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ABSTRACT Electric vehicles (EV) are gaining wide traction and popularity despite the operational
range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved
customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a
novel federated & ensembled learning (FEL) algorithm for precise estimation of battery State of Health
(SoH). FEL algorithm leverages real-world data from diverse stakeholders and geographical factors like
traffic and weather data. A Long-Short Term Memory (LSTM) model has been implemented as a base-
model for SoH estimation, continuously updating for each trip as an edge scenario using data-centric
federated learning strategy. A stacked ensemble learning algorithm is employed to combine data from
heterogenous data sources for retraining the base-model. The effectiveness of the proposed FEL algorithm
has been evaluated using NASA battery dataset, showing significant improvement in SoH estimations with
a mean average error of 3.24% after 30 iterations. Comparative analysis, including LSTM model with
and without ensembled stakeholder data, reveals up to 75% accuracy improvement. The proposed model-
agnostic FEL algorithm shows its effectiveness in precise SoH estimation through efficient data sharing
among stakeholders and could bring significant benefits for realizing data-centric intelligent solutions for
connected EVs.

INDEX TERMS Data-centric AI, federated learning, state of health (SoH), connected vehicles.

I. INTRODUCTION

ELECTRIC VEHICLE (EV) adoption is widely advo-
cated as a sustainable mode of transportation that is

cleaner and greener, marching us towards the carbon neutral
society [1]. The adoption of EVs is outpacing the alternative
options such as hydrogen-powered vehicles due to several
factors, including manufacturing simplicity and maintenance
processes, as well as the affordability to materials for
energy sources. One of the fundamental components of
EVs is their batteries, which serves as a finite energy
source. However, these batteries undergo degradation over
multiple charging and discharging cycles before reaching
their end of life [2]. Moreover, external factors such
as operating temperature and humidity can significantly

The review of this article was arranged by Associate Editor
Goncalo Correia.

impact the battery health and its ability to retain maximum
capacity [3]. Therefore, precise monitoring of battery health,
while considering these influential factors, is significant
for ensuring longevity of battery and optimal operational
efficiency.
The State of Health (SoH) of a battery is a metric to

determine its degradation throughout its operational lifes-
pan [2], [4]. Precise estimation and tracking of battery SoH
in real-time is critically important for various automotive
applications. Moreover, accurate estimation of battery SoH
improves overall battery state estimations including State
of Charge (SoC) and State of Power (SoP). Although the
accurate estimation and tracking of battery SoH significantly
helps to realize improved operational efficiency, the inherent
non-linearity of battery model coupled with unaccounted
external factors poses significant challenge with accurately
estimating the battery SoH.
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The estimation of SoH relies on three primary parameters:
battery capacity, impedance, and internal resistance. As the
battery ages, these parameters undergo changes and impact
the operational lifetime. According to the EV norms, an EV
battery capacity may degrade up to 20%, while internal resis-
tance can surge up to 160%, which signifies its end-of-life
(EoL) [5]. In this paper, the SoH is defined as the percentage
ratio of available capacity to the rated capacity. When the
battery SoH drops below 80%, the battery has reached its
EoL. Therefore, monitoring real-time conditions influencing
these parameters are essential for accurate tracking of battery
SoH. Traditional experimental-based SoH estimation meth-
ods provide precise tracking of battery parameters but are
primarily designed in controlled laboratory settings [6], [7].
However, data collection from an EV to track its battery state
considering such controlled laboratory experimental setup
is inefficient and expensive, and therefore not suitable for
real-world tracking. Alternatively, model-based and machine
learning-based methods are comparatively better suited for
EV battery SoH estimation [3]. However, the accuracy of
health indicators that reflect battery SoH are affected by
the selection of model inputs. Therefore, the key features
such as voltage, current, and temperature from both charging
and discharge data are employed for improved accuracy in
battery SoH estimation [8].

Machine learning-based methods combines aspects of both
model-based & experimental methods. Numerous reviews
articles extensively evaluate the advantages and disadvan-
tages of different SoH estimation models [6], [9], [10], [11].
However, the efficacy of such models is contingent upon
quality, diversity and quantity of the training data. This
paper introduces a novel federated & ensemble learning
based battery SoH estimation algorithm for realizing improve
accuracy leveraging data from multiple stakeholders. By
integrating real-time data from stakeholders, this method
ensures acquisition of high-quality, diversity, and quantity
of data. Therefore, the contributions of this paper are as
follows:

• Novel federated & ensembled learning algorithm for
SoH estimation leveraging data from multiple stake-
holders in real-time which are based on discharging and
charging the battery during the course of its usage.

• Identify and verify the significance of stakeholders
based on the provided data and improved accuracy of
estimations.

The proposed battery SoH estimation, based on federated
& ensembled learning algorithm, captures the essential
characteristics of EV batteries. This approach enables
accurate estimation or prediction of battery aging under
diverse operating conditions. Section II provides a detailed
report on the literature corresponding to SoH estimations.
The proposed federated & ensembled learning algorithm
is described in Section III. Section IV provides a real-
world example of EV operation that formulates the problem
statement. The results generated based on NASA battery

datasets are evaluated and compared in Section V. Section VI
shows the effectiveness of the proposed algorithm, concludes
the paper, and provides the future directions.

II. RELATED WORKS
In the literature, battery SoH estimation methods are typ-
ically categorized into two primary groups: model-based
methods and data-driven methods. Model-based methods
have been primarily explored using electrochemical models,
empirical/ semi-empirical models, and equivalent circuit
models. Electrochemical model-based methods rely on the
description of battery internal electrochemical processes
using first-principles equations, to accurately calculate the
SoH [9]. However, their real-time applicability is limited
by high computational overheads. Several methods have
been proposed within the battery equivalent circuit model-
based methods, employing electric models such as RC
equivalent circuit model in [10], fractional order equivalent
circuit model in [11], and impedance spectrum growth model
in [12]. These methods use data derived from the battery
equivalent circuit models to estimate SoH parameters through
filtering algorithms [13]. Such methods could be employed
for real-time computations due to the low computational
cost. On the other hand, empirical and semi-empirical models
are favored for their simplicity and computation efficiency
in real-time applications. Data on the loss of capacity
and increasing internal resistance with respect to time or
battery cycles are fitted using particle filter [24], and particle
swarm optimization (PSO) algorithm [17], etc. However,
such data is often subjected to noise, impacting the accuracy,
and robustness of the estimation models. Additionally, the
fitted models may not be generalizable to all battery types
and requires individualized attention, increasing the cost
associated with data collection and resources.
In recent years, data-driven methods based on artificial

intelligence (AI) are receiving more attention due their
popularity in providing accurate estimations with fewer real-
time computation requirements. Battery operational metrics
such as voltage, current, and temperature serve as inputs for
machine learning algorithms targeted for monitoring SoH
and provide prognostic estimates [15], [16]. The accuracy
of these SoH estimates is dependent on the quality of
corresponding health indicators (HIs) data [14], [20]. Such
HIs data can be acquired through direct extraction methods
based on measured variables or indirect extraction methods
based on calculated variables.
The literature presents numerous machine learning algo-

rithms targeted for monitoring the EV battery SoH. Early
research was focused on energy management strategies
for fuel cell hybrid electric vehicles, employing a support
vector regression model to estimate battery Remaining
Useful Life (RuL) [14]. In the case of Lead Acid bat-
teries, SoH estimation was conducted by combining EIS
(Electrochemical Impedance Spectroscopy) and fuzzy logic
data analysis [20]. For Lithium-Ion batteries, gaussian
process algorithm was proposed for SoH estimation using
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the training data from WLTC (worldwide light duty driving
test cycle) profiles [21], [22]. However, Neural Networks
(NN) algorithms have gained popularity among machine
learning techniques. Back Propagation Neural Network
(BPNN) was introduced using the battery internal parameters
and interval capacity [17], [18]. Additionally, a single-layer
feedforward NN was developed in [19], with increased
operational speed and estimation accuracy compared to
BPNN. Another variant of NN, based on long-short-term
memory (LSTM) demonstrated superior accuracy in tracking
battery SoH [23]. Compared to the data-driven models,
the LSTM NN algorithm demonstrated lower average root
mean square, 0.0216, for SoH estimations and conjunct
error, 0.0831, for RuL predictions. Further, a particle filter-
based algorithm was proposed for SoH estimations [24].
It’s important to note that the accuracy of these machine
learning algorithms heavily relies on the availability of
battery operational data under diverse conditions. However,
Procuring real-world operational data remains a challenge
due to heterogeneity in operational conditions and data
sources.

III. BATTERY SOH ESTIMATION ALGORITHM
The EV ecosystem benefits from end-to-end information
sharing among major players within mobility, energy,
infrastructure, and policymakers [25], [26]. Among these
stakeholders, which directly or indirectly influence battery
operations, are battery manufacturers, charging stations,
weather & traffic, etc. Battery manufacturers are significant
stakeholders who provide initial estimation models. Other
stakeholders contributing to battery degradation have the
option to share charging and discharging datasets or locally-
trained Machine Learning (ML) models. However, leveraging
these datasets and different ML models poses challenges due
to the heterogeneity in data and models. To address this,
a novel Federated & Ensembled Learning (FEL) algorithm
is introduced to effectively combine heterogeneous data
and local ML models, thereby generating diverse and large
quantities of data. This data is subsequently used by EVs
to retrain their SoH estimation models tailored to their
operations, as depicted in Fig. 1.

The proposed FEL algorithm is designed to be model-
agnostic, ensuring data quantity and diversity to refine the
SoH estimation model and improve tracking accuracy. Since
the SoH estimation can be characterized as a time-series
processing problem, an LSTM based deep neural network is
selected as the base model to evaluate the effectiveness of
the proposed FEL algorithm [3], [15].

A. ENSEMBLED LEARNING ALGORITHM
Stakeholders have the option to contribute either local
datasets or locally-trained ML models. Directly shared
datasets undergo a conversion process to derive charging
and discharging profiles from battery current, voltage, and
temperature curves. Whereas, sharing locally-trained ML
models provides learnings derived from large datasets of each

FIGURE 1. Data-Centric Federated Learning architecture to update ML models using
the data from multiple stakeholders.

stakeholder. However, to effectively leverage these learnings
from the heterogeneous pool of ML models, a meta learning
technique called ensembled learning algorithm is employed
to generate estimations. The resultant data from estimations
of ensembled models is combined with the directly shared
datasets to form a new pool of data. This new dataset is
then utilized for retraining SoH estimation models.
Stakeholders within the EV ecosystem, including charging

stations, EV maintenance companies, and fleet operators,
possess extensive historical datasets of charge and discharge
profiles. However, sharing these large datasets is challenging
due to increased communication overheads and concerns
regarding security and proprietary information. To overcome
these challenges, the preferred approach is to share locally
trained ML model derived from these extensive datasets.
A stacked ensembled learning algorithm is proposed

to combine the predictions from all the ML models, as
outlined in Algorithm 1. The heterogeneous ML models,
obtained from various stakeholders, serve as the base-level
models, denoted as L1, . . . ,Lk. Predictions from these base-
level models are generated using the ideal changing and
discharging profile data as inputs, which is supplied by
the battery manufacturer or OEMs. Subsequently, these
predictions are stacked to form the training data for the
meta-level model.
A new dataset is constructed as the union of base-

level model predictions and converted data from direct
datasets, which is also illustrated in Fig. 2. The LSTM-
based SoH estimation model is then retrained as the
meta-model using this updated dataset. The retrained SoH
estimation model is shared back with the EV in a data-centric
federated fashion. This integration of federated learning
and ensemble learning algorithms are presented in the next
subsection.
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FIGURE 2. Federated & Ensembled Learning model architecture.

Algorithm 1 Stacked Ensemble Learning Algorithm
Input: Ideal charge & discharge dataset, D = {xi, ci}ni=1.

Route specific data, DR.
Base-level ML models, L1, ...,Lk.
Previously trained SoH estimation (LSTM) model, L0.

Output: Ensembled model L∗
BEGIN:

1: Step 1: Estimates of directly shared dataset using L0

2: D∗R = L0(DR)
3: Step 2: Base-level models estimate using ideal dataset
4: for i = 1 to n do
5: Db = {x′i, ci}, where x′i = {L1(xi), ...,Lk(xi)}
6: end for
7: Step 3: construct new data set of estimations D∗
8: D∗ = Db ∪ D∗R
9: Step 4: retrain SoH model (LSTM), L0 as meta-model
10: Retrain L0 based on D∗ as L∗
11: return L∗

B. FEDERATED & ENSEMBLED LEARNING ALGORITHM
Federated Learning (FL) is a decentralized approach
for training ML models by leveraging data from edge
devices [27]. FL can be broadly classified into Model-
Centric & Data-Centric approaches [28]. Model-Centric FL
is a common technique, where a central model is refined
through federated retraining across distributed data centers
or devices [29]. Conversely, Data-Centric FL is an emerging
technique, where the data is a primary asset and hosted in
central server for retraining of edge ML models [30]. In this
paper, a data-centric FL algorithm is chosen for retraining the
SoH estimation model using the newly ensembled dataset.
The Data-Centric FL illustrated in Fig. 1 is used by each EV
to retrain its SoH estimation model using ensembled data
from diverse stakeholders.
The architecture of the FEL algorithm is shown in Fig. 2,

combining principles of data-centric federated learning with

Algorithm 2 Algorithm for Data-Centric Federated Learning
Technique for Updating SoH Estimation Model
Edge EV executes:
1: Initialize �

2: Select new trip and update � with trip info
3: B = TripUpdate(�) from updated trip.

END
TripUpdate(�):
4: B ← (local model from a new trip)
5: ω ← (current LSTM model)
6: Initialization (Q =>Query, evID =>EV id,
tripID =>trip id)

7: Initialize: Q, EVID, TripID
8: if (Q ==Query, EVID == evID) then
9: update ω → (Algo 1) → (Step 3)

10: if (tripID ≤ match the value with new trip) then
11: B← (request to update the LSTM model)
12: else
13: B← (query the previous LSTM model)
14: (Send message that update is not available)
15: end if
16: Ask for next query
17: end if
18: return B

stacked ensembled learning algorithms. Algorithm 2 pro-
vides detailed steps involved in the data-centric federated
learning approach, in which an LSTM model is iteratively
retrained as a meta-model using centralized data ensembled
from diverse stakeholders. The EV, acting as an edge device,
initiates requests to update the SoH estimation model based
on the intended trip. The trip details such as the starting
and ending locations, current location, and current SoH
estimation model are transmitted to the server following
a data-centric federated approach. Leveraging the data
collected through the stacked ensembled learning algorithm,
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FIGURE 3. Use-Case scenario: Daily commute route and the data flow among
multiple stakeholders.

the SoH estimation model undergoes meta-model retraining
and is shared back with the EV.
Each trip undertaken by the EV is regarded as an edge

scenario and the data-centric federated learning algorithm is
applied to update the SoH estimation model. The datasets
used for retraining are constructed based on the stakeholders
involved in each of the trips. Leveraging this unique
combination of Federated & Ensembled Learning algorithms,
the curation of data is of high quality, quantity, and diverse.

IV. PROBLEM SCENARIO
This section presents a practical example showcasing the
effectiveness of the proposed FEL algorithm in conducting
meta-analysis on data sourced from diverse stakeholders and
providing accurate battery SoH estimates. Consider an EV
navigating between origin and destination points (refer to
Fig. 3), the FEL algorithm updates the SoH estimation model
by ensembling charging and discharging data from relevant
stakeholders involved in the trip.
At the start, the EV shares its identification data, along

with the current SoH, location, and destination with the
service provider. Based on this information, the service
provider plans a trip route and executes FEL algorithm
to update SoH estimation model provided by the OEM/
fleet operator. Two road-side units (RSUs), one charging
station (CS) along the planned route, and one wall charger
in home have been considered in this study. The CS
stakeholder contributes data when the SoC of the EV battery
drops below 20% and requires charging. The RSUs share
traffic information, which is then converted into acceleration-
deceleration cycles of traffic flow. Moreover, vehicle traffic
data within each road topology, sourced from the TRDB
(Traffic & Routing Database), is utilized to generate vehicle
drive cycles [31]. Weather data such as temperatures are
sourced from the CDC’s publicly available records. Essential
supplementary data, such as battery configuration, initial
SoH estimation model parameters, optimal charging and

discharging profiles, are provided by battery manufacturers
or OEMs.
Ensuring secure and reliable data sharing among

stakeholders is significant, while also encouraging their
participation. Recent developments in blockchain-based
standards are facilitating multi-stakeholders participation
in data sharing, thereby ensuring security and integrity,
provided stakeholders derive benefits from the applica-
tions [32], [33], [34].

V. RESULTS
In this section, the proposed FEL algorithm is evaluated
within the context of the problem scenario as described in
Section IV. The quality and quantity of data is ensured
through the acquisitions from diverse stakeholders and
facilitate data exchange using blockchain-based standards.
However, the challenge with diverse data araises from
the lack of requirements from each stakeholder. Publicly
available data such as traffic, temperature, and topology data
are readily accessible. This data is converted to vehicle drive
cycles that are used to derive the corresponding discharge
and charge profiles based on EV & battery configurations.
NASA dataset is used to fabricate the data for FEL model
training and verification as detailed in Section V-A.

Charging profile data from CS presents a challenge due to
the multitude of CS operators processing extensive datasets.
In such scenarios, CS operators can share locally trained ML
models using historical charging cycle data derived from the
battery current, voltage, and temperature curves. However,
the heterogenity of the ML model is addressed by employing
a weighted stacking ensembled learning algorithm. The
optimal charge and discharge profiles provided by the OEM/
battery manufacturers form the inputs of the shared ML
models and their SoH predictions stacked. Section V-B
details the two different ML models at CS and home charger.
The data with charging and discharging profiles along with
the predicted SoH values is combined with the dataset from
Section V-A to form the training data to retrain the meta-
model.
Validations are conducted in MATLAB linked to a

private blockchain network. The deep learning toolbox in
MATLAB is employed to train all the models, while data is
being transmitted between the service provider and various
stakeholders. Python scripts are used to represent different
stakeholders and simulate data sharing. A private blockchain
network was established in local PC using Hyperledger
fabric and facilitate data sharing based on Mobility Open
Blockchain Initiative (MOBI) standards [33], [35].

A. STAKEHOLDER DATASET
One full cycle of EV battery is defined by 1 full discharging
cycle and 1 full charging cycle. The vehicle drive cycles
derived from the traffic and topology data are converted to
their corresponding discharge and regenerative charge cycles.
This data is further segmented at 10 minute intervals to
represent the data received from multiple RSUs. This data is
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FIGURE 4. Sample dataset of a full cycle of charging and discharging profile data
for each cell in battery from NASA dataset.

fabricated from battery data sets that are provided by NASA
Prognostics Center of Excellence Data Repository [36].

The NASA battery datasets consist of lithium-ion batteries
data that run through three different operational profiles, i.e.,
charging, discharging, and rest period, at room temperature.
Their experiments consisted of applying repeated charging
and discharging cycles to commercially available 18650
lithium-ion cells for achieving accelerated aging. Batteries
were charged by constant current constant voltage (CCCV)
principle; charging at constant current of 1.5A until the
voltage reaches the cell upper voltage limit of 4.2V , then
applying constant voltage until the current drops to 20mA.
Discharging is done at the constant current of 2A until the cell
voltage falls to 2.4V 2.7V , 2.5V , and 2.2V for batteries #4,
#5, #6, & #7, respectively. The experiments were performed
until the batteries lose 30% of the rated capacity, i.e., 1.4Ah.
Additional electrochemical impedance data are also provided
in this dataset, but not used in this work. Fig. 4, shows
sample dataset of charging and discharging data of each cell
in a battery.

B. ML MODELS PARAMETERS
The SoH estimation is based on the LSTM model, that is
retained for every trip as the edge scenario. A common
LSTM unit that is composed of a cell, an input gate, an
output gate, and a forget gate is adopted. The cell remembers
values over arbitrary time intervals and three gates regulate
the flow of information in and out of the cells. LSTM defines
an internal memory cell state to store long-term information.
The memory cell state interacts with the previous output and
the following input to determine which elements of internal
state vector should be updated, maintained, or erased.
Two different ML models were used for the two charging

stations as defined in the use-case scenario. A commonly
used feed-forward Neural Networks (FNN) model is used
for one charging station. For another charging station, a
convolution neural networks (CNN) model, which is a well-
known deep neural networks that uses convolution operation
in at least one of its layers instead of general matrix
multiplication, is used [15]. The model structures and hyper-
parameters are summarized in Table 1.

TABLE 1. The structures of learning models for each stakeholder. FC stands for fully
connected.

TABLE 2. ML model training performance.

Evaluations were carried out to estimate the accuracy of
the trained models using Mean Absolute Percentage Error
(MAPE) as a representative error index. In addition, the
Mean Absolute Error (MAE) and the Root Mean Square
Error (RMSE) were also computed for evaluations. Table 2
lists the capacity estimation performance of each individual
models for both charging stations and the base model for
SoH estimation.
The trained models were utilized in the FEL architecture

without any further optimization of their parameters. This
approach was taken to ensure fairness and clarity in the
subsequent model comparisons in the next subsection.

C. SOH ESTIMATION RESULTS
The FEL algorithm is implemented using the set of ML
models and the battery datasets as explained above in
sections. A pretrained LSTM model was used as the
baseline for comparison with the updated LSTM model
with FEL algorithm. The simulations were conducted on
three differently aged batteries at beginning-of-life (BoL)
(Battery 1 with 100% SoH), moderately used (Battery 2 &
3 with 90% SoH), and EoL (Battery 4 with 80% SoH).
The SoH estimations were determined over 30 cycles of full
discharge and charge of the EV battery.
The SoH estimation results shown in Fig. 5, compares

the estimation of baseline model with the FEL algorithm
estimations. The FEL algorithm estimations start at the
true battery SoH values, unlike the baseline estimations
that always start with maximum SoH. This is due to
the availability of real-world data that steers the battery
degradation. Additionally, the FEL estimations showed better
estimated towards the EoL, where the SoH estimations
are more accurately tracked, in comparison to the baseline
estimates.
Analyzing battery degradation is challenging without

ground truth data. Therefore, the battery capacity degradation
trends were compared for baseline LSTM model with FEL
algorithm, in Table 3. The negative slope is due to the
degrading nature of batteries. However, the lower absolute
value of the degradation trend for FEL algorithm shows
the closeness to the linear trends in theoretical models
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FIGURE 5. Degradation of battery SoH and comparison of trends in FEL estimations
and Baseline model estimations.

TABLE 3. Degradation trends of batteries compared for Baseline model and FEL
algorithm.

of batteries. These results support the claims of improved
accuracy of the proposed FEL algorithm compared to the
baseline model.

D. SOH ESTIMATION COMPARISON
To further measure the accuracy of the SoH estimations with
respect to the real-world conditions, additional simulations
were conducted. The moderately used batteries 2 & 3, were
chosen for evaluation as the observed trends from Fig. 6,
provide good variations and with distinguishable start and
end SoH values. The evaluations were conducted using the
different discharge profiles from the NASA battery dataset,
which also provides battery capacity at the end of each
cycle. The ground truth SoH values were generated from the
available battery capacity data.
As shown in Fig. 6, the real-world data bring the FEL

estimations closer to the ground truth values in comparison to
the baseline estimations. The significance of FEL algorithm
is evident over higher battery cycles, where the estimations
have much higher tracking accuracy. The estimation accuracy
is evaluated using the RMSE and MAPE of the estimations
from ground truth data and are shown in Table 4. The FEL

FIGURE 6. Comparison of SoH estimations of baseline model and FEL algorithm
with ground truth data.

TABLE 4. Comparison of SoH estimations performance of baseline model and FEL
algorithm for batteries 2 & 3.

FIGURE 7. Comparison of SoH estimations of baseline model and FEL algorithm
with ground truth data with high traffic.

algorithm estimations have significantly lower RMSE and
MAPE, in comparison to the baseline model.

E. SOH ESTIMATIONS COMPARISON WITH TRAFFIC
DATA
To evaluate the significance of stakeholder data, additional
simulation results were generated for real-world conditions
with higher traffic situations, where larger variations in
charge & discharge profiles can be observed. Sudden
accelerations in certain conditions can seriously damage the
battery and degrade much faster. Therefore, such scenario
data from stakeholders, is used for further evaluations. Fig. 7,
plots the FEL algorithm results with traffic data and baseline
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TABLE 5. Comparison of SoH estimations performance of baseline model and FEL
algorithm for batteries 2 & 3 in high traffic scenario.

model estimates without traffic data, in comparison to ground
truth data. The FEL algorithm has comparatively bettery
tacking of battery SoH, over the baseline model.
The RMSE and MAPE of the estimations from ground

truth data are shown in Table 5. Despite the higher traffic
conditions, the FEL algorithm estimations have significantly
lower RMSE and MAPE, in comparison to the baseline
estimations. The reduced error in accurately tracking battery
SoH highlights the significance of the ensembled data from
various stakeholders.
The simulation results presented in this section provide

evidence to support the claim that the proposed FEL
algorithm achieves higher accuracy for SoH estimations.
Higher accuracy was achieved with basic algorithms within
FEL algorithm, such as weighted staking EL, and mildly
tuned ML models. The proposed FEL algorithm facilitates
the quantity and diversity of data to enable higher accuracy,
while staying model agnostic.

VI. CONCLUSION
The proposed federated & ensembled learning (FEL) algo-
rithm has demonstrated its efficacy in accurately estimating
the battery SoH, empowering EV operators to ensure
highest SoH levels at the end of each trip. This accuracy
is achieved from leveraging real-time attributes such as
traffic, temperature, topology data sourced from various
stakeholders. However, a key challenge lies in facilitating
data sharing among these stakeholders while addressing
proprietary data concerns. While publicly available data
such as traffic and temperature pose no acquisition chal-
lenges, data from stakeholders such as charging stations,
battery manufacturers remain inaccessible. To address these
challenges, this paper introduces a novel meta-learning
technique fused with federated learning to conduct meta-
analysis of extensive datasets. Heterogeneous ML models
from stakeholders such as charging stations are combined
using the stacked ensemble learning approach. Further,
incorporating additional data from RSUs, such as discharge
profiles, enhances the retraining process of base model
(LSTM model). The updated LSTM model exhibits improved
accuracy in SoH estimations compared to the previously
trained base model, highlighting the efficacy of the proposed
FEL algorithm. Therefore, FEL algorithm ensures the highest
quality, quantity and diversity in data that is employed for
retraining.
While the study primarily focused on developing and

evaluating FEL algorithm for SoH estimation, the insights

regarding ML models and emerging technologies require
further exploration. The FEL algorithm emphasizes the
significance of leveraging both charging and discharging
data for SoH estimations. Discharging data offers valuable
insights into the battery’s performance under different
operating conditions, such as fluctuating load demands and
discharge rates, which significantly impacts battery health.
Additionally, the charging strategies, such as CCCV &
MSCC (Multi-Stage Constant Current), have significant
influence on battery health. Although not addressed in this
paper, further research is needed to understand their impact
on SoH estimation. Furthermore, by providing insights into
battery degradation based on chosen routes and charging
stations, the FEL algorithm enhances transparency in battery
usage, addressing range anxiety concerns for both individual
EV owners and fleet operators.
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