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ABSTRACT Road target detection is essential for enhancing vehicle safety, increasing operational
efficiency, and optimizing user experience. It also forms a crucial part of autonomous driving and intelligent
monitoring systems. However, current technologies face significant limitations in multi-level feature fusion
and the accurate identification of key targets in complex data environments. To address these challenges,
this paper proposes an innovative algorithmic model called BiFPN GAM SimC2f-YOLO (BGS-YOLO),
aimed at improving detection performance. Initially, this paper employs the Bidirectional Feature Pyramid
Network (BiFPN) to effectively integrate multi-level features. This integration overcomes the limitations in
feature extraction and recognition found in existing target detection algorithms. Following this, this paper
introduces the Global Attention Module (GAM), which markedly improves the efficiency and accuracy
of extracting key target information in complex data environments. Additionally, this paper innovatively
designs the SimAM-C2f (SimC2f) network, further advancing feature expressiveness and fusion efficiency.
Experiments on the public COCO dataset demonstrate that the BGS-YOLO model significantly outperforms
the existing YOLOv8n model. Notably, it shows a 7.3% increase in mean average precision (mAP) and a
2.4% improvement in accuracy. These results highlight the model’s high precision and swift response in
detecting road targets in complex traffic scenarios. Consequently, the BGS-YOLO model has the potential
to significantly enhance road safety and contribute to a considerable reduction in traffic accident rates.

INDEX TERMS Road target detection, autonomous driving, BiFPN, GAM, YOLO.

I. INTRODUCTION

ROAD target detection technology plays a crucial role
in autonomous driving [1], intelligent surveillance [2]

systems, and robotics [3]. However, it faces significant
challenges in various complex environments. The differences
in scale between vehicles and pedestrians, traffic congestion,
and rapid changes in dynamic backgrounds all directly
impact the precision and efficiency of detection [4].
Approximately 1.35 million fatalities are attributed to

traffic accidents each year. These incidents incur economic

The review of this article was arranged by Associate Editor Abdulla
Hussein Al-Kaff.

losses, encompassing both immediate expenses and sustained
potential costs, which may exceed hundreds of billions
of dollars [5]. The variance of environments, along with
the likelihood of vehicles and pedestrians infringing traffic
regulations due to temporal constraints, markedly elevates
the risk of traffic collisions [6]. Consequently, the precise and
swift identification of pedestrians, vehicles, and bicycles is
essential in the context of autonomous driving and intelligent
surveillance systems [7].
Early research in target detection primarily relied on

traditional methods such as manual observation, where
traffic police and drivers predict potential dangers through
visual inspection. Although intuitive, this approach has
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limitations in terms of manpower consumption and accuracy.
Moreover, surveillance systems and digital image processing
technologies were widely utilized in early investigations [8].
For instance, Lei et al. introduced the Local Binary Pattern
(LBP) [9], a technique for extracting texture features by
transforming local pixel values into binary codes. Navneet
Dalal and Bill Triggs developed the Histogram of Oriented
Gradients (HOG) [10], a method for depicting shapes and
textures through the analysis of gradient histograms in spe-
cific image areas. David Lowe proposed the Scale-Invariant
Feature Transform (SIFT) [11], aimed at identifying image
key points and extracting feature descriptors that remain
constant regardless of scale and rotation. Furthermore,
Srivastava et al. improved upon this with the Speeded
Up Robust Features (SURF) [12], which enhanced com-
putational efficiency and robustness. Nevertheless, these
traditional approaches exhibited limitations in precision and
processing speed in complex environments. Particularly, in
scenarios with varied target postures and high scene com-
plexity, their adaptability was constrained, resulting in slow
processing times and reduced detection accuracy. Therefore,
methods based on computer vision have increasingly gained
prominence in target detection [13].
Initial computer vision applications were heavily depen-

dent on image processing technologies and basic pattern
recognition algorithms, incorporating conventional machine
learning techniques [14]. Machine learning, rooted in sta-
tistical analysis for prediction and decision-making [15],
boasts a rich history with a variety of classic approaches.
The Bayesian method, introduced by 18th-century British
mathematician Thomas Bayes [16], utilizes posterior proba-
bilities for classification or regression tasks. The K-Nearest
Neighbors (KNN) algorithm, proposed by Evelyn Fix and
Joseph Hodges [17], performs classification or regression by
leveraging distance metrics and feature analysis. Vapnik and
Cortes developed the Support Vector Machine (SVM) [18],
which operates by identifying an optimal hyperplane in
the feature space for classification purposes. Furthermore,
Breiman introduced the Random Forest algorithm [19],
which employs multiple decision trees to execute clas-
sification or regression. Despite the success of machine
learning algorithms across various domains, they encounter
challenges related to parameter tuning and computational
intensity. Consequently, deep learning approaches, with
their automated and efficient learning capabilities, have
progressively become prevalent in computer vision.
Deep learning, utilizing multi-layer neural networks,

focuses on modeling and solving complex problems [20].
This approach often employs Convolutional Neural Networks
(CNN) for feature extraction and classification localiza-
tion [21], achieving significant detection results in processing
complex datasets. Deep learning techniques are primarily
divided into two categories: two-stage and single-stage
algorithms [22].
The core of two-stage algorithms lies in first generat-

ing candidate boxes and then classifying and regressing

these boxes’ positions. For instance, R-CNN (Region-
based Convolutional Neural Networks) [23] is a classic
representative of this type of algorithm, generating candidate
boxes and then extracting features and classifying each box.
Luo et al. introduced the Faster R-CNN algorithm [24],
which integrates a Region Proposal Network (RPN) [25].
This innovation significantly accelerates the process of
generating and classifying candidate boxes. Mask R-CNN,
proposed by Zhou et al. [26], added flexibility and robust-
ness, particularly excelling in detecting targets of various
sizes and shapes. However, the limitation of these methods
is that they require identifying the target before proceeding
with regional detection, leading to large model parameters
and extended inference time. To address this issue, in 2015,
Joseph Redmon et al. introduced the single-stage algorithm
YOLO [27].
YOLO achieves fast, direct object detection by dividing

images into grids and predicting object categories and loca-
tions in each grid, effectively capturing global information.
Despite these improvements, its accuracy still did not fully
meet the real-time detection needs of intelligent systems.
YOLOv3 [28] adopted Darknet-53 as the feature extractor
and combined it with a feature pyramid network (FPN)
and cross-layer connections to predict at different scales,
thereby improving the capabilities of feature extraction and
multi-scale object detection. However, YOLOv3 experienced
a slight decrease in speed compared to YOLOv2. NAS-
YOLOX [29], an upgrade from baseline YOLOX, replaces
PAFPN with NAS-FPN for better multi-scale feature fusion.
It integrates a dilated convolution module (DFEM) and multi-
scale channel-spatial attention (MCSA), enhancing target
information extraction and focus. These improvements boost
detection accuracy, yet distinguishing similar targets in dense
scenes remains challenging. YOLOv5 [30] integrated data
augmentation, deep feature extraction, and feature fusion
techniques to achieve fast and accurate detection at three
different scales. It introduced Mosaic data augmentation
and multi-scale preset anchors, along with a PANet-inspired
feature fusion strategy, to improve the model’s generalization
ability and detection accuracy. LEF-YOLO [31], based
on YOLOv5, integrates MobileNetv3’s bottleneck structure
and uses depthwise separable convolution for a lightweight
design. It employs multiscale feature fusion and Coordinate
Attention with Spatial Pyramid Pooling-Fast to enhance
feature extraction, improving detection accuracy. However,
distinguishing subtle differences among dynamic targets
still needs improvement. Subsequently, the YOLOv7 algo-
rithm [32] was proposed, focusing on optimizing the model’s
structural design and training process. This method improved
target detection accuracy and training efficiency by introduc-
ing optimized modules and methods, while keeping inference
costs manageable. Following this, Ultralytics released the
YOLOv8 model [33], innovating on the basis of YOLOv5 by
introducing a new backbone network, anchorless detection
head, and loss function. These innovations enhanced the
model’s performance and adaptability, enabling it to support
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various visual tasks, including image classification, object
detection, and instance segmentation, while being compatible
with multiple hardware platforms.
Although previous research has made significant progress

in terms of accuracy and speed in object detection, there
are still deficiencies in multi-scale object recognition and
object detection against complex backgrounds. This paper
introduces BGS-YOLO, an innovative road object detection
algorithm model leveraging YOLOv8. The model’s principal
innovations comprise:
1) This paper introduces the Weighted Bidirectional

Feature Pyramid Network (BiFPN) as an innovative
solution. Through deep, multi-level feature fusion,
BiFPN markedly improves the semantic representation
of features. It does so by effectively minimizing
information loss and controlling parameter growth.
Implementing this technology significantly enhances
the precision and speed of detecting vehicles and
pedestrians. Consequently, it substantially boosts the
efficacy of road safety monitoring and autonomous
driving systems.

2) The paper incorporates a Global Attention Module
(GAM), which substantially enhances the capability of
traditional models to capture information in dynamic
settings. By incorporating spatial, channel, and tem-
poral analyses, GAM significantly boosts both the
accuracy and the interpretability of detection outcomes.
Consequently, this advancement markedly improves
the performance of traffic monitoring systems in
forecasting and reacting to varying road conditions.

3) Drawing inspiration from SimAM, this paper intro-
duces a novel architecture for the SimC2f network
to overcome the constraints identified in YOLOv8’s
C2f module. By conducting a comprehensive analysis
of the C2f module’s output features, this strategy
substantially improves feature fusion efficiency and
addresses the scale variation challenges inherent in fea-
ture extraction and fusion processes. Such a significant
enhancement considerably augments the network’s
detail detection capability, leading to remarkable
advancements in the accuracy and real-time respon-
siveness of vehicle and pedestrian detection.

II. MATERIALS AND METHODS
A. NETWORK STRUCTURE OF YOLOV8N ALGORITHM
YOLOv8 represents the most advanced model in the realm
of object detection algorithms, with YOLOv8n especially
distinguished within this series due to its superior detection
efficacy and precision [34]. This paper focuses on the
application of the YOLOv8n model for object detection
assignments, offering an exhaustive analysis of its network
architecture. The architecture comprises four core compo-
nents: Input layer, Backbone network, Neck network, and
Head network.
1) The input layer facilitates the reception and pre-

processing of images, ensuring compatibility with

the YOLOv8n network’s specifications. This pre-
processing encompasses scaling, normalization, and
augmentation of the data. Specifically, YOLOv8n
incorporates several data augmentation techniques,
including rotation, cropping, and flipping. Moreover,
it adopts the YOLOX strategy of deactivating Mosaic
augmentation during the last 10 epochs of training, a
measure aimed at bolstering the model’s capacity for
generalization.

2) The backbone network utilizes a meticulously opti-
mized CSP-Darknet53 for feature extraction. This
architecture includes five convolutional layers, two
C2f modules, and one SPPF module. The introduc-
tory 3x3 convolutional layer achieves a significant
reduction in computational load by employing a
fourfold down-sampling of resolution, while still
preserving essential features. Inspired by the ELAN
structure’s design principles, the C2f module boosts
gradient flow through cross-layer connections and
reduces computational requirements by eliminating
convolutional layers and introducing split operations.
Meanwhile, the SPPF module skillfully ensures a
balance between computational efficiency and multi-
scale feature fusion, leveraging both sequential and
parallel pooling methods.

3) The neck network utilizes the path Aggregation
Network Feature Pyramid Network (PAN-FPN) archi-
tecture for feature down-sampling and up-sampling,
which significantly improves feature fusion across lay-
ers, thus enhancing information flow and interchange.
Moreover, incorporating the C2f module as a residual
block substantially boosts learning efficiency, leading
to further refinement and optimization of features
extracted by the backbone network.

4) The head network integrates a decoupled head struc-
ture and anchor-free detection technology, enabling
precise feature extraction via distinct branches for
classification and DFL regression. It utilizes multi-
scale detectors for accurate bounding box predictions.
Furthermore, the implementation of the Task-Aligned
Assigner strategy optimizes sample selection, substan-
tially improving detection accuracy and efficiency.

This paper is organized as follows: the innovations of
the BGS-YOLO model are presented in Section II. While
Section III presents the simulation and experimental results.
Discussion is covered in Section IV, followed by the
conclusion in Section V.

B. IMPROVED NETWORK ARCHITECTURE OF YOLOv8n
ALGORITHM
1) BIDIRECTIONAL FEATURE PYRAMID NETWORK
(BIFPN)

Optimizing the exchange of information between road target
image features at different scales is crucial for improv-
ing feature extraction and recognition capabilities. The
Feature Pyramid Network (FPN) employed by researchers
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FIGURE 1. Comparison of PAN-FPN and BiFPN network structure.

demonstrates significant effectiveness in processing targets
with substantial scale differences, such as pedestrians and
vehicles, owing to its efficient multi-scale feature fusion
capability. However, FPN encounters issues of information
loss across layers as the network deepens. To address
this, YOLOv8n introduced the PAN-FPN structure, which
facilitates more effective fusion and information flow with
higher-level (lower-resolution) features, though challenges
remain in information acquisition and parameter control.
Consequently, this paper incorporates the BiFPN [35], [36]
within YOLOv8n’s neck network to achieve more effi-
cient multi-level feature fusion. BiFPN enhances fusion by
integrating both top-down and bottom-up feature fusion path-
ways and introducing weighted context information edges,
leading to more effective multi-level feature fusion. This
design not only enhances the semantic richness of features
but also effectively addresses the issues of information loss
and parameter increase, thereby significantly improving the
overall performance of the network. The comparison between
the PAN-FPN and BiFPN network structures is shown in
Figure 1.

BiFPN utilizes a path-enhanced bidirectional fusion strat-
egy to effectively establish feature fusion channels both from
top to bottom and bottom to top, facilitating bi-directional
cross-scale connections. In the fusion of multi-scale feature
maps, BiFPN dynamically adjusts weights according to the
significance of input features across different resolutions,
thereby ensuring a balance of multi-scale feature information
and substantially improving detection accuracy. By removing
single input nodes and reinforcing connections among nodes
on the same layer, the network integrates a broader spectrum
of feature information. Moreover, BiFPN accomplishes
deeper feature integration through the recurrent application
of bidirectional paths at the feature layer.
Considering the significant differences in the importance

of different input features for network learning, this paper
assigns learnable weights to each input feature and adopts
a rapid normalization feature fusion strategy. This network

enables the network to adaptively learn the importance
of features, effectively overcoming the issue of neglecting
resolution differences in traditional feature fusion methods.
The process of weight allocation involves softmax processing
for each feature weight, with the specific formula as shown
in Equation (1).

O =
∑

i

wi

ε + ∑wj
j

Ii (1)

where O signifies the output feature, wi refers to the node
weights, and Ii represents the input features. The learning
rate is set to ε = 0.0001 to maintain numerical stability.
After processing, the final feature map is generated through
bidirectional scale connections and efficient normalization
fusion. For example, the expression for node 6 is provided
by Equations (2) and (3).

Ptd6 = Conv

(
w1 · Pin6 + w2 · Resize(Pin7 )

w1 + w2 + ε

)
(2)

Pout6 = Conv

(
w′

1 · Pin6 + w′
2 · Ptd6 + w′

3 · Resize(Pout5 )

w′
1 + w′

2 + w′
3 + ε

)
(3)

where Resize represents either a down-sampling or up-
sampling operation, and wi denotes learnable parameters. Ptd6
indicates the intermediate features at the 6th layer in the
top-down pathway, while Pout6 refers to the output features
at the 6th layer in the bottom-up pathway. Moreover, to
enhance efficiency, BiFPN employs depthwise separable
convolutions [37] for feature fusion and applies batch
normalization and activation functions after each convolution
operation.
In conclusion, BiFPN enhances object detection capabil-

ities by effectively combining features of varying scales
through the use of bidirectional connections and a mecha-
nism for weighted feature fusion, resulting in a substantial
improvement in performance.
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2) GLOBAL ATTENTION MODULE (GAM)

Extracting crucial target information from complex data
remains a significant challenge. Traditional attention
mechanisms like Squeeze-and-Excitation (SE) focus primar-
ily on the variance in channel significance but inadequately
capture spatial information, overlooking spatial dimension
correlations. Furthermore, CBAM (Convolutional Block
Attention Module), while merging attention weights for
channel and spatial dimensions, does not adequately account
for the interplay of global information, restricting cross-
dimensional information extraction. To address these issues,
this paper proposes the GAM [40]. GAM integrates spa-
tial and channel dimensions with time series analysis to
rectify traditional models’ deficiencies in dynamic settings.
Implementing GAM within the backbone network minimizes
information loss and boosts interaction among various global
dimensions. This mechanism successfully navigates the con-
straints posed by limited receptive fields and dimensionality
separation, leading to improved efficiency in information
extraction and noise filtering, thereby substantially improving
deep neural networks’ overall efficacy.
GAM comprises two main components: channel and

spatial modules. The channel module facilitates efficient
processing of features across various channel dimen-
sions, thereby markedly diminishing information loss.
Concurrently, the spatial module amplifies the interaction
among features spanning different spatial dimensions, cul-
minating in focused attention across dimensions. The
collaborative functionality of these modules enables GAM
to thoroughly process features within both spatial and
channel dimensions. This mechanism enhances information
processing and feature representation effectiveness across
diverse datasets and classification tasks.
Considering the input feature labeled as F1, it initially

undergoes processing via the channel attention mechanism
Mc, followed by an element-wise multiplication with the
original feature F1 to produce the feature F2 after channel
attention processing. Subsequently, this product undergoes
another element-wise multiplication with the output of the
spatial attention mechanism Ms to yield the final output
feature F3. In the diagram, the symbol Y denotes the
element-wise multiplication operation. The specific formulas
for F2 and F3 are provided as follows (Equations (4)
and (5)).

F2 = Mc(F1) ⊗ F1 (4)

F3 = Ms(F2) ⊗ F2 (5)

In the GAM’s channel attention submodule, features
undergo initial channel-wise transposition followed by pro-
cessing via a dual-layer Multilayer Perceptron (MLP). This
step aims to amplify their relevance across both spatial
and channel dimensions. Concurrently, the spatial attention
submodule employs two 7×7 convolutional layers for seman-
tic reinforcement, effectively capturing detailed information
within the spatial dimensions.

GAM optimizes the capture of comprehensive image
information through superior global perception capabil-
ity, thereby enhancing target processing. By aggregating
features of key regions through weighted methods, the
network’s performance in information recognition and
feature expression is significantly enhanced. Furthermore, the
flexible architecture of GAM and its intuitive weight distri-
bution mechanism further improve the model’s adjustability
and interpretability.

3) SIMC2F NETWORK

Improving scale fusion task performance is crucial
for thoroughly integrating features from varying scales.
The scale-to-frequency (C2f) conversion has demonstrated
notable benefits, particularly in boosting fusion efficiency.
Yet, C2f’s adaptability is constrained in complex and dynam-
ically changing scenarios. Motivated by the Simultaneous
Attention Module (SimAM) [38], this paper introduces an
innovative restructuring of C2F into the SimC2f network.
This network focuses on effectively handling highly variable
scenes and dynamic features, aiming to overcome the
limitations of traditional methods in dealing with complex
environments, thereby enhancing overall performance and
adaptability. With the advanced attention mechanism of
SimAM, the network achieves a deep integration of spatial
and channel information without adding extra parameters,
generating three-dimensional attention weights. Within the
YOLOv8n framework, the SimC2f network greatly enhances
semantic recognition of road targets and processing of
low-salience features, significantly improving the model’s
recognition efficiency and accuracy. The structural frame-
work of the SimC2f network and the improved structure of
YOLOv8n are shown in Figure 2.

SimAM precisely evaluates the linear separability between
individual features and other features within the same
channel by defining an energy function, thereby accurately
determining the importance of each feature. The energy
function is defined as Equation (6).

et(wt, bt, y, xi) = 1

M − 1

M−1∑

i=1

(−1 − (wtxi + bi))
2

+ (1 − (wit + bt))
2 + λw2

t (6)

where t and xi represent the target feature information and
other feature information in the channel, respectively, with
wt and bt being the linear transformation weight and bias
for t. The index i denotes the spatial dimension order, λ

is a hyperparameter, and M is the number of all feature
information on a single channel.
The SimAM structure is designed based on neuroscientific

theories to define an energy function that identifies key
neurons and calculates attention weights accordingly. In
neuroscience, neurons rich in information often exhibit
different firing patterns compared to surrounding neurons
and can inhibit neighboring neurons, known as spatial
suppression effects [39]. Therefore, neurons with significant
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FIGURE 2. Improved Structure of YOLOv8n.

spatial suppression effects should be given higher priority.
These important neurons are identified through the energy
function defined by Equation (6).

e∗t = 4
(
σ̂ 2 + λ

)
(
t − μ̂

)2 + 2σ̂ 2 + 2λ
(7)

μ̂ = 1

M

M∑

i=1

xi, σ̂
2 = 1

M

M∑

i=1

(xi − μ̂2) (8)

Equations (7)–(8) demonstrate that as energy decreases,
the distinctiveness between neuron t and its surrounding
neurons gradually increases, leading to a higher specificity
and importance of neuron t at lower energy levels. The
importance of a neuron can be calculated through 1/e∗t . After
assessing the neuron’s importance using the energy function,
key features are further refined through a scaling operation.
In summary, the application of the SimAM weighting

method significantly improves the efficient management of
channel information during feature fusion and effectively
prevents the random distribution of features across different
channels, thereby substantially enhancing feature extraction
performance.

III. EXPERIMENTS AND RESULTS
This section may be divided by subheadings. It should
provide a concise and precise description of the experimental
results, their interpretation, as well as the experimental
conclusions that can be drawn.

A. DATASET
To address these issues, this paper proposes the GAM [37], a
benchmark for vehicle detection, comprising over ten object

types. Specifically, three categories were chosen for analysis.
We compiled 3,600 training images and 400 testing images,
focusing on bicycles, vehicles, and pedestrians. The dataset
was segmented into training, validation, and testing sets at
an 8:1:1 ratio. Renowned for its detailed annotations and
diverse sensor data, the COCO dataset is instrumental across
various domains, especially in road object detection.
Refer to the subsequent figure for dataset specifics.

Figures 3(a) and 3(b) illustrate the dataset’s categories, with
x and y indicating the bounding boxes’ center points.
Figure 3(c) depicts the bounding boxes’ dimensions.

B. EXPERIMENTAL ENVIRONMENT AND EVALUATION
METRICS
The experiments were executed in a Linux setting, employing
an NVIDIA GeForce RTX 4090 Ti graphics card with 32
GB VRAM, alongside PyTorch 1.7.0 and Python 3.8 as
the computational framework. Key experimental parameters
included a starting learning rate of 0.01 over 300 epochs,
with a momentum of 0.937 and weight decay set to 0.0005.
The chosen batch size was 16.
For a thorough evaluation of the BGS-YOLO model’s

performance, we relied on four principal metrics to gauge
the algorithm’s efficacy comprehensively:
1) Precision (P) quantifies the accuracy of positive

predictions made by the model. Its formula is defined
as Equation (9):

Precision(P) = True Positives(TP)

True Positives(TP) + False Positives(FP)
(9)

True Positives (TP) refers to correctly identified
targets, while False Positives (FP) indicates instances
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(a) Data set category. (b) Center point of the bounding box. (c) Width and height of the bounding box.

FIGURE 3. Performance results for the road target dataset.

where non-targets are mistakenly classified as
targets.

2) Recall (R) is the ratio of correctly predicted posi-
tive instances by the model to the total number of
actual positive instances. The equation is given in
Equation (10).

Recall (R) = True Positives (TP)

True Positives (TP) + False Negatives (FN)

(10)

False Negatives (FN) represent instances where actual
targets were not detected.

3) The F1- Score is the harmonic mean of Precision and
Recall. The formula is given in Equation (11).

F1 − Score = 2 × Precision× Recall

Precision+ Recall
(11)

4) The Mean Average Precision (mAP) represents the
average of the Average Precision (AP) for each
category in multi-class detection scenarios. Assuming
there are N categories, with the area under the curve
for each category denoted as AP and the AP for each
category represented as APi, the formula for mAP is
as follows:

mAP = 1

N

N∑

i=1

APi (12)

C. EXPERIMENTAL RESULTS AND ANALYSIS
1) COMPARATIVE EVALUATION BEFORE AND AFTER
ALGORITHMIC ENHANCEMENT

This paper rigorously assesses the improved algorithm’s
efficacy through a series of comparative tests involving
the YOLOv8n and BGS-YOLO models. The outcomes of
these experiments are detailed in Table 1. For a visual
representation of model performance, the Precision-Recall
(PR) curves are depicted in Figures 4 and 5.

TABLE 1. Comparative experimental results before and after algorithm improvement.

Model Precision
(%)

Recall
(%)

F1
(%)

mAP (%)

YOLOv8n 85.4 83.2 84.3 85.8
BGS-YOLO 87.8 89.6 88.7 93.1

FIGURE 4. Precision-Recall (PR) curve for the YOLOv8n experiment.

The results presented in Table 1 reveal that, compared to
YOLOv8n, the BGS-YOLO model proposed in this paper
achieved an improvement of 2.4% in Precision, 6.4% in
Recall, and 4.4% in F1 Score. Furthermore, the Mean
Average Precision (Map) of the BGS-YOLO model, as
indicated by the area under the curve, increased by 7.3%
compared to YOLOv8n, with detailed information avail-
able in the previously mentioned figures. These significant
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FIGURE 5. Precision-Recall (PR) curve for the BGS-YOLO model.

TABLE 2. Results of ablation experiments.

Model Precision 
(%)

Recall 
(%)

F1
(%)

mAP
(%)

YOLOv8n 85.4 83.2 84.3 85.8
YOLOv8n+G 86.2 85.4 85.8 87.6

YOLOv8n+ G+B 87.1 87.9 87.5 90.2
YOLOv8n+ G+B+S 87.8 89.6 88.7 93.1

performance enhancements can be attributed to the intro-
duction of the BiFPN network, which significantly boosted
the model’s capabilities in detecting multi-scale road target
features. In addition, the incorporation of a global attention
module has effectively improved the model’s ability to
recognize and focus on key features. The inclusion of the
newly designed SimC2f network has enabled the model
to efficiently process and identify image features across
various scales and complexities, further enhancing model
performance. Overall, the model proposed in this study
outperforms the original model across all evaluated metrics.

2) ABLATION EXPERIMENT

This paper conducted ablation experiments to transition
from the YOLOv8n model to the BGS-YOLO model and
test the effectiveness of the improved model. The results
are presented in Figure 6 and Table 2. The designations
YOLOv8n+G, YOLOv8n+G+B, and YOLOv8n+G+B+S
sequentially represent the integration of GAM, BiFPN, and
the restructured SimC2f network into the base YOLOv8n,
respectively.
The results depicted in Figure 7 and Table 2 show a

7.3% enhancement in the Mean Average Precision (mAP) of
the model, primarily due to the innovative jump connection
mechanism incorporated in the BiFPN, which surpasses the

FIGURE 6. Graphical Results of the Ablation Study.

capabilities of the PAN. This method efficiently enables
the bidirectional transfer and integration of features across
various layers, leading to a notable increase in the precision
of identifying distracted driving behaviors.
With the sequential addition of new structures to the

model, precision saw respective increases of 0.8%, 0.9%, and
0.7%. In a similar vein, the recall rate experienced gradual
enhancements of 2.2%, 2.5%, and 1.7%, correspondingly.
These advancements can primarily be attributed to the
integration of GAM, which markedly enhances the model’s
efficacy in intricate scenarios by improving its capability
to identify and focus on key features, thereby increasing
overall detection precision and efficiency. Additionally, the
implementation of the SimC2f network grants the BGS-
YOLO model the vital ability to effectively process and
discern image features across a broad spectrum of scales and
complexities. This integration also led to a significant 4.4%
improvement in the F1 score.

3) COMPARISON EXPERIMENTS WITH OTHER
ALGORITHMS

To thoroughly evaluate the performance of the improved
algorithm proposed in this paper, comparative experiments
with other mainstream algorithms were conducted. The
specific results are detailed in Table 3.

This comparative experiment evaluates BGS-YOLO and
nine additional algorithms, including Faster-RCNN, SSD,
MobileNet-SSD, YOLOv3, RetinaNet, CenterNet, YOLOv5,
DETR, and YOLOv7. Visual comparisons of the experimen-
tal outcomes are presented in Figure 7.

The data shown in Table 3, Figure 7(a), and Figure 7(b)
indicate that Faster R-CNN significantly lags behind other
algorithms in terms of precision. In comparison with Faster
R-CNN, the SSD algorithm excels in the domain of rapid
and precise target detection, thanks to its superior detection
speed and accuracy, evidencing an enhancement of 1.5%
in recall and 1.4% in F1 score. MobileNet-SSD retains the
high-speed processing benefits of the SSD algorithm and

516 VOLUME 5, 2024



TABLE 3. Experimental results in comparison with other algorithms.

Model Precision
(%)

Recall
(%)

F1
(%)

mAP
(%)

Faster-RCNN 79.4 83.2 81.3 83.8
SSD 80.7 84.7 82.7 84.6

MobileNet-SSD 81.4 83.3 82.3 84.2
YOLOv3 82.5 85.4 83.9 86.4
RetinaNet 82.7 85.6 84.1 86.7
CenterNet 83.6 85.9 84.7 87.3
YOLOv5 84.2 86.9 85.5 88.9

DETR 85.3 87.0 86.1 89.4
YOLOv7 86.1 87.3 86.7 91.2

BGS-YOLO 87.8 89.6 88.7 93.1

FIGURE 7. Experimental results comparing with other algorithms.

additionally demonstrates a 0.7% enhancement in precision
compared to the original SSD algorithm. YOLOv3, notable
for its quick detection speed and effective handling of

targets across a range of sizes, exceeds the performance
of MobileNet-SSD in identifying and classifying targets
across various dimensions. The experimental data indicate
that YOLOv3 achieves improvements of 1.1% in precision
and 2.2% in mAP compared to MobileNet-SSD. Compared
to YOLOv3, RetinaNet demonstrates enhancements in
various performance metrics. Simultaneously, CenterNet
achieves an additional 0.9% increase in accuracy relative to
RetinaNet. Distinguished by its remarkable detection speed
and accuracy, YOLOv5, enhanced by a lightweight and
deployable framework, significantly surpasses CenterNet,
especially in detection efficiency and model compactness,
with a substantial rise in mAP from 87.3% to 88.9%.
DETR (Detection Transformer) accurately processes com-
plex objects and demonstrates a 1.1% improvement in
precision over YOLOv5. Demonstrating excellence in detec-
tion accuracy and speed, YOLOv7 proves adept at navigating
diverse and complex scenarios, with a 0.8% increase in
precision and a 1.8% enhancement in mAP over DETR.
The BGS-YOLO model, as proposed in this paper, excels
beyond existing frameworks, characterized by significant
advancements in feature representation, data capture, and
processing efficiency, thus markedly enhancing target detec-
tion within dynamic environments. Comparative analysis
shows that, relative to YOLOv7, BGS-YOLO records a 2.3%
improvement in recall and a 2.0% gain in the F1 score,
affirming its superior performance across essential metrics.

IV. DISCUSSION
Addressing the challenges of scale diversity, data background
complexity, and feature fusion efficiency in road target
detection, this paper proposes a new model, BGS-YOLO.
Through innovative design, this model significantly improves
the overall performance of target detection.
The paper introduces a Weighted BiFPN that effec-

tively integrates multi-level features, considerably enhancing
semantic analysis capabilities and image data processing
efficiency. This improvement optimizes the operational
efficiency of the model, which is crucial for establishing
a safe and efficient road traffic environment. Furthermore,
the paper incorporates the GAM, enhancing the traditional
model’s ability to capture key information in dynamic envi-
ronments. This enhancement not only increases the accuracy
and interpretability of target detection but also improves
efficiency in high-speed dynamic scenarios, contributing to
road safety and traffic fluidity. Based on the Simultaneous
Attention Module (SimAM), the paper innovatively modifies
the C2f module of YOLOv8n, creating the newly designed
SimC2f network. By conducting an in-depth analysis of
feature fusion, the model effectively tackles the challenges
posed by changes in target scale, significantly enhancing the
detection precision and response speed for various targets.
This research integrates the Weighted BiFPN, effectively

amalgamating multi-level features to substantially boost
semantic analysis capabilities and image data processing
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efficiency. This advancement streamlines the model’s oper-
ational efficiency, pivotal for fostering a safe and effective
road traffic environment. Additionally, this paper incorpo-
rates the GAM to augment the model’s ability to capture
essential information in dynamic settings. This improve-
ment not only elevates the precision and interpretability
of target detection but also augments efficiency in high-
speed dynamic scenarios, thereby enhancing road safety and
traffic flow. Inspired by the Simultaneous Attention Module
(SimAM), the study innovatively refines YOLOv8n’s C2f
module, leading to the creation of the SimC2f network.
Through a thorough analysis of feature fusion, the model
adeptly addresses the challenges associated with target scale
variability, significantly boosting detection accuracy across
a variety of targets.
Traditional methods for road target detection, such as

SURF, demonstrate effectiveness in specific scenarios but
frequently lack the flexibility needed for dynamic envi-
ronments. Data presented in Table 3 reveal that two-stage
algorithms, including Faster-RCNN and SSD, enhance detec-
tion accuracy within intricate contexts yet underperform
in terms of processing speed and real-time capabilities.
Conversely, single-stage algorithms, notably the YOLO
series, exhibit rapid processing advantages but necessitate
improvements in accurately identifying small targets and
navigating complex environments.
The BGS-YOLO algorithm presented in this paper merges

the strengths of two-stage and single-stage detection meth-
ods, markedly boosting accuracy and excelling in speed
and real-time capabilities, thus providing a sophisticated
and effective approach for road target detection. However,
opportunities for enhancement exist in crucial domains such
as dataset diversity, network architecture optimization, and
deployment methodologies. The performance of the model
is significantly influenced by the comprehensiveness of
the training data, especially when facing extreme climatic
conditions and complex lighting environments, necessitating
further reinforcement of its generalization capability. To
bolster the model’s adaptability and generalization abilities,
future research endeavors should prioritize the diversification
of datasets to encompass a wider array of scenarios,
leveraging synthetic data augmentation techniques or real
data from diverse locales.
Despite the advancements in feature fusion capabilities

facilitated by BiFPN technology, the detection and process-
ing efficiency for diminutive targets remain challenging,
necessitating the exploration of more sophisticated archi-
tectures. Optimizing the deployment strategy for models,
especially for applications like autonomous driving that
require rapid response, is exceptionally crucial. This involves
ensuring stable and efficient operation across various plat-
forms and enhancing performance in complex and diverse
environments.
Additionally, future research should focus on deep syn-

ergistic optimization between algorithms and hardware
to achieve a balance between energy consumption and

performance, and conduct thorough evaluations of model
robustness in extreme conditions. These sustained efforts will
not only significantly increase the application value of the
BGS-YOLO model but also contribute to the advancement
of autonomous driving and intelligent transportation system
technologies.

V. CONCLUSION
To enhance planning and control processes in autonomous
driving and intelligent surveillance domains, this paper
introduces the novel BGS-YOLO model. The integration of
the BiFPN facilitates multi-level feature fusion, markedly
boosting the algorithm’s efficiency in feature extraction and
recognition during target detection tasks. The incorporation
of the GAM refines global feature representation, while the
innovative SimC2f network architecture further hones feature
representation, thereby elevating fusion efficiency. Although
the model demonstrates superior performance across various
metrics, it still imposes a significant computational load.
Consequently, forthcoming research endeavors will aim to
discover strategies that reconcile high efficiency with swift
execution speeds.
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