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ABSTRACT Lane changing present a significant challenge for autonomous vehicles, as they must maintain
safe driving and optimize time efficiency. This process is strongly affected by traffic environment and
driver characteristics. This paper proposed a lane changing control method based on Stackelberg game
theory, integrating lane changing decision and trajectory planning while comprehensively considering the
driver’s characteristics and the traffic environment. Firstly, considering the common characteristics of lane
changing decision and trajectory planning, the two stages are integrated using the leader-follower game
theory, enhancing the accuracy of lane changing decisions. Secondly, the cooperative game theory model
is employed to design an adaptive weight adjustment strategy for the trajectory tracking controller. The
weight coefficients for vehicle stability and path tracking accuracy are dynamically adjusted within the
model predictive control method to adapt to the vehicle’s stability state. Simulation results indicate a
24% improvement in decision-making accuracy with the proposed leader-follower game decision method
over the rule-based lane changing model. The average relative error in lateral displacement, comparing
the vehicle’s actual trajectory to the planned one, is reduced by 6%. Additionally, the variable-weight
trajectory tracking control enhances overall tracking performance by over 30% in scenarios involving
high speeds and low adhesion. These findings verify the proposed vehicle lane changing method notably
improves lane changing safety, stability, and precision.

INDEX TERMS Autonomous vehicle, lane changing control, Stackelberg game, lane changing decision,
trajectory planning.

I. INTRODUCTION

SOME statistics indicate that lane changing are respon-
sible for nearly one-third of all traffic accidents [1],

[2], [3], [4]. This situation arises due to the high level
of expertise and experience demanded from drivers during
lane changing maneuvers. Not only does it call for a
thorough comprehension of the traffic environment, but
also necessitates the availability of competent decision-
making abilities [5], [6]. Especially, driver errors in lane
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changing decisions are a key factor contributing to traffic
accidents. Therefore, effective decision-making and control
in lane changing are crucial for enhancing the road safety
of autonomous vehicles [7], [8].
The lane changing process for autonomous vehicles

typically comprises three stages: lane changing decision,
trajectory planning, and trajectory tracking. Making informed
decisions and planning precise trajectories for lane changes
are vital in autonomous driving systems, ensuring the vehicle
can change lanes safely and effectively. Lane changing
decisions involve assessing the nearby traffic conditions
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and choosing the best moment for the maneuver, while
trajectory planning encompasses designing an appropriate
driving route and implementing trajectory tracking to ensure
a smooth and safe lane changing process. Various driving
styles affect the decision-making and planning strategies
involved in lane changing. Several scholars have investigated
the impact of different driving styles on lane changing
behavior [9], [10]. Utilizing lane changing trajectory data
from NGSIM, Pang et al. [11] classified drivers using pre-
processed lane changing trajectory data and conducted a
comparative analysis of the lane changing behaviors among
different driver types. Du et al. [12] introduced an innovative
method that integrates driving style-based lane changing
contexts with trajectory-related data from both intelligent and
connected vehicles (ICVs) and their surrounding vehicles to
forecast lane changing behaviors of ICVs. Zhang et al. [13]
proposed a tailored framework for predicting lane changing
risks that incorporates driving style factors. They introduced
several indices to assess driving volatility and developed
a dynamic clustering technique to determine the most
appropriate time windows and methods for categorizing
driving styles.
Given that vehicle lane changing involves interactions

similar to game dynamics, lane changing models grounded
in game theory have increasingly garnered interest from
researchers. Ji et al. [14] developed a lane-merging strategy
for autonomous vehicles in high-density traffic by applying
the Stackelberg game theory, allowing autonomous vehicles
to make optimal decisions by anticipating the responses of
adjacent lane vehicles. To address the potential for mutual
interference in lane changing decisions among vehicles, a
multi-vehicle cooperative lane changing model based on
game theory was developed using a two-matrix approach,
with solutions for lane changing decisions demonstrated [15].
Ding et al. [16] developed a strategy for coordinating lane
changing among multiple vehicles, specifically designed
for scenarios requiring mandatory lane changing. They
employed Stackelberg game theory to represent the interac-
tions between a lane changing vehicle and its surrounding
vehicles, thereby identifying the best timing for executing
the lane change. Liu et al. [17] proposed a novel nonlinear
gamebased driver-automation cooperative steering control
method to mitigate collision caused by the driver’s limited
experience on low adhesion road conditions. However, most
of the aforementioned studies apply game theory to address
only one aspect of lane changing.
Trajectory planning and path tracking control are closely

related and are often designed in collaboration so that the
feasibility of control is considered during the planning phase
and the planned path is adapted during the control phase.
In practical applications, trajectory planning often needs
to adapt to the ability of path tracking control to ensure
the stability and safety of the whole system. The primary
goal of the trajectory tracking model is to regulate the
vehicle’s heading angle and speed in order to track the
planned lane change path. Wang et al. [18] proposed a control

strategy for trajectory planning and tracking in autonomous
vehicles, utilizing a model predictive control-based approach
for trajectory tracking. This strategy ensures that the model’s
outputs better match the vehicle’s dynamic behavior and
boosts the precision of trajectory tracking. Geng et al. [19]
designed a dual-layer lateral trajectory tracking control
system. By assessing the vehicle’s real-time status, the
system selects the optimal controller output to ensure the
tracking accuracy and effectively improve the passenger
comfort. Song et al. [20] developed a lateral controller
based on a three-degree-of-freedom vehicle dynamic model,
utilizing model predictive control. The resulting control
algorithm exhibits excellent robustness and stability in
tracking performance. Li et al. [21] introduced a combined
planning layer for trajectory tracking control specifically
for four-wheel-drive electric vehicles. This method involves
planning an obstacle-avoidance trajectory within a dynamic
obstacle environment.
Typically, the trajectory planning for a vehicle’s lane

change is conducted after the lane change decision has been
made. In most contemporary research, the processes of lane
changing decision and trajectory planning for vehicles are
treated as separate entities. However, in practical applica-
tions, both the decision and planning modules must consider
factors such as safety, driving efficiency, and the impact on
the traffic environment [22], [23]. This indicates that the
factors considered by both modules are relatively consistent.
This segregation inevitably results in a decline in both the
efficiency and safety of lane changing. Integrating these
two modules allows for a more comprehensive assessment
of safety risks and driving efficiency across different lane
changing trajectories. Consequently, decisions regarding lane
changes can be executed with higher precision, thereby
enhancing the success rate and safety of lane changing.
Considering that there are numerous common factors

between lane changing decision and trajectory planning,
this article proposes a method for their integration. The
vehicle lane changing decision game model employs a set
of alternative lane changing trajectories as its decision set.
This approach replaces the original binary decision set
of changing lanes or not, resulting in the lane changing
decision model outputting specific vehicle trajectories instead
of abstract behavioral instructions. This streamlines the
workflow of the vehicle lane changing model and enhances
both the safety and efficiency.
The main vehicles involved in the interaction during

lane changing are the main vehicle and the following
vehicle in the target lane [24]. This article treats the main
vehicle and the following vehicle in the target lane as
game theory participants and their respective lane change
decision sets as the game theory decision set. The benefits
obtained by vehicles through lane changing are considered
as the payoffs in game theory, thereby forming a game
theory model for lane changing decisions. Currently, most
lane changing decision models are non-cooperative static
game theory models, where both players make decisions
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simultaneously without a defined order. However, in practical
lane changing scenarios, the main vehicle observes the
surrounding environment first, forms the intention to change
lanes, and makes corresponding decisions. It signals its
decisions to surrounding vehicles using traffic lights or other
means, and then other vehicles make their own decisions
based on the main vehicle’s decision, which they feedback
to it. This suggests that there is a sequential order in which
both players make decisions during lane changing, and static
game theory models cannot fully capture the interactions
involved in vehicle lane changing. Considering the analysis
provided, this paper proposed lane change methods using
the stackelberg leader-follower game theory framework.
To address collision avoidance in emergency scenarios,

Dai et al. [25] proposed a model predictive decision-making
(MPDM) approach that incorporates the consideration of
lane-changing time. Trajectory following model predictive
control (MPC) is an effective control method for managing
complex systems, including nonlinear and multivariable
systems [26], [27]. The appropriate selection of weight
coefficients is crucial when setting up MPC because they
significantly impact the controller’s performance [28], [29].
Specifically, the weight coefficient determines the extent
to which the MPC controller emphasizes state deviation
and control inputs during the control process. Optimizing
the weight factor is a widespread and critical task that
enhances controller performance, prevents over-control, and
reduces energy consumption. However, the optimization of
weight coefficients is an intricate problem, involving multiple
interrelated variables that often conflict with each other. For
example, increasing the weight of control inputs can enable
the system to track a predetermined trajectory quickly but
may lead to high energy consumption. In current practice,
the control parameters of the MPC controller–such as the
control horizon and weight coefficients are fixed values that
may underperform under varying working conditions. The
coordination between different weight coefficients is also a
game process. This article introduces a weight optimization
method grounded in leader-follower game theory.
To summarize, the key contributions of this paper are:
(1) Based on the shared characteristics, utilizing stack-

elberg leader-follower game theory, an integrated method
for vehicle lane changing decision and trajectory planning
is proposed. This method takes into account the impact of
different driving styles by modifying the weights in the game
payoff function, it enables the trajectory resulting from the
decision to more closely align with actual situations.
(2) A adaptive weight adjustment strategy based on

cooperative game theory is proposed for the trajectory
tracking controller. During lane changing, this model dynam-
ically adjusts the weight coefficients of the MPC controller
for stability and accuracy, enhancing the overall tracking
performance of the vehicle.
The structure of this paper is organized as follows:

Section II introduces the framework of vehicle lane changing
system proposed in this article. Section III describes the

FIGURE 1. Vehicle lane changing system framework.

vehicle lane changing trajectory planning and decision-
making method using the leader-follower game. Section IV
provides the detailed process of the controller weight
adaptive adjustment strategy based on cooperative game
theory. Section V presents the simulation results., finally,
Section VI concludes the paper and suggests directions for
future research..

II. FRAMEWORK OF LANE CHANGING CONTROL
This paper introduces a lane-changing method that initially
incorporates the driver’s driving style and traffic conditions
into a decision module based on Stackelberg leader-follower
game theory, and then combines the decision module with
the trajectory planning module as the basis for subsequent
trajectory tracking. Within the trajectory tracking controller,
the weight coefficient is set to be variable based on
cooperative game, so as to achieve better control effect.
Finally, the cooperative-simulation is carried out under
various traffic scenarios.
The system scheme diagram of the whole article is

illustrated in Fig. 1.

III. INTEGRATED LANE CHANGING DECISION AND
TRAJECTORY PLANNING BASED ON GAME THEORY
A. ANALYSIS OF LANE CHANGING DRIVING STYLE
The way a vehicle is driven during lane changing is mainly
reflected in lane changing time, lane changing speed, etc.
Different driving styles significantly influence a vehicle’s
performance during lane changing. To effectively study
the characteristics of the vehicle during lane changing,
it is essential to classify and analyze the driving style
of the vehicle. Studying the behavioral characteristics of
vehicles requires a substantial amount of vehicle trajectory
data. This paper used the data of NGSIM, which is a
set of open public data with comprehensive vehicle traffic
datasets [30]. Processed vehicle data can effectively reflect
the characteristics of the lane changing process, making it
suitable for analyzing behavior [31].

This article primarily concentrates on analyzing the
driving styles of vehicles during the lane changing process.
To classify vehicle driving styles during lane changing, the
K-means clustering algorithm is utilized. Considering the
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TABLE 1. Average vehicle speed under different driving styles.

TABLE 2. Vehicle lane change time under different driving styles.

typical characteristics of human drivers and the experimental
verification of many scholars, this paper combines principal
component analysis with K-means clustering to divide vehi-
cle driving styles into three types: aggressive, conservative,
and common.
According to the principle of K-means clustering algo-

rithm, this paper sets the initial number of clustering centers
for trajectory to 3, and uses SPSS data analysis software to
conduct clustering analysis for the main components. The
lane changing trajectory dataset is divided into three clusters,
respectively representing three types of driving styles during
lane changing. The dataset includes features such as speed,
acceleration, and lane changing time.
This paper draws some of the feature data of the three

clusters into tables. As illustrated in Table 1, Table 2 and
Table 3.

(1) Average vehicle speed during lane changing From
Table 1, it is evident that there is a significant gap in the
range of the average speed for aggressive type vehicles when
changing lanes, with the speed primarily centered around
10 m/s. The relatively high lane changing speed indicates
an aggressive driving style. The average speeds of common
type and conservative type vehicles during lane changing are
lower, mainly around 7 m/s. Moreover, the speed distribution
of conservative type is somewhat tighter than that of common
type, indicating that the feature performance of vehicles
in conservative type is more consistent. The range and
distribution of the speed for common type are between
aggressive type and conservative type, indicating that the
driving style of common type is also between the two.
(2) Vehicle lane changing time The lane changing time for

vehicles in different categories also has certain differences.
The lane changing time required for aggressive type vehicles
is shorter, mainly distributed between 6s to 7s, while the lane
changing duration distribution for common type vehicles is
slightly longer than aggressive type vehicles. Conservative
type vehicles require a longer time for lane changing,
mainly distributed between 7s to 8s. This indicates that both
aggressive type and common type vehicles tend to consider
lane changing efficiency during lane changing, hence their

TABLE 3. Speed ratio before and after lane changing for different driving styles.

lane changing time is shorter. On the other hand, conservative
type vehicles value stability while changing lanes, resulting
in a relatively longer lane changing time.
(3) Speed ratio before and after vehicle lane changing

Under different driving styles, the speed changes of vehicles
are different. For aggressive type vehicles, the increase rate
of speed after lane changing compared to before is mainly
distributed around 1.5, indicating that these vehicles increase
a considerable speed through lane changing. The speed ratio
before and after lane changing for common type vehicles is
slightly greater than aggressive type, indicating that under
this driving style, vehicles also get a certain speed gain from
lane changing. For conservative type vehicles, the speed ratio
before and after lane changing is slightly less than aggressive
type, indicating that the speed gain from lane changing under
this type is relatively small, suggesting a more conservative
driving style.
Through the above analysis of various vehicle lane

changing feature data, it can be seen that vehicles with
an aggressive driving style tend to pursue efficiency when
changing lanes, with short lane changing times and great
speed increases after lane changing. Vehicles with a con-
servative driving style tend to have modest speed increases
before and after lane changing, with long lane changing
times. Vehicles of the common type perform between the
two.
As indicated by the analysis results of average speed, time,

and speed change rate before and after lane changing. It
shows that the lane changing data after K-means clustering
can reflect the features of different driving styles. Finally, the
average vehicle speed, lane changing time and speed ratio
before and after lane changing under different driving styles
after classification are extracted as the basis for trajectory
planning in the following sections.

B. VEHICLE LANE CHANGE TRAJECTORY PLANNING
GROUNDED IN DRIVING STYLE
This section focuses on developing a set of potential
trajectory curves for lane changes, tailored to various driving
styles, to supply the essential decision-making framework to
facilitate the subsequent vehicle lane change decision game
model.
Here, a polynomial method for lane change trajectory

planning is used. This planning method uses polynomial
functions to plan a curved trajectory based on the vehicle’s
state of lane changes [32], [33], [34]. In this paper,
polynomial functions f are used to plan the trajectory cluster
of vehicle lane changes, and the degree of the polynomial
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FIGURE 2. Lane changing trajectory curves under different driving styles.

is set to five considering the specifics of vehicle lane
changes [35].

Solving the curve function requires the initial and end state
data of the lane change. The initial state is mainly obtained
from the data selected and extracted in the previous section,
while the end state data needs to be calculated using the
driving characteristic data extracted in the previous section.
According to the selection and analysis data under various
driving styles in the previous section, different driving styles
have different lane change characteristics. When generating
groups of lane changing trajectory, corresponding parameters
need to be adjusted, and the formula for adjustment
parameters is shown in (1)

⎧
⎪⎪⎨

⎪⎪⎩

ẋlast = ẋfirst · Fi
di = Ti ·

(
ẋfirst + ẋlast

)
/2

xlast = di + xfirst
ylast = yfirst +Width

(1)

Among them, the starting points of xfirst, ẋfirst are lateral
position and lateral speed respectively, xlast, ẋlast correspond
to the end point lateral parameters, yfirst, ylast are the
longitudinal position at the starting point and the end point.
Ti represents the vehicle lane changing time under various
driving styles, Fi is the longitudinal speed ratio under various
driving styles, di is the longitudinal lane changing distance
of vehicles, and Width is the road width, which is taken as
3.5m.
This article uses driving characteristics data under different

styles to adjust the vehicle’s final state, obtaining a set of
trajectories for the vehicle under different driving styles, as
illustrated in Fig. 2.

Due to the fact that the lane change feature data extracted
from different driving styles is not a specific numerical value,
but a range of values, there can be multiple possible lane
changing trajectories corresponding to a driving style. When
planning the trajectory curve corresponding to the style, it
is also necessary to plan multiple trajectory curves based on
the vehicle feature parameter range. Fig. 2 shows one of the
alternative sets of trajectory curves for the main vehicle. It

can be seen that the lane changing trajectory curves vary
among vehicles with various driving styles. Among them, the
aggressive vehicle has the shortest time and distance during
lane changing when the initial vehicle speeds are close,
with the common vehicles coming next and the conservative
vehicles has the longest lane changing distance. However,
as can be seen from the Fig. 2, there are also areas of
overlap between trajectories under different driving styles,
indicating that vehicles with various driving styles may also
have similar behaviors.
In addition to planning a set of vehicles’ trajectory curves

under various driving styles, it is also necessary to plan a
trajectory that does not change lanes, that is, a trajectory that
continues to travel in the original lane, as the corresponding
behavior for lane change decision.

C. INTEGRATED METHOD OF LANE CHANGING
DECISION AND TRAJECTORY PLANNING
During the Stackelberg game [36], [37], the game partici-
pants choose appropriate strategies to maximize their own
profit function. In combination with the actual situation
during lane changing, further assumptions are needed for
the Stackelberg game model, at this point, the vehicle lane
changing model is shown in (2):

⎧
⎪⎪⎨

⎪⎪⎩

γf = arg max
af∈Af

(

min
al∈Al

Rf
(
s, al, af

)
)

γl = arg max
al∈Al

(
Rl

(
s, al, γf

)) (2)

wherein, (γl, γf ) is the equilibrium solution of the game
model, (Al,Af ) is the rational decision-making set of
leaders and followers, (al, af ) is a specific decision in the
rational decision-making set of leaders and followers, (s ∈
S, S = (sl, sf )) is the state space set of vehicles at the
current time. Rl and Rf are the profit functions of leaders
and followers, respectively. The subscripts l, f respectively
represent parameters related to the lead and the following
vehicle.
After obtaining a group of possible decisions for the

players in the game decision making process, it is necessary
to design an appropriate benefit function to characterize the
benefits of different trajectories.
This article divides the benefit function into four parts:

safety benefit Rs(i, t), speed benefit Rt(i, t), comfort benefit
Rc(i, t), and cooperation benefit Rg(i, t), based on the char-
acteristics of vehicles during lane changing. And determined
the final vehicle decision model’s benefit function as shown
in (3) according to different weights.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ri(st, t + kτ) = ω1Rsi(st, t + kτ)

+ω2Rti(st, t + kτ) + ω3Rci(st, t + kτ)

+ω4Rgi(st, t + kτ)

Ri(t) =
H∑

k=1
ξ k−1Ri(st, t + kτ), ξ ∈ [0, 1]

(3)
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TABLE 4. Vehicle lane change decision model algorithm.

where ξ is the attenuation factor, ω1, ω2, ω3, ω4 is the weight
of different return functions, k is the time frame for trajectory
prediction, H is the total time window size of trajectory, and
τ is the time period, which is taken as one tenth of the lane
changing. The calculation formulas for each benefit function
are as follows.

⎧
⎪⎪⎨

⎪⎪⎩

Rs(i, t) = TH(i, t) = d
vi(t)

Rt(i, t) = vi(t)
Rc(i, t) = −|Ji(t)| = −∣

∣a′
i(t)

∣
∣

Rg(i, t) = −∣
∣aj

(
t′
)∣
∣

(4)

where d is the distance between the vehicle and the preceding
vehicle in the target lane at the current time, and vi(t) is
the speed at the current time. This section illustrates that a
longer headway provides greater safety benefits. vi(t) is the
current vehicle speed. It can be seen from this formula that
the faster the speed, the higher the speed benefit. ai(t) is the
acceleration of j at the current time. aj(t′) is the acceleration
of j at the t′ time.

After obtaining the benefit function of the decision model,
it is necessary to determine the weight of each benefit factor.
This article uses the previously obtained vehicle feature data
under different vehicle types to calibrate the weights of the
four factors in the benefit function under different driving
styles. Due to the faster speed and shorter lane change time
of aggressive vehicles, with larger acceleration during lane
changes, the weight of the speed benefit function should be
higher, while the weights of other benefit functions should
be lower. On the contrary, for conservative vehicles, the
situation is the opposite. Therefore, the weight of the speed
benefit function should be lower, and the weights of other
benefit functions should be higher. For common vehicles, the
weight of the benefit functions should fall between the other
two. After computation and calibration, the factor weights
for different vehicle types are obtained: aggressive: ω1 =
0.1, ω2 = 2, ω3 = 5, ω4 = 8; conservative: ω1 = 2, ω2 = 1,

ω3 = 10, ω4 = 15; common: ω1 = 1, ω2 = 1.5, ω3 =
5, ω4 = 10.
The integrated lane change trajectory planning algorithm

is shown in Table 4.

FIGURE 3. Two-degree-of-freedom vehicle model.

IV. VARIABLE WEIGHT TRAJECTORY TRACKING
CONTROL GROUNDED IN COOPERATIVE GAME
A. DESIGN OF LANE CHANGING TRAJECTORY
TRACKING CONTROLLER
In this context, the principles of game theory are applied to
optimize the weight matrix, providing a systematic approach
to improve the vehicle’s stability and tracking accuracy
during trajectory tracking. Consequently, this refined tuning
enhances the MPC’s capability to accurately follow the
planned path, even in the presence of disturbances or
uncertainties, thereby significantly improving the vehicle’s
overall stability and tracking accuracy during trajectory
tracking [38]. The MPC-based vehicle trajectory tracking
controller requires transferring the control output to the
model to achieve the desired effect. Here, a two-degree-of-
freedom model is used for the vehicle’s dynamic modeling,
as illustrated in Fig. 3.

The establishment of model is shown in (5):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

mẍ = mẏϕ̇ + 2
[
Cl1s1 + Cc1

(
δf − ẏ+aϕ̇

ẋ

)
δf + Cl2s2

]

mÿ = −mẏϕ̇ + 2
[
Cc1

(
δf − ẏ+aϕ̇

ẋ

)
δf + Cl2

bϕ̇−ẏ
ẋ

]

Izϕ̈ = 2
[
aCc1

(
δf − ẏ+aϕ̇

ẋ

)
δf − bCl2

bϕ̇−ẏ
ẋ

]

Ẋ = ẋ cos ϕ − ẏ sin ϕ

Ẏ = ẋ sin ϕ + ẏ cos ϕ

(5)

where, the state variable of the model is ξd =
[ẏ, ẋ, ϕ, ϕ̇,Y,X]T , where ud = δf represents the vehicle’s
rotation angle. In this context, X represents the vehicle’s
longitudinal displacement, Y denotes the vehicle’s lateral
displacement, ẋ, ẏ represent the vehicle’s longitudinal and
lateral speed, ϕ, ϕ̇ denote the vehicle’s yaw angle and yaw
rate, m is the vehicle mass, Cl1,2 represents the longitudinal
stiffness of front and rear tires, Cr1,2 denote the lateral
stiffness of front and rear tires, a is the distance from the
vehicle’s center of gravity to the front axle, b is the distance
to the rear axle, Iz is the moment of inertia of the vehicle
about the z-axis, and s1,2 represents the slip ratio.

This article selects linear time-varying model predictive
control (LTVMPC), which has a small computational load
and fast solution, and is suitable for vehicle lane changing
scenarios. During a predictive horizon, the system input can
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be assumed constant, so its state trajectory can be obtained in
this time domain. Then, the LTVMPC model is established
using the differences between the actual system state and
the predicted trajectory at this point.
Let the control system input control quantity ut(k) =

ut = δf be set in the dimensional time domain from time t,
resulting in a system state quantity trajectory ξt(k):

{
ξ̇t(k + 1) = f (k, ξt(k + 1), ut(k))
ut(k) = ut, k ≥ 0, ξt(0) = ξt

(6)

Expanding the state (ξt, ut−1) of the nonlinear system at
time t, ignoring other high-order terms expected for the
first-order term, we obtain the following linear time-varying
system model:

{˙̃ξ(t) = ∂f
∂ξ

∣
∣
∣
ξt,ut−1

ξ̃ (t) + ∂f
∂ξ

∣
∣
∣
ξt,ut−1

ũ(t)

ξ̃ (t) = ξ(t) − ξt, ũ(t) = u(t) − ut−1

(7)

The linear system obtained after discretization is shown
in (8):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ̃ (k + 1|t) = At ξ̃ (k|t) + Btũ(k|t)
ξ̃ (k|t) = ξ(k|t) − ξt(k + 1|t)
ũ(k|t) = u(k|t) − ut−1

At =
(

I + T ∂f
∂ξ

∣
∣
∣
ξt,ut−1

)

,Bt = T ∂f
∂u

∣
∣
∣
ξt,ut−1

(8)

Combining the state quantity error and the control quantity
error, the state vector is defined as:

	(k|t) =
(

ξ̃ (k|t)
ũ(k − 1|t)

)

(9)

Combining (8), the linear time-varying prediction model
expression at time t is shown in (10):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

	(k + 1|t) =
(

At Bt
0m×n Im

)

	(k|t)

+
(
Bt
Im

)


ũ(k|t)
�(k|t) = (

Ct 0
)
	(k|t)

(10)

where Ct = [0 0 1 0 0 0; 0 0 0 0 1 0] represents
the system output coefficient matrix, 	(k|t) =
[ẏ, ẋ, ϕ, ϕ̇,Y,X, δf ]T is the combination matrix, and �(k|t) =
[ϕ,Y]T denotes the output matrix.

Constraints for the LTVMPC trajectory tracking controller
include:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δsw,min ≤ uk,t ≤ δsw,max, k = 0, 1, . . . ,NC − 1

δsw,min ≤ 
uk,t ≤ 
δsw,max, k = 0, 1, . . . ,NC − 1
Py,min ≤ Yk,t ≤ Py,max, k = 0, 1, . . . ,NC − 1
ay,min ≤ ay,k,t ≤ ay,max, k = 0, 1, . . . ,NC − 1
αmin ≤ αf ,k,t ≤ αmax, k = 0, 1, . . . ,NC − 1
ϕ̇min ≤ ϕ̇k,t ≤ ϕ̇max, k = 0, 1, . . . ,NC − 1

(11)

Here δsw,min, δsw,max represent the lower and upper bounds
of the vehicle’s front wheel angle, 
δsw,min,
δsw,max denote
the lower and upper bounds of the vehicle’s front wheel
angle increment, uk,t,
uk,t represent the current front wheel
angle and its increment, while NC is the control time

domain. Py,min,Py,max represent the lower and upper bounds
of the vehicle’s lateral displacement, and Yk,t denotes the
vehicle’s lateral displacement. ay,min, ay,max represent the
lower and upper bounds of vehicle’s lateral acceleration, and
ay,k,t denotes the vehicle’s lateral acceleration. αmin, αmax
represent the lower and upper bounds of the vehicle’s tire slip
angle, and αf ,k,t denotes the vehicle tire slip angle. ϕ̇min, ϕ̇max
represent the lower and upper bounds of the vehicle’s yaw
rate, and ϕ̇k,t denotes the vehicle’s yaw rate.
The objective function formulated according to the desired

control target and is then converted into a quadratic pro-
gramming problem to solve the control model. Finally, the
predicted control quantity sequence at the current time is
obtained. Below is the objective function formulated in this
paper:

J(ξd(k), ud(k − 1),
Ud(k))

=
Np∑

i=1

‖ηd(k + i|k) − ηr(k + i|k)‖2
Q

+
∑NC−1

i=1
‖
ud(k + i|k)‖2

R + ρε2 (12)

where, ε represents the relaxation factor, ρ is the weight of
the relaxation factor. Q,R denote the weight matrices of the
control variable and control increment, respectively.
The weight of Q is divided into two parts, QY and

Qϕ ,represents the tracking weights for the desired lateral dis-
placement and desired yaw angle, respectively. By adjusting
the weights, the controller can track the desired trajectory
curve stably and rapidly, and its form is as follows:

Q =
[
Qϕ 0
0 QY

]

(13)

By incorporating the above constraints and objective
function, the optimization problem for solving the model
predictive trajectory tracking controller, grounded in the
vehicle dynamics model at each sampling period, is
formulated as:

min

U,ε

J(ξd(k), ud(k − 1),
Ud(k))

s.t. δf ,min ≤ uk,t ≤ δf ,min, k = t, . . . , t + Nc − 1


δf ,min ≤ 
uk,t ≤ 
δf ,min, k = t, . . . , t + Nc − 1

�min − ε ≤ �k,t ≤ �max − ε, k = t, . . . , t + Np
ε ≥ 0, k = t, . . . , t + Np

uk,t = 0, k = t + Nc, . . . , t + Np (14)

Here Nc represents the control time domain and Np denotes
the prediction time domain.
At time t, the model optimizes (12) using the vehicle’s

current state and the control input from the previous time
step. Here, we use the quadprog solver function, and the
planning result is the optimal control increment for the
system output at the current time step.


U∗
t


= [

u∗

t,t, . . . ,
u
∗
t+Nc−1,t

]T (15)
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The first value in the control increment sequence is used as
the optimal control output for the present moment, resulting
in the subsequent state feedback control law:

ut(ξt) = ut−1 + 
u∗
t,t(ξt) (16)

When the control system executes control output to the next
time node, the controlled object’s system will update the
vehicle system model by linearizing using the present state
and prior input, and then use (12) to optimize the solution
to obtain a new control increment sequence 
U∗

t+1. This
process is repeated until trajectory tracking is complete.

B. WEIGHT ADAPTATION OPTIMIZATION BASED ON
COOPERATIVE GAME THEORY
Based on the above analysis, this article sets Qweight as
the controller tracking factor and Rweight as the controller
stability factor, and changes the weights for the model
predictive controller in the form shown below:

Q = Qweight

[
Qϕ0

QY0

]

(17)

R = RweightR0 (18)

By establishing a weight adjustment strategy to improve
Qweight and Rweight, the controller weight coefficients
are optimized and adjusted, resulting in good tracking
performance of the controller.
In the trajectory tracking controller, the tracking weight

coefficient and stability weight coefficient adjust their own
values to affect the vehicle trajectory tracking performance.
There is a certain competitive relationship between these two
weights, and the stability weight and tracking weight jointly
constitute the two parties of the game. These two weights
can independently adjust to optimize the tracking capabilities
of the controller to some extent, but they will also cause
loss of performance in other aspects. For example, adjusting
the stability weight alone will increase vehicle stability
during trajectory tracking, but its tracking performance
will decrease by coordinating and adjusting both weights
simultaneously, the vehicle’s stability and tracking accuracy
can be maintained at a good level, resulting in good
improvement of the controller’s tracking performance. The
stability weight is N1, and the traceability weight is N2,
which constitutes the set of game members N = {N1,N2}.
The stability weight factor is set to u1(u1 = 1, 2 · · · 100) and
the traceability weight factor is set to u2(u2 = 1, 2 · · · 100).
Design different revenue functions to reflect the revenue of
each player and the cooperation between the two parties.
(1) Stability factor income function: Speed and surface

adhesion will affect the vehicle’s stability, and vehicle’s yaw
rate also reflects the stability to some degree. Therefore, with
regard to the factors mentioned above, the income function
of the stability weight is defined as the following form:

U1(u1, u2) = ω̄v̄

μ(1 + k2 log(u2))
log(u1) (19)

ω̄ = ω − ωmin

ωmax − ω
(20)

FIGURE 4. Returns under different tracking factors and stability factors.

v̄ = v− vmiv
vmax − v

(21)

In order to facilitate calculation, data are normalized
according to (20) and (21). ω̄ represents the normalized
vehicle’s yaw rate, v̄ denotes the vehicle’s speed, μ represents
the road adhesion coefficient, and k2 denotes the influence
weight of tracking factors on vehicle stability. From (19),
it is evident when the vehicle’s speed and yaw rate are
large and the surface adhesion is small, the improvement in
stability factor can obtain greater benefits. However, when
the tracking factor is increased, the return of the stability
factor will decrease to some extent.
(2) Traceable factor return function: Trajectory tracking

evaluation is generally conducted on two fronts: lateral
displacement and yaw angle tracking. Therefore, when the
vehicle’s lateral displacement error and yaw angle error
are large, increasing the value of the tracking factor will
have higher returns, and the value of the stability factor
will also affect the controller tracking to a certain extent.
Consequently, the gain function for the tracking factor is
designed as follows:

U2(u1, u2) = 
Ȳ
ϕ̄ log(u2)

(1 + k1 log(u1))
(22)


Ȳ = 
Y − 
Ymin


Ymax − 
Y
(23)


ϕ̄ = 
ϕ − 
ϕmin


ϕmax − 
ϕ
(24)

Here, 
Ȳ and 
ϕ̄ represent the lateral deviation of track
and the deviation of vehicle’s yaw angle after normalization
according to (23) and (24), respectively, and k1 is the
influence weight of stability factor on controller traceability.
According to the (22), when the vehicle’s lateral error and
yaw angle error trajectory are larger than that of the expected
trajectory, increasing the value of the tracking factor can well
improve the controller’s tracking benefit, while increasing
the stability factor will reduce the tracking benefit to some
degree.
Taking into account the returns of traceability factors and

stability factors, the corresponding 3D game returns are
drawn as indicated in Fig. 4:
Obviously, As observed in Fig. 4, it is impossible to find a

point to maximize the vehicle’s stability and accuracy at the
same time, and there are certain conflicts between the two
sides. It is easy to know from the income function of both
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players that when two players play a non-cooperative game,
the results in both players take the maximum value, which
will lead to poor stability and traceability of the controller.
To enhance the controller’s performance, the following

work introduces a coalition N3 consisting of stability and
tracking factors. This coalition starts from the overall
performance evaluation of vehicle trajectory tracking, and
uses a forced external force to coordinate and adjust the
values of both parties in the game, thus the controller can
coordinate and obtain good tracking and stability. When
both parties cooperate, a thorough evaluation of the vehicle’s
stability and tracking accuracy is necessary, hence the
cooperative benefit function of coalition N3 is given by
form (25):

F(u1, u2) = K1U1(u1, u2) + K2U2(u1, u2)

K1,K2 > 1 (25)

where K1 is the influence weight of vehicle track tracking
stability factor and K2 is the influence weight of vehicle
track tracking accuracy factor. From (25), it is evident
that the benefits resulting from the alliance formed by the
cooperation between the two parties are greater than the
comprehensive benefits of their own.
The evaluation index of vehicle trajectory tracking

performance includes stability and tracking, representing a
problem involving multiple optimization targets. Given the
conflicting nature between these two aspects, achieving a
strict Pareto optimal solution is not feasible. Therefore,
based on the principle of cooperative game theory, this
paper adjusts the two weight coefficients. Compared with the
Nash equilibrium solution of non-cooperative game theory,
this adjustment will cause a certain loss in one aspect of
trajectory tracking. This loss will not cause the performance
of the controller to decline too much, which is within an
acceptable range. However, the performance improvement of
the other aspect of the controller will be great. Therefore, the
comprehensive performance of the controller is improved.
After adding the cooperative game weight adjustment

strategy, the solution process for weight coefficient adjust-
ment in vehicle trajectory tracking control is as shown in
Fig. 5. From Fig. 5, firstly, the controller stability factor
and tracking factor are calculated based on the reference
trajectory, vehicle state, and road environment parameters,
and the cooperation benefit of both parties is calculated
on this basis. Secondly, the equilibrium solution of the
cooperative game is solved to obtain the values of the
stability factor and tracking factor, thus obtaining the most
suitable weight coefficient for the vehicle at the current time.
The additional benefit obtained through cooperation is fully
reflected in the improvement of vehicle trajectory tracking
control performance.
From Fig. 5, firstly, the controller stability factor and

tracking factor are calculated based on the reference tra-
jectory, vehicle state, and road environment parameters,
and the cooperation benefit of both parties is calculated

FIGURE 5. Weight coefficient solving process based on cooperative game theory.

on this basis. Secondly, the equilibrium solution of the
cooperative game is solved to obtain the values of the
stability factor and tracking factor, thus obtaining the most
suitable weight coefficient for the vehicle at the current time.
The additional benefit obtained through cooperation is fully
reflected in the improvement of vehicle trajectory tracking
control performance.

V. SIMULATION VERIFICATION
A. VEHICLE LANE CHANGE DECISION MODEL
VALIDATION
According to lane changing trajectory set screened out in
Section III, data of the trajectory curves for 20 vehicles that
remained in their lanes are also added to the trajectory set as
the comparison data. In this paper, the first 2/3 of the selected
trajectory data set are used for computation and calibration.
The weights of four factors are determined according to the
driving style. The computation and calibration results are
shown in Section III-C.

After obtaining the factor weights of the objective func-
tion, the model’s validity can be demonstrated. To ensure
the simulation’s credibility, the remaining 1/3 of the data set
is used for simulation verification. By comparing the actual
vehicle driving trajectory with the trajectory data obtained
from the game decision-making model, the accuracy of the
model planning trajectory is verified.
For comparison, this article also developed a leader-

follower decision model for vehicle lane changing without
considering the vehicle driving style, as well as a lane chang-
ing decision-making and planning model utilizing traditional
static game theory. By comparing the accuracy in decision-
making behavior and the match between the planned and
real trajectories, this article successfully demonstrated the
effectiveness of the model.
Firstly, the accuracy of vehicle’s behavior should be

verified by comparing the lane changing decisions obtained
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TABLE 5. Accuracy in behavioral decision-making under various lane changing
models.

from different lane changing models with actual behaviors.
Table 5 presents the simulation results:

From Table 5, it can be seen that the traditional game
decision-making model has a behavior prediction accuracy
of only 70%, meanwhile, the precision of the leader-follower
game model, which does not account for vehicle driving
style, is 84.1%, which has a certain improvement in accuracy.
After considering the influence of vehicle driving style, the
precision of the leader-follower game model reaches 94.1%,
and its accuracy increases by 24.1%. Based on the analysis
of the behavior prediction accuracy under different styles in
Table 5, it can be found that the behavior prediction accuracy
of common vehicles in the three driving styles is low. This
is because common vehicles exhibit a performance between
aggressive and conservative during lane changes, and their
characteristic parameters are less distinguishable compared
to other two styles of vehicles.
Further analysis of the vehicle’s trajectory during lane

changes. This article uses the mean relative error (MRE) of
the lateral displacement to characterize the overall precision,
as shown in (26):

MRE = 1

K

K∑

i=1

1

J

J∑

m=1

∣
∣y(i,m) − y′(i,m)

∣
∣

y′(i,m)
× 100% (26)

Here, y(i,m) is the predicted lateral displacement for
vehicle i at time m, y′(i,m) is the real lateral displacement
for vehicle i at time m, J represents the overall number of
time steps within the decision-making and planning model,
and K represents the quantity of simulated vehicle instances.
Table 6 illustrates the results.
According to Table 6, the MRE for the lane changing

model’s planning curve based on static game theory reaches
12.0428%, while the MRE for the trajectory decision model
without considering driving style is 9.9925%. The trajectory
error is reduced to a certain extent. After considering
driving style, the MRE of the trajectory curve obtained by
the decision model further decreases to 5.9297%, which
is significantly improved. The average relative error in
lateral displacement across the vehicle’s actual and planned
trajectories is reduced by 6%. The table also shows that
the common lateral displacement error for common and

TABLE 6. Average relative errors under different driving styles.

FIGURE 6. Lateral displacement error throughout lane changing under different
driving styles.

aggressive vehicles is larger than that of conservative
vehicles, because the characteristic parameter distribution
range of these two types of vehicles is larger, and the possible
lane change trajectory changes are also more, resulting in
lower predictive performance for the model.
Further examination of the simulation results indicates

that during the lane changing process, the vehicle’s decision-
making model cycles through every time node to update
the lane change trajectory when solving the decision-making
model. Therefore, for the trajectory data obtained from the
decision-making process, the data at each time node is
relatively important. Due to differences in lane changing
times among vehicles, to analyze the changes in the planned
trajectory during each stage of lane changing, this article
segments the entire lane change maneuver across ten time
nodes, and calculates the vehicle’s lateral displacement error
trajectory at each node using (27).

RE = 1

K

K∑

i=1

∣
∣y(i,m) − y′(i,m)

∣
∣

y′(i,m)
× 100% (27)

Plot the mean relative error of the lateral displacement
for the predicted trajectory at each time node to analyze the
situation of different driving style planned trajectories.
As demonstrated in Fig. 6, the trajectory lateral dis-

placement deviation trends under different driving styles are
similar, the vehicle’s lateral deviation reaches its maximum
midway through the lane changing, while the error is the
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smallest at the beginning and end. This is because the state
changes in the initial and final stages of the lane change
are relatively small, so the prediction accuracy is high.
However, throughout the lane transition, due to the vehicle’s
horizontal and vertical speed influence, the unpredictability
in the actual lane-changing path increases, and the deviation
in the trajectory planned by the vehicle lane changing
model and the real trajectory increases to some extent.
Fig. 6 also shows that the relative error in the trajectory
of aggressive vehicles increases to some extent at the final
stage, indicating that the behavior of aggressive vehicles is
relatively unstable at this stage, so the difficulty of trajectory
prediction increases and the lateral displacement deviation
increases.
The above results indicates that the vehicle lane chang-

ing decision planning method derived from Stackelberg
game theory designed in this paper has higher accu-
racy and efficiency in practical operation than traditional
static game theory based lane changing and planning
methods. After considering the influence of different vehi-
cle driving styles, the precision of its decision-making
planning method has been further enhanced, providing a
clearer depiction of how vehicles perform during lane
changes.

B. VALIDATION OF THE EFFECTIVENESS OF WEIGHTED
ADAPTIVE TRAJECTORY TRACKING CONTROLLERS
This paper develops a vehicle lane changing trajectory
tracking controller model in Simulink using the algorithm,
and the C-Class vehicle model in Carsim is employed
as the control object to conduct simulations under dif-
ferent conditions, comparing and analyzing the effects of
both the fixed weight controller and the variable weight
controller. In this setup, the lane change trajectory is
specified as a single-shift maneuver with a width of
3.5 meters.
This paper takes into account the effects of vehicle speed

and road adhesion coefficient on control effectiveness, and
designs two operating conditions: V = 60km/h, μ = 0.85,
and V = 90km/h, μ = 0.4.

1) CASE ONE: V = 60KM/H, µ = 0.85

The results are presented in Fig. 7. As illustrated in Fig. 7(a),
both controllers track the desired trajectory curve relatively
well. During the final stage of the lane changing, the
vehicle with fixed weight shows some overshoot, which
reduces both tracking performance and stability. In the
whole process of lane changing, different stages focus on
stability and accuracy is different, variable weight controller
can adjust the weight in time, so that the vehicle reach
better vehicle stability and tacking accuracy than the fixed
weight controller. Fig. 7(b) shows that during the initial
and final stages of the lane change, the stability of the
vehicle with fixed weight fluctuates significantly, while the
vehicle with variable weight effectively reduces the yaw
fluctuation amplitude in the final phase of the lane change.

FIGURE 7. Relevant results for lane changing of case one.

Fig. 7(c) shows that both types of vehicles exhibit some
fluctuations in lateral acceleration during the initial phase of
the lane change, while the vehicle with fixed weight exhibits
significant fluctuations in the final phase of the lane change.
Fig. 7(d) illustrates that the stability weight of the vehicle
increases throughout the initial and final phases of the lane
change, thereby improving vehicle’s stability. During the
middle, due to the vehicle’s good stability itself, the control
tracking weight increases, allowing the vehicle to accurately
follow the intended path.

2) CASE TWO: V = 90KM/H, µ = 0.4

The results of the simulation are illustrated in Fig. 8. From
Fig. 8(a), it is evident that the variable weight vehicle
closely follows the desired trajectory curve throughout the
lane changing process, while the fixed weight vehicle has
a trajectory deviation during the final stage of the lane
changing, resulting in a decrease in tracking accuracy. From
Fig. 8(b) and Fig. 8(c), noticeable fluctuations in yaw rate
and lateral acceleration occur in the fixed weight vehicle
towards the end of the lane change, indicating that the
controller increases the control increment output to reduce
the deviation after the trajectory deviation, leading to a
reduction in vehicle stability. From Fig. 8(d), it is apparent
that the variable weight controller adjusts the stability weight
factor to a higher value in the initial and final phases of the
lane change to improve the stability of the vehicle during
these stages, which also ensures that the vehicle does not
lose stability and can maintain high tracking accuracy to
follow the path.
The data presented reveal that the fixed weight controller

performs relatively stable in medium and low speed envi-
ronments on high adhesion coefficient road, but performs
poorly in situations where the vehicle speed is high or
the road adhesion coefficient is low. The variable weight
controller performs better than the fixed weight controller
under different vehicle states and road environments.
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FIGURE 8. Relevant results for lane changing of case two.

FIGURE 9. Joint simulation algorithm flowchart.

C. JOINT SIMULATION OF VEHICLE LANE CHANGING
DECISION-MAKING PLANNING AND TRACKING
CONTROL IN MULTIPLE SCENARIOS
Path tracking control is affected by driving style, which is
mainly reflected in the fact that path tracking control is
carried out on the basis of trajectory planning. This sec-
tion combines the previously designed vehicle lane changing
decision-making planning model and tracking control model
to formulate a lane change model for vehicles, and designs
different traffic scenarios to examine the vehicle performance
traits with various driving styles in the scenarios, so as to
assess the validity of the lane-changing theory presented in
this article.
The construction of the vehicle lane changing model algo-

rithm is entirely completed in MATLAB/Simulink. Based
on the algorithm theory set above, this article compiles and
designs relevant function models, builds and connects each
module in Simulink, and finally connects the interface with
the Carsim vehicle model to establish a virtual simulation
platform required for the simulation. The joint simulation
block diagram is depicted in Fig. 9.
According to Fig. 9, the Condition Setting module is

a vehicle lane changing environmental parameter setting
module, responsible for setting relevant parameters for
vehicles. The Lane Changing Decision module is a vehicle
lane changing decision and planning module, responsible
for analyzing the vehicle’s own state and environmental

TABLE 7. Main simulation parameters of vehicles (Scenario 1).

parameters to derive the vehicle’s lane change decision and
anticipated trajectory. The Trajectory Tracking module is
a vehicle trajectory tracking control model, responsible for
following the trajectory curve set by the vehicle decision
and planning module, controlling the vehicle’s active steer-
ing, and transmitting expected control data to the vehicle
dynamics model. Since the trajectory tracking module only
controls the vehicle’s active steering, a vehicle longitudinal
speed control module Speed Control is developed using PID
control principles.
After establishing the vehicle lane changing simulation

model, it is essential to configure the settings for each model
and the environment. Because of the disparities between
the simulation’s traffic conditions and those in the NGSIM
dataset, the weight parameters selected here are adjusted
based on the model parameters in Section IV to ensure that
the module can generate trajectory function curves that are
more suitable for the control module. The adjusted weight
parameters are: aggressive: ω1 = 0.5, ω2 = 0.5, ω3 = 5,

ω4 = 2; conservative: ω1 = 2, ω2 = 1.5, ω3 = 10, ω4 = 8;
common: ω1 = 1, ω2 = 2, ω3 = 5, ω4 = 4.
The study focuses on a decision and planning model for

vehicles. The vehicles mainly include the front vehicle in
the current lane (FV), the rear vehicle in the current lane
(RV), the front vehicle in the target lane (TFV), and the rear
vehicle in the target lane (TRV). Thus, when configuring the
parameters, it is important to set the relevant state parameters
for these vehicles. By altering the state data of these vehicles,
the traffic environment of the main vehicle(MV) can be
changed. This article refers to the lane changing condition
data in NGSIM and designs the following three simulation
condition scenarios to reflect the lane changing decision-
making and planning in various traffic scenarios.

1) SCENARIO 1

In Scenario 1, Table 7 provides the essential parameters for
each vehicle.
For this scenario, the spatial distance between the main

vehicle and the target lane is relatively large, and the driving
behaviors of adjacent vehicles are basically conservative and
common. The TFV has a fast speed, and the lane change
benefits are high, suggesting that the traffic conditions for
vehicle lane changing is relatively suitable.
The simulation results of the lane change process are

illustrated in Fig. 10 and Fig. 11.
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FIGURE 10. Position and speed of the main vehicle in scenario 1.

FIGURE 11. Results of the main vehicle in scenario 1.

From Fig. 10(a), it is evident that all three types of vehicles
in this scenario elect to change lanes, and the time of lane
changing varies with varying driving styles. Fig. 10(b) shows
that the longitudinal speed of vehicles elevates slightly after
lane changing. The speed of aggressive vehicles after lane
changing is the highest, the speed of conservative vehicles
is the lowest, and the speed of common vehicles is between
them.
Fig. 11 illustrates the variations in relevant outcomes of

the main vehicle under different driving styles. As observed
in Fig. 11(a) and Fig. 11(b), the aggressive vehicles have
large fluctuations in yaw rate and side slip angle, indicating
generally poor stability in these vehicles. In contrast, the
fluctuations in these parameters are smaller for the common
and conservative vehicles, indicating better stability. Fig.
11(c) and Fig. 11(d) mainly reflect the lane changing bene-
fits. The data indicate that all three types of vehicles obtain
certain benefits after lane changing, but the benefits vary
under different driving styles. Aggressive vehicles obtain
higher speeds and driving spaces after changing lane, leading
to the highest lane changing benefits. The common and
conservative vehicles also obtain higher speeds and driving
spaces, resulting in certain lane changing benefits. Fig. 11(e)

TABLE 8. Main simulation parameters of vehicles (Scenario 2).

FIGURE 12. Position and speed of the main vehicle in scenario 2.

and Fig. 11(f) reflect the vehicle’s comfort level during
driving. As shown in them, the longitudinal acceleration for
the conservative and common vehicles remains low, and the
jerk is also below 0.1m/s3 throughout the process, indicating
that the impact during lane changing is small and the driving
comfort is good.
In summary, all three types of vehicles in this scenario

choose to change lanes and obtain certain lane changing
benefits. The aggressive vehicles have the highest benefits,
followed by common vehicles, and the conservative vehicles
have the lowest benefits. In contrast, the safety and comfort
levels of conservative and common vehicles during lane
changing are higher than those of aggressive vehicles.

2) SCENARIO 2

In Scenario 2, Table 8 details the fundamental parameters
for each vehicle.
For this scenario, the lane changing space for the main

vehicle is relatively small, but the driving styles of the
vehicles around the main vehicle tend to be conservative.
Therefore, there is still a good benefit from lane changing,
and it can be carried out.
Scenario 2 reduces the target lane space distance based on

scenario 1, leading to reduced potential benefits for vehicles
and a decrease in lane changing safety. The findings are
illustrated in Fig. 12 and Fig. 13.
In scenario 2, due to the change in the lane changing

environment, the responses of vehicles with diverse driving
styles has also changed. As shown in Fig. 12(a), conservative
vehicles choose not to change lanes and continue driving in
the initial position, while common and aggressive vehicles
continue to choose to change lanes. According to Fig.
12(b), after the lane change is completed, the speeds of
aggressive and common types both increase, with the speed
of aggressive vehicles being the highest.
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FIGURE 13. Results of the main vehicle in scenario 2.

Fig. 13 shows some results curves during vehicle lane
changing, which allows for further study of the characteris-
tics of vehicle lane changing. As represented in Fig. 13(a)
and Fig. 13(b), the fluctuation amplitude and maximum
yaw rate and side slip angle of common vehicles are lower
than those of aggressive vehicles, indicating that common
vehicles have better stability. As demonstrated in Fig. 13(c),
the headway distance of common and aggressive vehicles
continues to decrease before lane changing, indicating poorer
safety. As shown in Fig. 13(d), the distance separating
the main vehicle and the rear vehicle in the target lane
decreases first and then increases during the lane change.
Common and aggressive vehicles obtain greater driving
space after successful lane changing and obtain certain lane
changing benefits. Finally, as presented in Fig. 13(e) and
Fig. 13(f), the acceleration and jerk of common vehicles
during lane changing are smaller than those of aggressive
vehicles, indicating better vehicle comfort. Conservative
vehicles choose to drive at a fixed speed in the starting
lane throughout the procedure, ensuring the highest level of
safety and stability but without obtaining any lane changing
benefits.
Given the analysis above, the conclusion can be drawn

that when the lane changing environment becomes worse,
conservative vehicles will make the decision not to change
lanes due to lower potential benefits from lane changing,
prioritizing the safety and stability of their own vehi-
cle’s driving. Common and aggressive vehicles continue
to choose to change lanes and obtain potential benefits
from lane changing, gaining greater driving space and
higher speeds. However, their vehicle safety and stability
are lower than those of conservative vehicles during lane
changing.

TABLE 9. Main simulation parameters of vehicles (Scenario 3).

FIGURE 14. Position and speed of the main vehicle in scenario 3.

3) SCENARIO 3

In Scenario 3, Table 9 outlines the key specifications for
each vehicle.
For this scenario, the lane changing space is further

compressed, and the driving styles of vehicles around the
main vehicle tend to be aggressive. The main vehicle operates
in a relatively harsh lane changing environment, and the lane
changing benefits are relatively small, making it unsuitable
for lane changing maneuvers.
In this scenario, the distance between the MV and the TFV

is short, the velocity of the TFV is low, and the benefit of
lane changing is small. However, gap separating between the
MV and the TRV is close, and the driving style of the TRV
is aggressive, resulting in low safety during lane changing.
Scenario 3 describes a driving environment that is unsuitable
for lane changes. The results are presented in Fig. 14 and
Fig. 15.
As illustrated in Fig. 14(a), only aggressive vehicles

choose to change lanes in this scenario, while common and
conservative vehicles choose not to perform lane changing
behavior. As shown in Fig. 14(b), common and conservative
vehicles maintain constant speeds in the original lane, while
aggressive vehicles increase their speed compared to the
other two styles of vehicles after lane changing.
Since only aggressive vehicles performed lane changing,

the analysis here focuses on the situation of aggressive
vehicles using the relevant parameter curves in Fig. 15.
As demonstrated in Fig. 15(a) and Fig. 15(b), the yaw
rate and side slip angle of aggressive vehicles fluctuate
significantly, indicating poor vehicle stability. According to
Fig. 15(c), although the headway distance of aggressive vehi-
cles increases after lane changing, the minimum headway
distance is less than 2m, indicating low security. Fig. 15(d)
shows that the gap separating the aggressive vehicle and the
rear vehicle continues to increase following lane changing,
providing more driving space, but the minimum distance
between them is close to 5m, posing a significant safety
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FIGURE 15. Results of the main vehicle in scenario 3.

risk. As illustrated in Fig. 15(e) and Fig. 15(f), the impact of
aggressive vehicles during lane changing is relatively high,
resulting in poor vehicle comfort. Common and conservative
vehicles do not perform lane changing, maintaining a stable
state throughout the simulation, and the gap between them
and the rear vehicle keeps expanding.
The traffic environment in scenario 3 is not suitable

for lane changing, with small potential benefits from lane
changing. Therefore, conservative and common vehicles
choose not to change lanes and continue driving in the
original lane. Aggressive vehicles still choose to change lanes
in this environment and increase their vehicle’s longitudinal
speed after lane changing. The distance between them and
the rear vehicle also increases, providing more driving space
and obtaining lane changing benefits. However, the security
and steadiness of aggressive vehicles while changing lanes
are relatively low, posing a risk of accidents.
Through the simulation and examination of the three

scenarios discussed above, the analysis provides information
on lane changing decisions and the behavioral traits of
vehicles during lane changes across different driving styles.
The above results reflect the characteristics of vehicles
with different driving styles as lanes are being changed,
and validate the theoretical model of vehicle lane changing
presented in this article.

VI. CONCLUSION
The research presented in this paper addresses the vehicle
lane changing decision planning method and trajectory
tracking control method according to the basic principles of
game theory, formulates a model for vehicle lane changing
control, and verifies its performance through simulation. The
major conclusions of this study are outlined below:

(1) Driving style is analyzed based on the NGSIM data set.
Three different vehicle driving styles are defined based on
the parameters:ω1ω2ω3ω4. Driving style recognition method
can be used in the lane changing decision-making and path
planning.
(2) In light of the shared traits in vehicle lane changing

decision-making and planning, this paper integrates both
aspects, and establishes the integrated lane changing decision
planning model following the basic tenets of Stackelberg’s
leader-follower game theory. The proposed method can
improve the lane changing accuracy and driving safety.
(3) Weight adaptive change model of vehicle trajectory

tracking controller is established using cooperative game
theory. According to the simulation results, the control and
tracking capabilities of the variable weight controller can be
enhanced under different working conditions.
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