documented 686 system failures
from 57 hours of data, resulting in an average MTBF of
4.98 minutes. Table 1 shows the failure categories before
and after improvements.

TABLE 1: Sources of failure before and after improvements.

Source Before After
Initialisation 15.6% 1.61%
Driving 22.45% 59.68%
Localisation 60.2% 35.48%
Low-level 1.75% 3.23%

Low-level failures can result from unsuccessful message
exchanges between the interface board and PLC software.
Initialisation failures occur when software nodes start, while
driving failures relate to local planner software issues. Lo-
calisation failures arise when the system cannot load or
accurately localise within a map. These categories were
further classified by severity level: low, medium, or high.
Low-severity failures can be resolved by non-technical users,
while medium-severity failures need technical users to restart
specific nodes. High-severity failures require a complete
system restart or full power cycle of the shuttle bus.

Our focus was on minimising medium and high-severity
failures in the nUWAy system, designed for operation by
non-technical personnel. We addressed the most common
issues in localisation and initialisation phases. Low-level
communication failures were due to lost or delayed data
packets. Enhancing load distribution and incorporating op-
timised data timeouts and fault recovery logic improved
reliability, offering safety advantages.

A map of the shuttle’s environment was created using the
SLAM toolbox package, which provided a 2D map using
localisation and LIDAR sensors. Despite the shuttle bus
being equipped with high-quality GPS with RTK correction,
a SLAM-based solution was found to be more suitable due

(a) Incoherent TEB paths (b) Corner cut by regulated pure pursuit (c) Improved by increased inflation zone

FIGURE 9: Issues encountered during local planner selection and tuning.

8 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



TABLE 2: Operations performed by SLAM Toolbox vs.
AMCL.

SLAM Toolbox AMCL
Operation Failure Success Failure Success

Map load (per hour) 5.727 2.009 0.098 3.610
Pose estimations (per hour) 1.004 2.132 0.293 6.244
MTBF (minutes) 8.24 55.91

to drift caused by nearby buildings. ROS 2 offered two
packages for this purpose: SLAM Toolbox and AMCL.

Initially, SLAM Toolbox was chosen but proved inade-
quate for our map sizes, causing service crashes during map
loading. Table 2 compares map loading success rates using
SLAM Toolbox and AMCL. SLAM Toolbox had a 25%
success rate, often needing multiple software stack restarts.
In contrast, AMCL was more reliable, with a 97% success
rate and no performance issues due to smaller map sizes.

Table 2 shows SLAM Toolbox’s poor localisation mainte-
nance within a map, with an MTBF of 8.24 minutes. AMCL
performed better, achieving an MTBF of nearly an hour.
SLAM Toolbox failed to maintain localisation even with a
smaller map.

C. Monitoring Node Implementation Improvements
Integrating the monitoring node into the ROS 2 framework
significantly enhanced the nUWAy autonomous shuttle bus
system performance. The startup issue with safety nodes
launching before LIDAR drivers was resolved. A regulated
startup sequence now ensures device drivers start and operate
before activating dependent safety nodes.

TABLE 3: Comparison of failure severity levels pre- and
post-monitor node implementation.

Severity Pre-Implementation Post-Implementation
Low 21.7% 80.7%
Medium 76.5% 16.1%
High 1.8% 3.2%

TABLE 4: MTBF comparison for severity levels and failure
sources (in minutes).

Category Level Initial Final

Severity
Low 23 25

Medium 7 123
High 284 615

Failure Source

Low-level 284 615
Launch 32 1230

Localisation 8 56
Driving 22 33

FIGURE 10: Eglinton shuttle bus route.

Table 3 compares failure severity levels before and after
monitoring node implementation, showing a significant re-
duction in medium severity failures. Table 4 compares the
MTBF for severity levels and failure categories, indicating
improved system reliability and reduced frequency of high
and medium severity consequences. Launch, localisation,
and low-level failure probabilities decreased, leading to
better overall system performance and stability primarily
due to the monitoring node and better package selection.
Hardware improvements are in progress to reduce low-
level failures, including false positive prevention, watchdog
implementation, and fault-tolerant recovery measures.

The monitoring node implementation also improved the
overall systems ability to deal with failures and continue
running after a failure has occurred. For example, during
testing the GUI interface would often fail while driving;
this was found to be an incompatibility between the package
and long term release distribution of ROS 2. However, the
modularised system allows the vehicle to continue to drive
the provided path without triggering a disengagement during
the failure. While the path is being driven the background
watchdog will identify this failure and can fully recover
the GUI functionality. Recent upgrades to the ROS software
stack have reduced this issue however the occurrence high-
lights the importance of our implementation of additional
supervisory functions within the ROS framework.

The next deployment of the nUWAy shuttle bus will take
place on public roads in the suburb of Eglinton, driving
route shown in Figure 10, in the north of Perth, West-
ern Australia. This latest revision implements the updated
ROS 2 distribution, Humble, and has been implemented
using Docker containers to further modularise functions and
segment failure points in both the building and running
stages of the software. The watchdog architecture remains
in use within the containers to ensure the system remains as
safe and reliable as possible. Further work will extend our
architecture to feature an on road system with two driving
modes, which operate concurrently such that if one fails the
other system can take control without disruption while the
failed system is reset.

X. CONCLUSION
This study has presented a comprehensive analysis and
implementation of an increasingly robust and dependable au-
tomation system for a passenger shuttle bus operating within

VOLUME , 9

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Drage et al.: Autonomous Shuttle Risk Management

a shared space environment. Central to our investigation was
the development of a flexible systems architecture, which
allowed for the seamless integration of safety features with
varying degrees of complexity, as well as the optimisation of
open-source software in a modular manner to facilitate the
advancement of both research and operational functionality.
Hazard and risk assessment showed that further work is
required to achieve fully autonomous operation without a
human supervisor. We propose that this is achieved through
the improvement of the reliability of the systems, in order to
prevent dangerous conditions occurring and the provision of
additional layers of protection within the system framework.
There is significant scope to implement recent developments,
particularly with regard to perception of hazards through
advanced object detection and tracking systems e.g. [41]
which are highly suitable in environments with multiple
special purpose vehicles in operation. We ascertained that
the existing ROS framework does not inherently provide
the necessary mechanisms to guarantee the fulfilment of
our safety and reliability criteria. Consequently, we have
successfully devised and incorporated our own control mea-
sures to progressively work towards our ultimate objective
of achieving a fully autonomous, unsupervised operation
with enhanced intelligence embedded within the vehicle.
Given the promising developments in ROS 2, we antici-
pate utilising the emerging features and mechanisms within
this distribution to augment and refine the reliability of
our systems. As we continue to advance our research, we
recommend that future work should focus on evaluating
the feasibility of transitioning to a RTOS and establishing
standardised software engineering practices. Selection of
algorithms should be guided by application and not by
availability of functionality within a chosen framework to
ensure the best performance. These measures will ensure
that safety is maintained through consistent reliability as the
project expands, further solidifying the effectiveness of our
proposed automation system for passenger shuttle buses in
shared spaces.

ACKNOWLEDGMENT
The REV team would like to acknowledge the support of all
its sponsors, especially Stockland, Allkem, CD Dodd, and
Dyflex.

REFERENCES
[1] T. Drage, K. L. Lim, J. E. H. Koh, D. Gregory, C. Brogle, and

T. Braunl, “Integrated modular safety system design for intelligent
autonomous vehicles,” in 2021 IEEE Intelligent Vehicles Symposium
(IV), Jul. 2021.

[2] M. Murtaza, C.-T. Cheng, M. Fard, and J. Zeleznikow, “The im-
portance of transparency in xxiinaming conventions, designs, and
operations of safety features: from modern ADAS to fully autonomous
driving functions,” AI & Society, 2022.

[3] “Autonomous vehicle technology: A guide for policymakers,” So-
ciety of Automotive Engineers, Warrendale, USA, Tech. Rep. SAE
J3016 202104, 2021.

[4] J. M. Anderson et al., “Autonomous vehicle technology: A guide for
policymakers,” RAND Corporation, Santa Monica, USA, Tech. Rep.,
2014.

[5] J. Fleetwood, “Public health, ethics, and autonomous vehicles,” Amer-
ican Journal of Public Health, vol. 107, no. 4, pp. 532–537, 2017.

[6] M. Geisslinger, R. Trauth, G. Kaljavesi, and M. Lienkamp, “Maximum
acceptable risk as criterion for decision-making in autonomous vehicle
trajectory planning,” IEEE Open Journal of Intelligent Transportation
Systems, vol. 4, pp. 570–579, 2023.

[7] P. Feth, R. Adler, T. Fukuda, T. Ishigooka, S. Otsuka, D. Schneider,
D. Uecker, and K. Yoshimura, “Multi-aspect safety engineering for
highly automated driving,” in Developments in Language Theory.
Porto: Springer International Publishing, 2018, pp. 59–72.

[8] V. V. Dixit, S. Chand, and D. J. Nair, “Autonomous vehicles: Disen-
gagements, accidents and reaction times,” PLOS ONE, vol. 11, no. 12,
p. e0168054, Dec. 2016.

[9] B. Schlager, T. Goelles, S. Muckenhuber, and D. Watzenig, “Contami-
nations on lidar sensor covers: Performance degradation including fault
detection and modeling as potential applications,” IEEE Open Journal
of Intelligent Transportation Systems, vol. 3, pp. 738–747, 2022.

[10] L. Hacker and J. Seewig, “Insufficiency-driven dnn error detection in
the context of sotif on traffic sign recognition use case,” IEEE Open
Journal of Intelligent Transportation Systems, vol. 4, pp. 58–70, 2023.

[11] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K.
Iyer, “Hands off the wheel in autonomous vehicles?: A systems
perspective on over a million miles of field data,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Jun. 2018.

[12] “Road vehicles — Functional safety,” International Organization for
Standardization, Geneva, CH, Standard, Aug. 2018.

[13] S. Salih and R. Olawoyin, “Fault injection in model-based system
failure analysis of highly automated vehicles,” IEEE Open Journal of
Intelligent Transportation Systems, vol. 2, pp. 417–428, 2021.

[14] “Functional safety of electrical/electronic/programmable electronic
safety-related systems,” IEC, Geneva, CH, Standard, Apr. 2018.

[15] “Road vehicles — Safety of the intended functionality,” International
Organization for Standardization, Geneva, CH, Standard, Jan. 2019.

[16] “Uniform provisions concerning the approval of vehicles with regard
to automated lane keeping systems,” United Nations Economic Com-
mission for Europe, Geneva, CH, Standard UN Regulation No. 157,
2023.

[17] M. Minielly, A. Berg and C. Decker, “Mercedes-Benz
world’s first automotive company to certify SAE Level
3 system for U.S. market,” Business Wire, Jan. 2023.
[Online]. Available: https://www.proquest.com/wire-feeds/mercedes-
benz-world-s-first-automotive-company/ docview/2769612413/se-2

[18] Mercedes-Benz, “Introducing DRIVE PILOT: An
Automated Driving System for the Highway,”
Mar. 2023. [Online]. Available: https://group.mercedes-
benz.com/dokumente/innovation/sonstiges/2023-03-06-vssa-
mercedes- benz-drive-pilot.pdf

[19] Ford Motor Company, “A matter of trust 2.0 – Ford’s
approach to developing self-driving vehicles,” Jun. 2021. [On-
line]. Available: https://media.ford.com/content/dam/fordmedia/North
America/US/2021/06/17/ford- safety-report.pdf

[20] K. L. Lim, T. Drage, C. Zhang, C. Brogle, W. W. L. Lai, T. Kelliher,
M. Adina-Zada, and T. Braunl, “Evolution of a reliable and extensible
high-level control system for an autonomous car,” IEEE Transactions
on Intelligent Vehicles, vol. 4, no. 3, pp. 396–405, Sep. 2019.

[21] X. Larrucea, P. González-Nalda, I. Etxeberria-Agiriano, M. C. Otero,
and I. Calvo, “Analyzing a ROS based architecture for its cross reuse in
ISO26262 settings,” in Communications in Computer and Information
Science. Cham: Springer International Publishing, 2018, pp. 167–180.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
Kobe, Japan, 2009, p. 5.

[23] ROS Tutorial, “Real-time programming in ROS 2,” May 2022.
[Online]. Available: https://docs.ros.org/en/foxy/Tutorials/Real-Time-
Programming.html

[24] K. L. Lim, T. Drage, R. Podolski, G. Meyer-Lee, S. Evans-Thompson,
J. Y.-T. Lin, G. Channon, M. Poole, and T. Braunl, “A modular soft-
ware framework for autonomous vehicles,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), Jun. 2018.

[25] T. H. Drage, “Development of a Navigation Control System for
an Autonomous Formula SAE-Electric Race Car,” Master’s thesis,

10 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



The University of Western Australia, 2013. [Online]. Available:
http://robotics.ee.uwa.edu.au/theses/2013-REV-Navigation-Drage.pdf

[26] A. Araujo, D. Portugal, M. S. Couceiro, and R. P. Rocha, “Integrating
arduino-based educational mobile robots in ROS,” in 2013 13th
International Conference on Autonomous Robot Systems, Apr. 2013.

[27] I. Malavolta, G. A. Lewis, B. Schmerl, P. Lago, and D. Garlan,
“Mining guidelines for architecting robotics software,” Journal of
Systems and Software, vol. 178, p. 110969, Aug. 2021.

[28] J. Becker, “Das neue auto-os und die robotik,” Interview, May 2022.
[Online]. Available: https://intellicar.de/podcast/das-neue-auto-os-und-
die-robotik/

[29] A. Boeing, Private Communication, Munich, May 2022.
[30] I. Nesnas, Private Communication, Pasadena, Jan. 2016.
[31] ROS Answers, “What are technical reasons for criticisms

of ROS’s Reliability/Robustness/Safety?” May 2022. [Online].
Available: https://answers.ros.org/question/317435/what-are-technical-
reasons-for-criticisms-of-ross-reliabilityrobustnesssafety/

[32] DDS Foundation, “What is DDS?” May 2022. [Online]. Available:
https://www.dds-foundation.org/what-is-dds-3/

[33] Wind River Systems, “VxWorks - The Leading RTOS
for the Intelligent Edge,” May 2022. [Online]. Available:
https://www.windriver.com/products/vxworks

[34] “IEEE recommended practice on software reliability,” Standard IEEE
Std 1633-2016 (Revision of IEEE Std 1633-2008), 2017.

[35] M. R. Lyu, Handbook of software reliability engineering. Piscataway,
NJ: IEEE Computer Society Press, 1996.

[36] S. Macenski, F. Martin, R. White, and J. G. Clavero, “The marathon
2: A navigation system,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2020.

[37] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic
world,” Journal of Open Source Software, vol. 6, no. 61, p. 2783,
2021.

[38] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2D LIDAR SLAM,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), May 2016.

[39] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram,
“Trajectory modification considering dynamic constraints of au-
tonomous robots,” in ROBOTIK 2012; 7th German Conference on
Robotics, 2012, pp. 1–6.

[40] A. Filotheou, E. Tsardoulias, A. Dimitriou, A. Symeonidis, and
L. Petrou, “Quantitative and qualitative evaluation of ROS-enabled
local and global planners in 2d static environments,” Journal of
Intelligent & Robotic Systems, vol. 98, no. 3-4, pp. 567–601, Oct.
2019.

[41] Z. Meng, X. Xia, R. Xu, W. Liu, and J. Ma, “Hydro-3d: Hybrid object
detection and tracking for cooperative perception using 3d lidar,” IEEE
Transactions on Intelligent Vehicles, vol. 8, no. 8, pp. 4069–4080,
2023.

THOMAS H. DRAGE received the B.Sc. degree
in physics and the B.Eng. (Hons) degree in electri-
cal and electronic engineering from The University
of Western Australia in 2014 and the MIDS de-
gree from the University of California, Berkeley
in 2020. In 2023 he received the Ph.D. degree
in computer engineering from The University of
Western Australia.

From 2015 to 2019 he was engaged in automa-
tion and instrumentation engineering roles with
Chevron Australia and from 2020 to 2021 led data

science projects with the global Chevron Technical Center. He is currently
Engineering Manager of Orexplore Technologies, based in Perth, Western
Australia, who develop and market advanced x-ray instruments. His research
interests include systems design, functional safety and advanced sensor
systems.

KIERAN QUIRKE-BROWN has received a Mas-
ter of Professional Engineering in Electrical &
Electronics engineering in 2017 from The Univer-
sity of Western Australia. Between 2017 and 2021
Kieran worked as a BMS Engineer with Schneider
Electric while earning his second master’s degree
in Information Technology from The University
of Queensland. In 2021 he returned to UWA as
a Ph.D. student in robotics and automation; his
research focus’ on dynamic obstacle avoidance and
path planning for autonomous vehicles. He also

holds a strong passion for teaching the next generation of students.

ZHIHUI LAI received the B.E. (Hons.) degree
from The University of Western Australia, Perth,
Australia, in 2021, where he is currently pursuing
a Ph.D. degree with a focus on deep learning meth-
ods for autonomous driving. His research interests
include end-to-end self-driving based on deep neu-
ral networks, computer vision, object detection and
tracking.

KAI LI LIM received the B.Eng. (Hons) degree
in electronic and computer engineering from the
University of Nottingham, Nottingham, U.K. in
2012, and the M.Sc. degree in computer sci-
ence from Lancaster University, Lancaster, U.K.
in 2014. He received the Ph.D. degree from The
University of Western Australia, Perth, Australia,
in computer engineering in 2020, sponsored by
the Australian Government under the Research
Training Program.

He currently holds the St Baker Fellowship in
E-Mobility at the University of Queensland, Australia, is an adjunct research
fellow of The University of Western Australia and most recently is a visiting
scholar at the EV Research Centre of the University of California, Davis.
His research interests include visual navigation, navigational algorithms, and
electric vehicles.

THOMAS BRÄUNL (Senior Member, IEEE) be-
come a Member (M) of IEEE in 1997 and a
Senior Member (SM) in 2008 and has received
a Diploma degree in Informatics from Universität
Kaiserslautern, Germany, the M.S. degree in Com-
puter Science from University of Southern Califor-
nia, Los Angeles, CA, USA, and the Ph.D. and
Habilitation degrees in parallel processing from
Universität Stuttgart, Germany. He is currently
Professor in Electrical and Computer Engineering
at The University of Western Australia, Perth,

Australia. He has worked in Germany for Mercedes-Benz, BMW, and BASF
and has held guest professor appointments at TU München, Germany, and
Santa Clara University, CA, USA. He is creator of the EyeBot mobile
robot and embedded controller family, and directs the Renewable Energy
Vehicle Project (REV) at UWA, where so far four electric vehicles and
two autonomous vehicles have been constructed, and a city-wide charging
network has been established. Embedded Robotics (Springer 2008) and
Parallel Image Processing (Springer 2001) are two of his major publications
in book form.

VOLUME , 11

This article has been accepted for publication in IEEE Open Journal of Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJITS.2024.3425165

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


