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ABSTRACT Smart cities include complex ICT ecosystems, whose definition requires the cooperation of
several software systems. Among them, Intelligent Public Transportation Systems (IPTS) aim to effectively
exploit public transit resources. Still, adopting an IPTS is non-trivial. Off-the-shelf IPTS are often tied
to specific technologies and, thus, not easy to integrate within existing software ecosystems. Moreover,
despite IPTS introduce several peculiar issues, there is a lack of domain-specific reference architectures,
which would significantly ease the work of practitioners. To fill this gap, starting from the experience
gained with the Hitachi Rail company in deploying a large-scale IPTS, we identify a set of requirements
for IPTS, and propose a domain-specific reference architecture, compliant with these requirements, whose
primary objective is facilitating and standardizing the design of IPTS, by providing guidelines to IPTS
designers. Consequently, it eases also the interoperability among different IPTSs. As an example of an
IPTS obtainable from the architecture, we present a solution currently deployed by Hitachi in a major
Italian city. Still, being independent from the specific considered urban scenario, the architecture can be
easily instantiated in different cities with similar needs. Finally, we discuss some research challenges
which should be further investigated in this domain.

INDEX TERMS Intelligent public transportation systems, reference architectures, practical guidelines, field
trials.

I. INTRODUCTION

THE current tendency towards urbanization is bringing
many challenges to cities, as the pressure on their

resources and infrastructures is increasing. Therefore, the
concept of Smart City is becoming a widely recognized
strategy to mitigate these challenges and to provide a better
quality of life to its citizens [1], [2].

Such a trend is empowered by the continuous development
of the Internet of Things (IoT), which allows the collection
and transmission of big amounts of data, in different
domains [3], [4].
From a technical standpoint, smart cities are complex

ecosystems whose definition requires the cooperation of a

The review of this article was arranged by Associate Editor Erik Jenelius.

multitude of software systems, regarding key aspects of the
society (e.g., mobility, economy). For instance, one of the
main pillars of smart cities is represented by Intelligent
Public Transportation Systems (IPTS), a class of Intelligent
Transportation Systems (ITS) devoted to better managing
public transport [5]. In this context, the IoT and the
Internet of Vehicles (IoV) [6] enable data-driven solutions,
allowing the collection of both vehicle data (such as location
and speed), and passenger data (such as the number of
passengers boarding a public vehicle or entering/leaving a
station) [7], [8]. These data can be used to obtain new
information, on top of which it is possible to develop several
use cases [9], [10], with the general goal of exploiting
the available public transport resources in a smarter, more
effective, and even proactive way [5], [11]. To ease the
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development and integration of multiple software systems
for smart cities, many efforts are being made towards the
definition of standards. In this direction, the European project
GAIA-X1 provides an infrastructure and data ecosystem for
cities, municipalities, and districts to increase interoperability
and interconnection of different systems, by leveraging
existing standards and open technologies. The FIWARE2

foundation is working on defining a standard framework for
smart cities, allowing the creation of flexible, interoperable,
and portable solutions.
Still, practitioners aiming at deploying a new IPTS have

to face a number of difficulties:

• Off-the-shelf products are typically closed or tied to
very specific data sensing solutions, thus being difficult
to extend and/or customize;

• The development of a new solution, for the scenario
at hand, poses significant challenges, also due to the
nature and the amount of data to handle and analyze.
As a result, the number of alternative solutions is over-
whelming, in terms of computational models (cloud,
edge, fog, etc.), technological solutions, architectural
choices, etc.

To make things worse, architectures proposed for generic
IoT solutions do not fit well in the IPTS domain, as this
is characterized by a number of peculiar issues, such as
distributed and moving sensors, resulting in a spatio-temporal
nature of both the problem and the data, with significant
impacts on the overall software structure. Furthermore, from
our analysis of the state of the art, the architectures proposed
for IPTS are typically too vertical with respect to a specific
service/technology, or too generic, being therefore not easy
to instantiate.
The U.S. Department of Transportation has recently

proposed the Architecture Reference for Cooperative and
Intelligent Transportation (ARC-IT),3 which includes several
use cases for various subdomains within the ITS field,
including also public transport systems. While being an
important contribution to the ITS domain, this proposal
delves into the definition of standardized interfaces among
different modules. However, it still leaves the burden of the
identification of technological solutions and computational
models on the IPTS practitioners.
Hence, in our vision, there is a lack of domain-specific

reference architectures for IPTS, which would significantly
ease the work of practitioners. More in detail, a reference
architecture is the definition of software elements and the
data flows among them, designed to fulfill a set of identified
functionalities/requirements [12]. It is the abstraction of
software architectures that can be exploited for different
scenarios and use cases, designed for facilitating and
standardizing the development of concrete architectures.

1https://www.data-infrastructure.eu/GAIAX/Navigation/EN/Home/home.
html

2https://www.fiware.org/
3https://www.arc-it.net/

Based on the experience we acquired within an academic-
industrial collaboration, in the present paper we first identify
a set of unique requirements for the data-driven IPTS
architectures, and then we propose a reference architecture
for IPTS specifically based on IoT/IoV data, but providing
at the same time more accurate guidelines to system
designers (e.g., narrowing the field of suitable technologies).
Furthermore, we propose a catalog of technologies that
can be used for the implementation of these components.
Finally, as a use case scenario, we present an instance of the
proposed reference architecture, which is being employed
by the Hitachi Rail company to deliver IPTS services in a
real-world smart city.
We believe that this proposal and experience can be useful

for IPTS architects in the development of their solutions.

II. PRELIMINARIES AND RELATED WORKS
A. DEFINITION OF REFERENCE ARCHITECTURE
According to [12], a reference architecture is the definition of
software elements and the data flows among them, designed
to fulfill a set of identified functionalities/requirements. More
in detail, a concrete architecture is designed for a specific
context, using specific technologies, and reflects concrete
business goals of the stakeholders. Instead, a reference
architecture is an abstraction of concrete ones, designed with
two major goals, namely:

• the facilitation of the design of concrete architectures,
aiming at providing guidelines and best practices for
the design of systems;

• the standardization of concrete architectures, aiming at
improving interoperability [13], [14].

The main difference between a reference and a concrete
architecture lies in the generalization of the former, which
implies its applicability in different scenarios, reflecting the
requirements of the stakeholders in these contexts. This
generic nature is achieved by designing them at higher
levels of abstraction, thus abstracting from minor differences
due to specific issues/technologies at hand [13]. As a
consequence, a reference architecture is neutral with respect
to technological solutions.

B. ARCHITECTURES FOR IPTS
The aim of this paper is to present a generic reference
architecture for the IPTS domain. The rationale behind this
work is that IPTS are characterized by very specific issues,
such as complex spatio-temporal data collected from moving
sensors, high variability in the type and frequency of the
analyses to perform, the type and quality of the sensors to
account for, the pervasive distribution of the components, and
so on. These issues pose severe technological challenges to
practitioners willing to develop a new IPTS. To make things
worse, in the literature, there are no reference architectures
or guidelines for this class of complex software systems.
At the same time, architectures for generic IoT systems are
not fully suitable for the IPTS domain, as they usually lack
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supporting one or more of the above-highlighted aspects.
Indeed, as summarized by Omoniwa et al. [15], most of
the architectures presented for IoT systems are composed of
three to five generic layers, namely a perception, a network
and an application layer, optionally along with a service and
a business layer. They often do not provide explicit support
for the key concept that, in IPTS, sensors are mostly moving
objects, distributed over a wide area, which escalates the
complexity of deploying, managing, and monitoring such
systems [16]. Moreover, due to the mobility of most IPTS
components, wireless communication links are predominant
in this kind of system and are known to be prone to
a variety of attacks [17]. Additionally, analytics tasks on
spatio-temporal data can be challenging, requiring ad-hoc
technologies and solutions (such as a database management
system able to cope with effective filtering and retrieving of
this type of data).
The U.S. Department of Transportation has recently

proposed the Architecture Reference for Cooperative and
Intelligent Transportation (ARC-IT). This proposal includes
several packages to implement use cases for various
subdomains within the Intelligent Transportation Systems
(ITS) field, including commercial vehicles, parking, traf-
fic management, and also public transport systems. It is
worth noting, however, that this proposal is mostly focused
on defining standardized communication interfaces among
different modules, without delving into the specifics of
how an IPTS should be implemented, its functionalities,
or the technologies to be used. Thus, while being an
important contribution to the ITS domain, still the ARC-
IT solution leaves the burden of the identification of
technological solutions and computational models on the
IPTS practitioners.
There is a small number of papers where, among other

points, IPTS actual architectures are presented. For example,
Luo et al. [4] propose a framework focused on the scheduling
problem of public transport based on IoT. The system
consists of three different layers: (1) the perception layer
involves sensors for data collection; (2) the network layer
is responsible for transmitting the information from the
previous layer to the successive one; (3) the application
layer processes the received data and provides applications
for passengers or transportation system’s managers. In [3]
the authors propose a solution for real-time data processing,
based on an architecture consisting of three components:
(1) big data organization and management, which involves
data acquisition and pre-processing; (2) big data processing
and analysis, using the Hadoop ecosystem and the Apache
Spark processing engine; (3) big data service management,
where decision-making is performed. Guerreiro et al. [18]
describe a solution entirely dedicated to big data processing
on ITS, employing technologies such as Apache Spark,
SparkSQL and MongoDB. The proposal consists of four
modules, respectively for data collection, data cleaning and
harmonization, data storage, and data visualization. An
architecture for conducting big data analytics in ITS is

proposed in [11], and it involves three layers: (1) the data
collection layer, where several kinds of data sources are
located; (2) the data analytics layer, concerning data storage,
management, mining and analysis; (3) application layer,
where ITS-related tasks are performed. The architecture
proposed in [19] aims at analyzing transportation data with
Hadoop along with Spark, to handle real-time transportation
data. The system is further divided into four layers, namely
(1) data collection and acquisition, (2) network, (3) data
processing, and (4) application. Amini et al. [20] define an
architecture for real-time traffic control, where Apache Kafka
is used as the layer that decouples publishers and subscribers
from the analytics engine. Moreover, the Hadoop Distributed
File System (HDFS) is employed as a data warehouse for
posterior analysis (of raw data). Instead, the analytics engine
gets input from all the publishing topics and performs data
analysis. In our opinion, the architectures underlying the
works described in [3], [11], [18], [19], [20] are very vertical,
as they are typically designed and implemented to cope with
a limited number of specific tasks, thus with low margins
for generalizability to broader scenarios.

III. REQUIREMENTS FOR AN IPTS REFERENCE
ARCHITECTURE
In the following, we propose a reference architecture for
IPTS intended to facilitate the design of concrete IPTS-
related architectures and provide guidelines for the system
design. To this purpose, we first identify the principal
requirements needed to be fulfilled by an IPTS, and then
we define a reference architecture that maps the identi-
fied requirements into suitable software components. The
identification of the requirements stems from the extensive
experience we gained from several academic and industrial
projects in the field of IPTS. Furthermore, we performed a
thorough analysis of the existing literature, as described in
Section II-B.
A reference architecture for IPTS should be designed

to be generic enough to accommodate a wide number of
use cases, such as vehicle scheduling (e.g., [21], [22]),
route planning (e.g., [23], [24]), passenger load/flow
prediction (e.g., [25], [26]), or vehicle arrival time prediction
(e.g., [27], [28]).
In addition, we identified a set of further requirements

specific to the IPTS domain, reported in Table 1, together
with a description of the rationale behind each of them.
Let us note that none of the architectures reviewed in

Section II-B can fully cover all the defined non-functional
requirements. Table 2 reports whether a considered architec-
ture covers the identified requirements. More in detail, the
presence of a check mark means that the architecture covers
the requirement; the letter P means that the architecture
partially covers the requirement; the dash indicates that
the architecture does not cover the requirement. To briefly
summarize, all the architectures allow data collection from
multiple and different devices, whereas none contemplates
the use of edge computing to limit costs and bandwidth
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TABLE 1. The identified IPTS-specific requirements with the correspondent rationales.

TABLE 2. Coverage of the identified requirements in the reviewed architectures.

consumption. Moreover, while many proposals envision a
storage component to store and manage historical data,
none explicitly considers solutions with spatio-temporal
capabilities.
To fill this gap, we propose a reference architecture

that satisfies all the identified requirements, leveraging at
the same time prominent aspects from the other propos-
als available in the literature. In particular, we identify
the suitable software components forming the architecture,
together with their connections, and then we describe
how these components contribute to fulfilling the identified
requirements. This process is reported in Section IV.

IV. A REFERENCE ARCHITECTURE IMPLEMENTING THE
DEFINED REQUIREMENTS
In this section, we detail the reference architecture we
defined, in terms of its operating environment, subsystems,
components, and connections.

A. THE OPERATING ENVIRONMENT
We envision a modern IPTS to be deployed among four
major platforms, as depicted in Figure 1:

1) Vehicles and/or other locations under the control of
the solution (i.e., sensors installed at bus stops), where
data are collected.

2) Third-party data/service providers, with which the
IPTS interacts to obtain information such as the digital
map of the road network, the weather, and so on.
This platform thus lies outside the boundaries of the
architecture.

3) A back-end, namely the execution platform where the
core part of the solution is intended to be executed. It
could be a local server farm or a Cloud infrastructure.

4) A multitude of end-points, for different intended users.
For example, we can foresee applications for intended
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FIGURE 1. The operating environment.

users running on smartphones, external Web servers
or even data centers can leverage the information
generated by the solution, etc. In particular, we foresee
at least the following potential end-users:

• Passengers that are interested in obtaining
information regarding the PT quality of ser-
vice [29] (e.g., estimated time of arrival [30]
or predicted crowding [31]). They can use such
services through a mobile app or a website;

• PT decision-makers that want to optimize route
planning and vehicle allocation to effectively
exploit the available resources. In this case, the
service can be accessed through a specific dash-
board.

• Third-party software solutions that can exploit the
information generated by the IPTS to realize their
use cases.

It is worth noting that, in some settings, interoperability is
a mandatory requirement for software in use with public
administrations. For example, this is one of the key points
introduced in the New Interoperable Europe Act.4 Of course,
in the presence of settings where interoperability is not
required or a commercial benefit, the corresponding modules
could not be implemented.

B. SUBSYSTEMS AND THEIR CONNECTIONS
The operational environment generically depicted in Figure 1
is reported in much more detail in this section. In particular,
the reference architecture is presented in Figure 2. Since
we are dealing with a reference architecture for data-driven
IPTS, the role of data is crucial, as well as the ability of the
architecture to deal with a multitude of data formats.
In the following, we describe each of its composing

subsystems.
The Data Producers subsystem is firstly responsible for

handling spatio-temporal data collection from multiple and
heterogeneous IoT solutions, as stated by requirements R1
in Table 1. This is achieved within the perception module,

4https://ec.europa.eu/commission/presscorner/detail/en/IP_22_6907

which involves different kinds of sensors, enabling the
acquisition of data of interest, such as those about vehicle
state (e.g., location, speed or acceleration) or passengers
(e.g., regarding how many people are on a vehicle).
In the presence of massive and/or complex data, it is not

viable to stream them towards the back-end, due to cost and
bandwidth limitations. For instance, the use of cameras for
crowding detection requires video streams to be processed
through an object detection phase, to estimate the number
of on-board passengers. If this task were performed on the
back-end, it would require the transmission of a massive
amount of data from the cameras to the back-end, with
huge requirements of network bandwidth and also leading to
several issues, such as transmission delay and packet loss. To
face this issue, we envision that an on-board preprocessing
step may be necessary, as stated by requirement R8, to
perform data preprocessing or aggregation before forwarding
them to the remote back-end [32]. These computational steps
are under the responsibility of the preprocessing module
of the DPS, which should run on one or more micro-
controllers deployed close to data sources, according to the
edge computing paradigm [33].

The Ingestion subsystem is responsible for handling the
data ingestion and/or homogenization towards the rest of
the system. Indeed, as reported in Table 1, an IPTS should
support data acquisition from a multitude of sensors (R1),
as well as from third-party data providers (R2). Thus, data
are collected in different formats. At the same time, an IPTS
should be ready to accept future extensions of the system
towards additional typologies of sensors, even not currently
foreseen. For these reasons, a homogenization step is needed.
More in detail, within this subsystem we envision two

classes of components, namely the Data Ingestors and the
External Data Connectors, dealing respectively with the
Data Producers subsystem and with third-party data/service
providers, like other ICT solutions composing the Smart City
ecosystem. Each component acts as an adapter, formatting
the received heterogeneous data in conformity with an
internal messaging solution (e.g., a message broker) to be
available for the rest of the system. Due to the variety of both
sensors and third-party data sources, we foresee a different
data ingestor or external data connector for each class of
sensors/sources. The main differences between data ingestors
and external data connectors lie in the mode and frequency
of the interaction with the sources. Indeed, Data Ingestors
handle continuous streams of data received from the Data
Producer subsystem through a message broker (examined in
Section V-A). On the other hand, External Data Connectors
are meant to integrate external sources at data or at an
application level. An example of interoperability at data level
is the access to GTFS files describing the routes, while
for the application level, an example can be the interaction
with the APIs of an existing Automatic Vehicle Location
(AVL) system, or road traffic monitoring services. Thus,
these connectors interrogate the corresponding external data
sources on demand, typically with a much lower frequency.
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FIGURE 2. The Proposed Reference Architecture for Intelligent Public Transportation Systems.

The Processing subsystem deals with big data processing
paradigms, where a well-known distinction involves [34]:

• Batch processing, mainly used to elaborate a significant
amount of data, in a given time span;

• Stream processing, which refers to the dynamic and
ongoing elaboration of streams of data, continuously
and immediately, as they become available.

In the proposed reference architecture, given the nature of
the considered data and offered services, both batch and
stream processing modules are supported. Batch processing
allows the analysis of historical and massive spatio-temporal
data, collected from a multitude of IoT/IoV devices, to
extract new meaningful knowledge, such as trends regarding
passengers’ demand or transport supply. This analysis can
be conducted also in an apriori fashion. Moreover, since
the IoT/IoV devices mostly generate continuous streams
of data, it is also possible to elaborate them with lower
latency, through stream processing, to act promptly or even
proactively.
Finally, when the volume of incoming data is huge, but not

necessarily continuous, micro-batch processing can be lever-
aged too, being a middle ground between the aforementioned
paradigms. Differently from batch processing, here data are
divided into manageable batches, potentially allowing for
more efficient utilization of processing resources.

Let us note that, within the Processing Subsystem, any
kind of batch or stream processing algorithm can be included.
This means that the system eases the plug-in of novel
and even unforeseen processing techniques, including new
Artificial Intelligence (AI) solutions. In this case, since
the training of AI models is typically performed offline,
being quite time-consuming, the corresponding component,
responsible for such a task, can be executed on the batch
processing module. On the other hand, the inference phase of
AI models usually requires lower processing resources and
is performed on the fly, whenever new data are available.
For this reason, it runs on the stream processing module.
However, it is worth noting that, in the case of tasks that

require online/incremental training, AI model training is also
carried out in the stream processing module.
The Service subsystem encapsulates a set of higher-level

services, which can be mainly realized on top of the outputs
from batch and/or stream processing components, to imple-
ment different use cases, varying in purpose and complexity.
For instance, in this subsystem, there could be a service to
compute the passenger load prediction of a bus at the stops
of a given line. This would require information processed
by multiple stream processors, a former performing the map
matching of the live IoV data coming from the vehicle, and
the subsequent one implementing the inference model for
passenger load prediction [35]. Optionally, modules of the
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Service subsystem could also exploit data from the storage
subsystem and/or the internal message broker.
The functionalities implemented by the Service subsystem

can be publicly exposed by means of APIs using standard
formats, such as REST. These APIs act as a façade, to
this subsystem, allowing both the access, in an easy and
standardized way, to the offered IPT-related services, both
the interoperability of the platform with external software
solutions, such as those of a smart city ecosystem, or external
IPTS.
The Message Delivery Subsystem is orthogonal to the

aforementioned ones. It mainly involves brokers, whose
main duty is to preserve a loose coupling among the
different components of the system. This property is stated
by requirement R5. Broadly speaking, a broker enables
the communication between M data producers and N data
consumers, which may not be aware of each other, usually
according to a publish-subscribe pattern. Indeed, thanks
to a broker, the publishers (i.e., the data producers) do
not send their messages directly to data consumers, but
rather they publish them to the broker, which is responsible
for their organization into appropriate topics/contents. The
broker forwards the messages to the subscribers (i.e., data
consumers) that are interested in that specific topic/content.
The key advantages of using such a design pattern are
entity and time decoupling: publishers and subscribers do
not need to know each other, and the communication can be
asynchronous, as they do not need to produce and consume
at the same time [36]. This is made possible by the broker,
which is in charge of dispatching messages and storing them
locally, until they are read by subscribers.
In our reference architecture, we recommend the use of

two different types of message brokers, to fulfill different
requirements. Indeed, the communication between the Data
Producer subsystem and the Ingestion subsystem involves
IoT devices, that typically have limited computational and
energetic resources, and sometimes use metered connections
(i.e., wireless network connections with a limited amount of
data usage per month). Lightweight Brokers are specifically
designed for this scenario, in which devices exchange data in
near real-time, while limiting network bandwidth usage [37].
Thus, these brokers implement IoT-oriented protocols for
message delivery. On the other hand, within the back-
end infrastructure, a more sophisticated broker can be
employed for the communication among subsystems, where
requirements on the available resources are less stringent, but
other types of non-functional requirements are paramount,
such as flexibility, scalability, fault-tolerance, and so on.
The Spatio-Temporal Storage Subsystem deals with data

persistency, which is required by several use-cases within
an IPTS (e.g., reporting services or machine/deep learning
models). For instance, predictive models for passenger
load prediction, or for vehicles’ predictive maintenance,
need to be fed by a historical dataset, properly filtered
from all collected data. Thus, a subsystem responsible
for data storage and retrieval is essential. Furthermore,

IPTS-related data are typically characterized by a spatio-
temporal nature. Therefore, the Spatio-Temporal Storage
subsystem should explicitly support effective spatio-temporal
filtering/querying, on top of the massive collected datasets.
Finally, the Security Subsystem prevents the exploitation

of potential vulnerabilities from malicious agents. In the
following list, typical security features that an IPTS should
consider are reported [38].

• Confidentiality: data must be made available only to
authorized users. Several sensitive data (e.g., on-board
videos) are involved and transmitted among IPTS mod-
ules [39], and thus can be intercepted through attacks,
such as eavesdropping. To complicate this scenario,
the high degree of heterogeneity and the distributed
nature of IPTS increase the complexity of monitoring
and control of such a system. Moreover, many IPTS
components, being installed on vehicles, communicate
through wireless links, which are inherently insecure
and prone to a variety of attacks [16]. Techniques to
mitigate such vulnerabilities must be employed, like
private networks and/or encryption methods, along with
Identity and Access Management (IAM) capabilities.

• Integrity: data must not be improperly modified or
deleted by unauthorized users. An example of an
attack against integrity in IPTS is GPS spoofing,
consisting of attackers broadcasting false GPS signals
to cause travelers to change their trip, based on these
manipulated data [16]. To prevent this, as well as other
typical attacks, such as malware, false data injection
or node capture, smart intrusion detection systems
should be employed, to detect deviations from normal
behaviors [40], [41].

• Availability: data and services must be available, when-
ever they are requested, for authorized users. Attacks
such as denial-of-service (DoS) are critical for IPTS,
leading to temporal unavailability or unacceptable delay
of the service. Thus, they should be prevented, for
instance by applying signature-based authentication or
proof-of-work strategies [16].

• Privacy: the access and usage of confidential or personal
information about an entity must be protected. In IPTS,
sensitive data are exploited, ranging from financial
information (e.g., for payment purposes) to location
information as we all citizens’ habits. Thus, IPTS must
have the ability to protect and anonymize personal
information, also according to local privacy regula-
tions, such as the European General Data Protection
Regulation (GDPR). A well-known technique, for this
purpose, is differential privacy [42], which introduces
artificial noise, in query answers or directly in the data,
in a controlled way.

V. A CATALOG OF TECHNOLOGIES FOR THE
IMPLEMENTATION OF THE REFERENCE ARCHITECTURE
Practitioners willing to instantiate the proposed reference
architecture must select one or more specific technologies
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for each of the aforementioned subsystems. To support
them in such a process, by narrowing the field of suitable
technologies, in this section we present a brief catalog
of available technological solutions for the domain-specific
subsystems. For the sake of brevity, we omit discussion on
the general-purpose modules, such as the security one.

A. MESSAGE BROKERS
In our reference architecture, we recommend the use of
two different types of message brokers, to fulfill different
requirements. Indeed, where IoT/IoV devices are involved,
account should be taken of the limited resources at their
disposal. Instead, at the back-end, further non-functional
requirements should be considered, such as scalability and
fault tolerance. In the following, we briefly presented a
catalog of IoT-oriented protocols, and possible solutions for
the broker employed on the back-end.

1) IOT-ORIENTED PROTOCOLS FOR LIGHTWEIGHT
BROKERS

When IoT devices are involved in communication, it must
be considered that these devices have limited resources,
low power, and sometimes use a meter connection [37].
For this reason, the use of an IoT-oriented protocol for
message delivery is recommended. Possible solutions are
MQTT (Message Queuing Telemetry Transport Protocol),
AMQP (Advanced Message Queuing Protocol), and CoAP
(Constrained Application Protocol) [43]. They all support
publish/subscribe message protocol, being at the same time
designed for lightweight communication in a constrained
network. The main difference regards the transport protocol:
MQTT and AMQP are based on TCP, while CoAP is based
on UDP. For this reason, the latter does not incur in the
connection overheads inducted by TCP. Therefore, compared
to MQTT and AMQP, it reduces message size/overhead,
network bandwidth, and power consumption. Conversely,
MQTT and AMQP are more oriented to reliability, at the cost
of more bandwidth. These protocols are implemented by a
number of open-source lightweight brokers, such as Apache
Active MQ for MQTT and AMQP, Eclipse Mosquitto for
MQTT, and Eclipse Californium for CoAP.

2) BROKERS FOR THE BACK-END

The publish/subscribe protocol within the back-end can
be implemented by more sophisticated brokers, realizing a
distributed message delivery system. Indeed, here the focus
is on increasing scalability and fault tolerance, rather than
on reducing network bandwidth. This is usually obtained by
the distribution and/or replication of topics/contents across
multiple machines. A number of open-source solutions
implementing distributed message delivery services are avail-
able, such as Apache Kafka,5 RabbitMQ,6 or Apache Pulsar.7

5https://kafka.apache.org/
6https://www.rabbitmq.com/
7https://pulsar.apache.org/

As for cloud-based solutions, typical message brokers are
Google Cloud Pub/Sub8 and Amazon Kinesis.9

B. BIG DATA PROCESSING FRAMEWORKS
Several frameworks are available to support the implemen-
tation of batch/stream processing solutions. One of the first
solutions supporting parallel batch processing is Apache
Hadoop.10 It is based on the MapReduce paradigm [44],
and includes also the Hadoop Distributed File System
(HDFS), which is a distributed file system able to store
data on multiple servers, providing parallel access and fault
tolerance. However, a known drawback of Hadoop is its lack
of efficiency when repeatedly reusing the same set of data,
as this can require multiple access to the HDFS (i.e., on
physical disks), which can negatively influence the overall
execution time [45]. Apache Spark,11 which runs on top of
Hadoop, uses more advanced caching features to increase the
processing speed of an application. However, if the processed
dataset overflows the in-memory cache capacity, Spark can
present the same limitations as Hadoop. Additionally, Spark
can be employed for stream processing too, as it can divide
the incoming streams of events into groups of micro-batches,
that can be processed with lower latency. However, collecting
events together to build a mini-batch is still a limiting factor
for real-time data analysis [46].
Let us note that there are also processing frameworks that

are natively designed to support stream processing [47]. An
example is Apache Storm.12 Here, the architecture is similar
to Hadoop, but Storm works on unbounded streams of data.
It provides a master node that assigns tasks to worker nodes,
monitored by supervisors. Alternatively, Apache Flink13 is
a native stream processing framework that supports also
batch processing. It is based on a master-worker model,
as Storm, and uses the snapshot mechanisms to maintain
the status of jobs in distributed checkpoints, to recover it
in case of failure [48]. Apache Flink includes also several
libraries to support scalable batch and streaming workloads.
For example, PyFlink is a Python API to build custom
ML/AI pipelines, while FlinkML provides implementations
of standard ML algorithms.
It is worth noting that the aforementioned big data process-

ing frameworks do not provide native support for spatial data.
Nevertheless, several efforts have been made to extend such
platforms towards spatial data processing [49]. For instance,
SpatialHadoop [50] enhances Apache Hadoop by providing
a spatial language, data types, indexes, and operations.
Similarly, GeoSpark [51] extends Apache Spark with spatial
data types, such as points, rectangles, and polygons, as well
as a geo-spatial query processing layer. Similar contributions
have also been made for stream processing platforms. Among

8https://cloud.google.com/pubsub
9https://aws.amazon.com/it/kinesis/
10https://hadoop.apache.org/
11https://spark.apache.org/
12https://storm.apache.org/
13https://flink.apache.org/
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them, GeoFlink [52] is a spatial extension of Apache Flink,
that enables spatial indexing of vector data and spatial
queries.

C. MACHINE AND DEEP LEARNING MODELS
As highlighted in Section IV, the proposed reference
architecture eases the plug-in of ML/DL models, which can
be exploited with the general purpose of enhancing public
transports.
In particular, Recurrent Neural Networks (RNNs) have

been widely adopted given their natural ability to deal with
time series problems, such as passenger flow prediction,
bus arrival time, and so on [53]. These models are often
combined with Graph Neural Networks (GNNs), which can
be exploited to examine spatial correlations. Indeed GNNs
treat transportation networks as graphs and employ filters
to capture spatial dependencies [54]. Recently, also Large
Language Models (LLMs) have made their entrance in IPTS.
LLMs are pre-trained on extensive datasets and can be fine-
tuned on different specific tasks, related to the investigated
scenario. Broadly speaking, LLMs can extract complex
linguistic patterns from intricate datasets [55]. Hence, within
the IPTS domain, they can be exploited to understand textual
information (e.g., tweets related to the movement or habits
of people), generate human-readable explanations of ML
models, or provide reports [56].

D. SPATIAL DATABASE MANAGEMENT SYSTEMS
As data collected for IPTS are mostly characterized by
a spatial nature, they require specific solutions able to
support their effective storage and retrieval. In this direction,
traditional Databases Management Systems (DBMS) have
been extended by integrating ad-hoc spatial data types, query
operators, and indexing techniques [57]. Broadly speaking,
spatial DBMS can be categorized into two major families:
relational and NoSQL ones [58]. Relational DBMSs are
well-established solutions used for storing and retrieving
large structured datasets, based on the relational model.
Examples of relational DBMS, which support extensions for
spatial data, are PostGIS14 (plug-in of PostgreSQL) or Oracle
Spatial Database.15 They enable the definition of attributes
using geometry data types (e.g., point, polygon, line-string),
support the Open Geospatial Consortium (OGC) standard
SQL extensions for spatial queries, and support different
index types, to speed up spatial data retrieval. While being
a technology widely employed, the horizontal scaling (i.e.,
the distribution over multiple servers) of relational DBMS
is still a critical issue.
As for NoSQL DBMS, they are mostly used to manage

unstructured or semi-structured data and are designed for
easy horizontal scaling. Differently from relational DBMS,
NoSQL ones usually do not provide full support to the ACID
properties (Atomicity, Consistency, Isolation, Durability). In

14https://postgis.net/
15https://www.oracle.com/it/database/spatial/

all the domains where the fulfillment of these properties
is not mandatory, this enables the support for an easier
distribution over multiple servers, thus allowing to effectively
handle massive datasets [58]. As an example in the IPTS
domain, information about ticket usage should be handled
with an ACID-compliant DBMS, given their socio-economic
importance, while high-frequency GPS data can be managed
also by a NoSQL, given the scarce relevance of a single
record.
Let us note that many of the spatial big data processing

platforms described in Section V-B often rely on NoSQL
databases, to better face challenges due to data volume,
variety, and velocity. Similarly to relational DBMS, also
NoSQL DBMS typically provide only minimal support to
spatial data (such as Neo4j,16 Cassandra,17 and Redis18), but
can be often extended to this purpose by means of plug-
ins [59]. It is worth noting that MongoDB19 natively includes
spatial data types and operators, as it allows to store spatial
data as GeoJSON objects, supporting also complex spatial
queries and geospatial indexing techniques.
In conclusion, relational DBMS can be a suitable solu-

tion when the enforcement of ACID properties is crucial.
Otherwise, whether it is possible to give up consistency for
the benefit of data distribution, and thus of parallelization,
NoSQL DBMS can be exploited.

VI. AN EXAMPLE OF IPTS IN A REAL-WORLD SCENARIO
In this section, we present an IPTS deployed by Hitachi
Rail in a real smart city, as a field trial. This is an
example of actual architecture obtainable from the proposed
reference architecture (through appropriate implementation
and technological choices), fulfilling all the requirements
described in Table 1.

A. FEATURES OF THE IPTS
The system we describe, deployed in a major Italian city, is
meant to support transport operators in achieving smarter bus
fleet planning and management. This is obtained thanks to a
combination of services, including also AI-based predictions
of bus crowding. Such Hitachi Rail platform is accessible
through a dashboard, depicted in Figure 3, which shows the
map of the city and the actual location of the monitored
buses, along with their travel direction, represented by small
red arrows. Further information on traffic levels and in-
vehicle crowding can be provided, by enabling the traffic and
crowding options on the top right of the panel. As a result,
red lines highlight road segments with heavy traffic, while
a red circle around a bus indicates overcrowding conditions.
As depicted in Figure 4, by clicking on a given bus, it is
possible to obtain information about:

• its real-time location;

16https://neo4j.com/
17https://cassandra.apache.org/index.html
18https://redis.io/
19https://www.mongodb.com/
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FIGURE 3. The dashboard of the Hitachi Rail platform.

FIGURE 4. The BPL prediction and the estimation of time of arrival services.

• its planned and estimated time of arrival;
• its past and current crowding situation, as well as a
prediction for the next stops.

B. IMPLEMENTATION DETAILS
In the following, we provide some details on technical
aspects related to the implementation of the described
framework. Bus location data are obtained by querying an
existing AVL system, using a specifically designed External
Data Connector. On the other hand, bus crowding data are
collected by a custom Data Producer Subsystem, composed
of on-board cameras, whose video streams are processed
by an edge module. The obtained crowding information is
then sent to the back-end, thanks to the interaction with
the Lightweight Broker, which pushes this information to
the main Broker. At this point, a tailor-made Data Ingestor
component parses and then stores these ingested data in the
Spatio-Temporal Storage subsystem. All these bus service
data, accumulated over time, are then exploited by some
AI-based components, to predict in-vehicle crowding and

FIGURE 5. Number of vehicles allocated over a week.

journey time, for each monitored bus. This is implemented
by means of different modules: batch processors for model
training, and stream processors for the inference phase.
These resulting predictions are then exposed by ad-hoc REST
APIs, within the Service subsystem. In this way, the provided
services are accessible from several locations, such as, for
example, the dashboard depicted in Figure 3, as well as from
other existing IPTS.

C. WORKLOAD ANALYSIS
As stated by requirements R7, an IPTS should be able to
cope with a variable number of installed IoT/IoV sensors,
and thus with a variable amount of data to handle. Indeed, the
system should well tolerate the addition of further vehicles
or stops/stations to be monitored, as well as peak situations,
where more data are generated. In the following, we present
a workload analysis, meant to get a better insight into the
performances of the Hitachi Rail IPTS under real-world
situations.
Figure 5 depicts the number of vehicles in service over

a week, in May 2022. As expected, such a number is
higher on weekdays, since more vehicles are active to serve
a greater number of commuters. Instead, the number of
working vehicles decreases during the weekend, especially
on Sunday. Furthermore, focusing on a single day, a morning
peak, around 8 AM, can be noticed, then a stable number
up to about 11 PM, and later the number of running buses
drops to almost zero, for night service.
As mentioned before, the employed vehicles are equipped

with sensors, sending data about vehicle position and
occupancy to the back-end. As a result, the way the fleet is
allocated over a week affects the amount of data sent over
that time, and thus the employed bandwidth.
Figure 6 highlights the pattern of data transmission rates

from all the involved vehicles towards the back-end, over
the same week considered before. This is a subset of all the
exchanged data and is used, for instance, by the modules
realizing the bus crowding prediction service. Indeed, such
a service exploits vehicle positioning and crowding data,
acquired through GNSS sensors and cameras, respectively,
installed on the buses. Moreover, to avoid privacy issues and
reduce network bandwidth and costs overhead, the object
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FIGURE 6. Number of packets per second transmitted from buses to the back-end,
over a week. In blue are the packets with vehicle congestion data, and in red are those
with vehicle position.

FIGURE 7. Performance of the Hitachi Rail IPTS, in terms of data ingestion time
(ms), over the week.

detection phase is performed on the vehicle, according to
the edge-computing paradigm. From Figure 6, we can notice
that the number of packets containing monitored information
is higher on weekdays. On Saturday and Sunday, instead,
the transmission rate gradually decreases. Furthermore, when
considering a single day, there is a morning peak, around 8
AM, then a stable number of data transmitted up to about 11
PM, and later the number of packets drops to almost zero.
This is in line with the pattern shown in Figure 5.

Let us note that these mobility patterns impact the
performances of the considered system. For instance, in
Figure 7 we report how the ingestion time (in milliseconds),
as extrapolated from the logs of the cloud provider, is
affected by the variation of active vehicles, and thus of sent
packets. From these box plots, we can see that the system is
easily able to cope with the variability of the workloads, well
tolerating the working days’ peaks. For instance, according
to Figure 6, on weekdays, on average, the rate of transmitted
packets is twice the one of Sunday, while the increment in
terms of ingestion time is less than twice, thus reflecting
this ratio roughly in a sub-linear way.

VII. OPEN CHALLENGES
We believe that the proposed reference architecture can
support a more effective development of IPTS. Still, we see a

number of open challenges in this domain. In the following,
we briefly summarize them.
Lack of standard formats for public transport data.

The General Transit Feed Specification (GTFS) is a data
format employed worldwide to describe fixed-route transit
services, such as schedule times, routes, and bus stops [60]. It
represents data about public transport planning and schedul-
ing. An equivalent standard format for operational data
(e.g., actual stop arrival time or passenger load) is missing.
For this reason, as highlighted in Section III, an IPTS is
typically fed by data coming from heterogeneous IoT/IoV
sensors, and therefore characterized by different formats.
As a result, a homogenization step is required, leading to
the necessity to include a Data Ingestors subsystem, where
a different connector/adapter should be realized for each
different acquisition format. In our vision, a standardization
effort for operational data could be beneficial to ease this
task and simplify the architecture.
Data privacy/security. Data-driven IPTS are fed by

sensitive data (e.g., videos of passengers acquired from
monitoring cameras), transmitted and processed by differ-
ent modules. Thus, access to such information must be
protected, through accurate data anonymization techniques,
data/channel encryption methods, IAM procedures, and so
on. However, when IoT devices are involved, their limited
processing, storage, and energy capabilities must be taken
into account (for instance, they can limit the applicability
of common cryptographic approaches). Moreover, it is
well-known that such devices can be vulnerable to a
number of physical and side-channel attacks. To cope with
such issues, the scientific community and/or international
organization (e.g., the IoT Security Foundation20) should
enforce minimum security standards in heterogeneous IoT
products/applications [61].
Deployment of AI at the edge (EdgeAI). According

to the edge computing paradigm, moving processing
tasks closer to data sources leads to benefits in terms
of network bandwidth, latency, and computational cost.
However, moving the inference of AI models at the edge
poses peculiar challenges, especially in the case of Deep
Neural Networks (DNNs). Indeed, IoT/edge devices are
characterized by limited capabilities, which contrast with
the huge computational costs and memory occupancy of
DNNs. Thus, further strategies to cope with these limita-
tions should be investigated, such as model compression
techniques, aiming at reducing models and fulfilling edge
requirements [62].
Definition of common benchmarks for evaluating archi-

tecture effectiveness. An IPTS practitioner can be in trouble
in objectively assessing the impact of different design choices
on the performance of the system. Indeed, to date, to
the best of our knowledge, there are no widely accepted
benchmarks for this class of software systems. Moreover,
traditional benchmarks for data-intensive systems available

20https://www.iotsecurityfoundation.org/
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in the literature (e.g., TPC21) [63] are not suitable, being both
not focused on the very specific nature of the data involved
in IPTS, nor representative of IPTS-related workloads. As
a result, in this field comparing different architectural or
software proposals is still an open challenge, and the
definition of benchmarking datasets/workloads should be
investigated.
Green computing. Since IPTS are strictly tied to the

IoT paradigm, the environmental problems posed by this
technology should be borne in mind. For instance, IoT
devices need power and energy to perform their tasks, and
especially to share data with other devices, or with the back-
end. To deal with these environmental issues, the concept of
green computing (i.e., the sustainable, environment-aware,
and environment-friendly computing or IT [64]) should be
considered when designing an IPTS, as well as further
investigated by the scientific community. Additionally, given
the aforementioned lack of benchmarks for IPTS, also
the comparison of different proposals, in terms of energy
efficiency, remains an open problem.

VIII. CONCLUSION
Smart cities are complex ICT ecosystems, whose definition
requires the cooperation of a multitude of software systems.
Among them, IPTS employ data acquired through IoT/IoV
devices with the general goal of exploiting the available
public transport resources in a smarter, more effective, and
even proactive way.
However, the deployment of a new IPTS is a challenging

task. Indeed, on one hand, off-the-shelf products are typically
closed or tied to very specific data-sensing solutions, thus
being difficult to extend and/or customize. On the other
hand, the number of alternative solutions is overwhelming,
in terms of computational models (cloud, edge, fog, etc.),
technological aspects, architectural choices, and so on. The
definition of reference architectures is a well-known strategy
to facilitate the design of complex systems and to improve
their interoperability. Unfortunately, from an analysis of the
state of the art, we found a lack of reference architecture for
IPTS. At the same time, standard reference architectures for
IoT systems do not fit well the specific domain, missing to
explicitly supporting some key factors of the IPTS domain.
To fill this gap, based on the experience we gained in an

academic-industrial collaboration on real IPTS, in the present
paper first we identified a set of requirements specific for
IPTS, and then we proposed a novel reference architecture,
intended as a collection of software components and their
connections, meant to comply the stated requirements. More
in detail, as described in Section IV, the proposed reference
architecture combines, in a novel and original way, seven
subsystems. The resultant framework leads to a number
of interesting features. For instance, we suggest using two
different Message Brokers: a Lightweight Broker, intended
for managing and supporting wireless communication with

21https://www.tpc.org/default5.asp

IoT/IoV devices, and a traditional message broker, to handle
the message exchange among the modules deployed at
the back-end. Moreover, the reference architecture requires
a specific storage subsystem, able to effectively support
spatio-temporal data management, filtering, and retrieving.
Finally, we explicitly consider the employment of edge-
computing resources, to reduce network bandwidth, latency,
and computational costs.
The feasibility of the proposal is proved by presenting an

operational IPTS obtainable from the described model (i.e.,
the Hitachi Rail IPTS platform), together with a workload
analysis of the proposal in a real-world scenario.
Finally, we sketched up some open challenges that in our

opinion are still hindering the development of this class of
systems.
Currently, we are working on the evolution of the

described IPTS to offer new services, for a different
geographical context. In particular, we are devising software
solutions to include smart ticketing, fleet planning and
scheduling, and parking management. At the current state
of development, all these new services fit well with the
proposed reference architecture.
We believe that our proposal will be beneficial to the

developers of IPTS, as it offers accurate guidelines about
the system architecture, and narrows the field of suitable
technologies for the system implementation.
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