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ABSTRACT In this research, we focus on developing an autonomous system for multiship collision
avoidance. The proposed approach combines global path planning based on deep reinforcement learning
(DRL) and local motion control to improve computational efficiency and alleviate the sensitivity to heading
angle changes. To achieve this, firstly, DRL is used to learn a policy that maps observable states of target
ships to a sequence of predicted waypoints. This learning task aims to generate a specific trajectory while
avoiding collision with target ships complying with the international regulations for preventing collisions
at sea (COLREGs). The learned policy is used as a global path planner during navigation. Secondly,
the line-of-sight (LOS) guidance system is applied to calculate the desired course command based on
the collision-free trajectory generated according to the policy. Lastly, a model-based control strategy is
implemented to control the ship to the specific goal in collision-free space while satisfying the desired
commands. We demonstrate the performance of the approach using an example of an autonomous surface
vehicle. In comparison to other methods, our proposed control can provide a more stable and smoother
maneuvering effect.

INDEX TERMS Control application of autonomous systems, deep reinforcement learning, multi-ship
collision avoidance, online path following, the international regulations for preventing collisions at sea
(COLREGs).

I. INTRODUCTION

AN AUTONOMOUS system for ships, i.e., the ability
of an intelligent agent to move towards a specific

goal smoothly without collision, has been attracting a
significant amount of research attention recently. With
the rapid development of technology, the world’s first
autonomous zero-emission container ship, Yara Birkeland
has been delivered successfully and will be put into operation
in 2022 [1]. The technology related to autonomous systems
lies in the intersection of many fundamental research areas:

The review of this article was arranged by Associate Editor Abel
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motion prediction, path planning with collision avoidance,
motion control, etc.
Collision avoidance for ships in an unpredictable envi-

ronment is a challenging task. For example, a collision
in congested waters can be catastrophic with increasing
traffic densities and the average cruising speed. The outcome
of such a collision may lead to a “pile-up” like on the
motorway. It can be seen in the context of managing
the risks that lack awareness of the other vessel, poor
lookout, and insufficient assessment of situation account for
60%. Human error is the most common cause of maritime
collisions [2]. In conclusion, the underlying human errors
are a lack of experience and correct application of the
International Regulations for the Prevention of Collisions
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FIGURE 1. The framework of the proposed autonomous system.

at Sea (COLREGs) [3]. The regulation is used to give
guidance and help the crew to avoid collisions at sea.
The officer on watch (OOW) in the busy waters is more
easily misinterpreted or ignored. By eliminating human error
from the equation, the development of autonomous system
for collision avoidance is expected to enhance situation
awareness, to improve collision risk prediction, and to
automate the decision-making process.
Model-based methods are a popular paradigm for ship

autonomous systems because they can leverage a given
dynamics model to control it to follow a robust collision-free
trajectory efficiently. According to a specific task for motion
control for obstacle avoidance, environmental perception is
first processed to build a global description. Meanwhile, the
collision risks with target ships can be confirmed; Then, it
generates collision-free trajectories comprising a sequence of
waypoints. Finally, a local tracking controller is responsible
for controlling the ship to the closest waypoint. This category
of methods is usually used for a given encounter scenario.
That is to say, the model-based methods usually consider
specific dynamic models and environmental disturbances
to conduct a more reliable result for a specific ship [4].
Accordingly, the challenges of model-based methods mainly
come from the uncertainties of the model, limited knowledge
of the environmental changes, and more complex encounter
situations that lack description from COLREGs. A widely
used way is to incorporate as many factors as possible
into collision avoidance algorithms, such as COLREGs
regulations, environmental disturbance, and the motion of
target ships, to make the result more reliable and robust.
The more involved factors are, the higher the computation
power cost.
Data-driven methods such as deep reinforcement learning

(DRL) applied to autonomous systems, from autonomous
robots and vehicles to aircraft and ships. Numerous studies
have demonstrated that utilizing DRL can effectively solve
the problem of motion planning for ships. For example,
the end-to-end DRL algorithms train an autonomous agent
through a learning process that maps directly from the state
estimation input to motion commands. Then the autonomous

agent can successively make decisions depending on its
current situation. The learned policy has been demonstrated
to be potentially powerful and capable in an unknown
environment through the trial-and-error training process.
However, the policy in simulation brings up the problem of
transferring such policies to the real world.
This article adopts a hybrid method to address the efficiency

and feasibility needs for autonomous system development,
combining global path planning based on DRL and local
motion control. The framework of this system is proposed
based on the GNC system [5], which consisting of the
navigation system, the guidance system, and the control
system (as illustrated in Fig. 1). The navigation system
contains sensors that allow the ship to locate itself, sense its
surrounding, and communicate with the incoming target ships.
The guidance system is responsible for making decisions
and generating collision-free trajectories to lead the ship
to its target location based on the information from the
navigation system. It is built by adopting a DRL model,
which generates the desired course for the control system. The
control system takes the desired signal as input and outputs
relevant commands to the steering and propulsion system.
The learning process and control procedure are designated

to achieve specific subgoals instead of the entire navigation
stack. This combination emphasizes the benefit of deploying
DRL in global planning, i.e., providing a collision-free
trajectory with online planning capabilities. Furthermore,
the involved model-based control strategy can provide an
accurate control command to actuators, greatly offloading the
learning process’s computational load. It raises the potential
to implement it in the real world.
Given the above, main contributions of this paper are

summarized as follows:

• We introduce an innovative autonomous system archi-
tecture that integrates Deep Reinforcement Learning
(DRL) for global path planning with model-based tech-
niques for local motion control. This hybrid approach
provides a comprehensive solution for autonomous
maritime navigation.
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• The proposed DRL-trained policy enables real-time
computation of collision-free trajectories, ensuring
dynamic adaptability and enhanced safety in complex
maritime environments. This capability significantly
reduces the risk of collisions by predicting and
responding to potential hazards in real time.

• The computed trajectories not only avoid collisions
but also strictly adhere to the COLREGs. Our method
considers the movements of surrounding vessels, ensur-
ing both legal compliance and operational safety in
multi-ship scenarios.

• The proposed approach effectively manages multi-
ship interactions in compliance with COLREGs within
a simulation environment. We demonstrate that our
system can handle complex navigational scenarios
involving multiple vessels, efficiently coordinating their
movements to prevent collisions while adhering to
maritime regulations.

The rest of this article is organized as follows. In
Section II, we provide a comparative review of work related
to our method. In Section III, we cover preliminaries about
the COLREGs regulations and ship modeling of the study.
Section IV describes the proposed method of integrating
global planning and control for the ship collision avoidance
problem. To analyze the benefits of our method, we perform
extensive experiments and comparative analysis with other
techniques in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORKS
An extensive body of techniques has been working on
developing autonomous systems for ships. In the scope of the
GNC system, path planning and collision avoidance are two
fundamental topics that are attacking research attention [4].
Reference [6] indicated that current studies adopted a
hierarchical paradigm: global path planning combined with
local motion control. It mainly focused on the robot’s
global path planning and motion control by comparing the
learning-based methods with the classical methods. This
well-categorized study can give a helpful guide in the field
of marine vehicles. Compared with the global path planning
and motion control approaches applied to aerial vehicle [7],
researchers are more concentrated on solving the challenges
from the COLREGs regulations, environmental disturbance,
and validation issues. A wide variety of approaches have
been proposed to overcome the aforementioned problems.
Model-Based Method: Autonomous system design has

gravitated toward model-based methods because of their
capability to deploy such systems in the real world reliably.
The family of model predictive control (MPC) methods
have been widely used for path planning and collision
avoidance. For example, [8], [9] used the MPC method to
calculate collision-free trajectories as the optimal solution
by minimizing a cost function incorporate optimization into
multi-ship collision avoidance. Reference [10] calculated
the desired course and speed offsets by formulating the

objective function, associating with the dynamic model of
ships, COLREGs regulations, and environmental disturbance.
These studies solved path planning and collision avoidance
problems by formulating an objective function. If the
conditions are used for long-range multi-ship maneuvering,
the optimization process in MPC would be time-consuming
for real-time control. The shortest computational latency
is highly desirable for real-time implementation. Reference
[11] integrated the dynamic model with a planning method,
rapidly exploring random tree, to compute the collision-free
trajectory, where comparisons with the MPC method provide
further insight into the performance and capabilities of the
approach. Reference [12] proposed a hybrid method, fast
marching square and velocity obstacle (VO), for global path
planning to generate the optimal trajectory. In conclusion,
one of the challenges of the model-based methods is the
convergence and computational complexity of numerical
optimization. It will also increase the difficulty if the
surrounding environment is a prior unknown.
End-to-End Learning-Based Method: To address the

requirements to build an accurate dynamic model, and
the problem of high computation cost with multiple target
ships in a long-range encounter situation, and exploit
in an unknown environment, recently, lots of machine
learning techniques have already demonstrated remarkable
potential promising results. Reference [6] highlighted the
learning-based methods from different dimensions, including
end-to-end learning and sub-task learning. For end-to-end
learning, the system is directly trained holistically towards
the final goal by the overall objective function at each
learning step. An example of this end-to-end approach in
this category is proposed by [13], which demonstrated a
DRL-based algorithm could avoid both static and dynamic
obstacles by combining two well-defined reward functions.
In addition, DRL had been showing a great advantage
in solving the end-to-end autopilot problems [14]. It can
learn optimal steering policies in an unknown environment,
that map observations directly to the ship’s actions, thus
enabling path following and collision avoidance during the
navigation. For instance, [15] used a decentralized multi-
agent reinforcement learning (MARL) framework, enabling
autopilot vehicles to learn human-drive vehicle behavior
for optimized social utility. Reference [16] showed that
reinforcement learning could effectively organize control
transitions in mixed autonomy systems, significantly reduc-
ing traffic disruption compared to traditional methods.
In some cases, these DRL policies learned from end-to-

end strategy lack long-term planning capabilities based on
possibly sparse and delayed rewards. Moreover, compared
with the model-based method, the learning-based method
typically cannot provide explicit assurance of safety [6].
Combining Model-Based Control and DRL: As a result, a

combined approach had been proposed to improve learning
efficiency and showed the potential to implement it in
the real world. It can benefit from the advantages of
model-based control and DRL in a way that addresses
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FIGURE 2. Illustration of the COLREGs interpretation.

their limitations [17]. Several papers take their effort to
combine the learning with classical control methods for
ground vehicle navigation and manipulation [18]. One of
the hierarchical solutions, where the trained DRL policy
is used for local control, sampling-based planning, such as
RRT [19], Probabilistic Roadmaps [20] are used for global
planning. These sampling-based algorithms are suitable for
global planning tasks. For example, [20] combined DRL
and sampling-based planner for long-range navigation tasks,
where the sampling-based planner provided roadmaps, and
DRL agent was used to controlling the robot under the
direction of planning. Reference [19] used DRL to learn
to propose a motion planning method that combining a
sampling-based planner with DRL. In contrast, other works
such as [21], used learning to predict waypoints that were
used with maneuver control. The DRL policy generated the
waypoints, and the model-based control planner generated
collision-free control behavior. This study uses the DRL to
predict the next waypoint, which is ensured to generate a
collision-free trajectory comply with COLREGs, then use a
model-based method to calculate the action command.

III. PRELIMINARIES
A. COLREGS
Maritime vessels are forced to comply with collision
regulations, COLREGs, which describe collision avoidance
patterns. Three typical patterns, crossing, head-on, and
overtaking, are presented in Fig. 2. It illustrates that target
ships (TSs) are in different relative bearing regions of the
own ship (OS). Each vessel treats itself as the OS from the
first-person perspective; the other vessels are the TSs for
ease of expression. For example, if two vessels meet head-
on or nearly head-on, and there is a risk of collision, both
vessels shall alter course to starboard. Rule 14 and Rule 15
deal with two vessels approaching from about 3 degrees off
either bow, to 22.5 degree about either beam. A vessel that
has another on her starboard side shall actively avoid the
other. This vessel is termed as the give-way vessel; the other
one is termed as the stand-on vessel [3].

B. DYNAMIC MODELING OF A SHIP
To formulate the dynamic model of an autonomous surface
vessel (ASV), we define the generalised coordinate position
vector (position-orientation vector) η = [x, y, ψ]T , and the
generalised velocity vector (linear-angular velocity vector)

Algorithm 1 Combining DRL and Low-Level Control for
Goal-Oriented Navigation

Require: PG = (xG, yG)
1: for t = 1 to T do
2: � Measure TSs states, relative goal state, relative

pose state, and previous action state
3: st = (sr, sg, sp, sl)t
4: for H time steps do
5: � Predict the next waypoint based on the policy
6: p̂t = DRL(st,PGt )
7: � Calculate the desired course angle command

based on LOS guidance law
8: {χd}t = LOS(p̂t, pt)
9: � Trajectory tracking controller

10: {Xτ ,Yτ ,Nτ }t = FLC({χd}t)
11: end for
12: end for

v = [u, v, r]T . Based on the above definitions, the ship
kinematic model follows in Equation (1). [5]

η̇ = R(ψ)v (1)

where x and y are the positions in north and east, respectively;
ψ refers to the heading angle relative to north. v consists
of surge velocity u, sway velocity v, and yaw rate r; R(ψ)
refers to a rotation matrix.

R(ψ) =
⎡
⎣

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤
⎦ (2)

The general 3-DOF equation of the ship manoeuvring
model can be written as follows [5]:

m
(
u̇− vr − xGr2

)
= XH + Xτ (3a)

m(v̇+ ur + xGṙ) = YH + Yτ (3b)

Izzṙ − mxG(v̇+ ur) = NH + Nτ (3c)

where the first terms XH , YH , and NH above represent the
hydrodynamic forces; The second terms Xτ , Yτ , and Nτ
represent the actuator forces, where Xτ ∝ n cos δ, and Yτ ∝
n sin δ, given by the propeller shaft speed n and rudder
deflection angle δ; Nτ ∝ lr ∗ Yτ is proportional to Yτ , along
with the rudder length lr [22].

IV. METHOD OF AUTONOMOUS SYSTEM DESIGN
A. OVERVIEW
The whole procedure of the autonomous system is summa-
rized in Algorithm 1. The proposed guidance system in this
study consists of a collision avoidance module and a line-of-
sight (LOS) guidance module (refer to Fig. 1). The collision
avoidance module is used to predict the next waypoint based
on the OS observation, which contains the information about
the encountered TSs, the OS’s state relative to the goal,
as well as its relative pose state. The predicted waypoint
will guide the OS towards the direction of avoiding the
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FIGURE 3. Block diagram of the collision avoidance module.

TSs with COLREGs compliance. The predicted waypoint
p̂t and the current vessel state pt are the input to the LOS
guidance module that provides the necessary course angle
χd to achieve. The trajectory tracking controller module then
calculates the steering and propulsion control commands to
determine the necessary control forces and moments based
on the course angle, that can drive the OS to the predicted
next waypoint smoothly. It will repeat the process until the
OS arrives at the destination.

B. COLLISION AVOIDANCE MODULE
As shown in Fig. 3, we develop the collision avoidance
module to generate a sequence of waypoints by considering
the collision risk with TSs and COLREGs compliance. More
specifically, at time step t, the OS measures an observation
st, and the goal location, PGt , which are specified in the OS’s
body-fixed coordinate frame, calculates a desired waypoint
p̂t = DRL(st,PGt ) in the polar coordinate of the OS. (Line 6
in Algorithm 1). The collision avoidance module makes use
of two submodules: collision risk assessment, and waypoint
generation networks.

1) COLLISION RISK ASSESSMENT

In congested waters, where ships are navigating with frequent
trajectory changes, a safe situation can suddenly become
critical. Under these situations, the ships should pay careful
attention to the encountered ships with high collision risk.
As radar is being used as the primary tool for collision
avoidance, the geometry of the encounters is defined by the
safe passing distance, the CPA. CPA is termed as the closest
point of approach, which indicates the minimum distance
value between the OS and the approaching TS. Therefore, to
take appropriate action early, we should evaluate the CPA-
based collision risk in real-time. Assuming that the position
vector from TS to OS is given as �POT = xOT�i + yOT�j; The
velocity vector VOT can be derived as d�POT

dt = �VOT.
To calculate the minimum relative distance between TS

and OS (DCPA), we reconstruct it into a minimization
problem of finding the min ‖�POT‖ when t ≥ 0.
Correspondingly, the time t here can be regarded as the
TCPA, time to the closest point of approach, only if the time
is greater than zero.

TCPA = − �POT|t=0 · �VOT
�VOT · �VOT

(4a)

DCPA = �POT|t=0 + �VOT · TCPA (4b)

TABLE 1. COLREGs situation category.

As aforementioned, Fig. 2 illustrates the four main types
of encounter situations that OS may confront: Crossing_stand
on, Crossing_give way, Head-on, and Overtaking. They
depend on both the relative bearing of the TS βOS =
atan2(yOT, xOT)−ψT from the OS, and the relative bearing
of OS βTS from the TS [23]. When the DCPA and TCPA
of two encountered ships trigger the collision risk condition,
the relative bearing can be used to decide the type of the
COLREGs situations. The TS is then categorized based on
its instantaneous position and the heading ψT , as described
in Table 1

2) WAYPOINT GENERATION NETWORKS

An essential capability for autonomous agents is to plan
a collision-free trajectory in real-time when detecting the
obstacles along the predefined path. The more encountered
TSs are detected, the higher computation cost for real-time
trajectory generation is needed. As a result, a learning-
based method is proposed to meet real-time planning and
collision avoidance demands. This learning procedure allows
a more guided and efficient exploration in unknown envi-
ronments based on the ship’s prior experience with various
environments. Using the learning-based method guarantees
the trajectory planning in real-time but can significantly
decrease the computational time by deploying the pre-trained
policy [24].
We formulate collision avoidance as a sequential decision-

making problem in a DRL framework, where an agent learns
an optimal policy from interaction with the environment.
Refer to Fig. 3, the agent measures states from the envi-
ronment when collision hazard occurs, then transit them
into a neural network architecture to calculate an action,
the predicted waypoint. The agent can acquires experience
and adapt to an unknown environment during the training
process. The detailed definition of the observation, action,
and reward function are presented as follows. The randomly
chosen screenshot of the simulation environment is illustrated
in Fig. 4.
Observation: The observation st are constructed by con-

catenating four features, which are listed in Table 2. sr is
the measurements of the last three consecutive frames from
a 360 degrees distance sensor with a maximum range of L
meters and 2 degrees interval. It will offers 180 distance
values every data frame (i.e., srt ∈ R

3×180). The overall idea
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FIGURE 4. Snapshot of the training environment where the OS is approaching to its
destination with multiple TSs.

TABLE 2. The observation space defined in the DRL algorithm.

is illustrated in Fig. 4, where an agent in OS scans for a
complete 360-degree sector. The agent will take the vector
of distance measurement di three times to build an accurate
map of the environment, further to determine either the TS
toward or away from the OS.
The relative goal state sg represents the goal concerning

the OS’s current position in polar coordinates with distance
and angle. It is a 2D vector. We define the relative pose
state sp, including the cross-track error ye and the heading
error ψe, as the change in heading and cross distance needed
for the OS to navigate straight toward the look-ahead point
from the current position and heading. In addition, we
consider the previous action sl as the current observation
space. At last, the observation space is normalized using the
statistics aggregated over the entire training process.
Action Space: Based on the observation, the waypoint

generation network outputs a predicted 2D waypoint p̂t =
(r̂t, θ̂t) in the polar coordinate of the OS. Where r̂ is
defined as 5 times of ship’s length, θ̂ is the turning angle
of 10 degrees based on its current heading angle. The
prediction generated by the training network is executed over
a time horizon of H seconds, which satisfies COLREGs and

collision-free constraints. Consequently, a new waypoint is
generated until the OS arrives at the destination.
Reward Function: Reward functions are used to shape the

agent’s behavior by interacting with the environment. By
getting positive or negative rewards for taking certain actions
that completes or fails at a task in the environment, the agent
should learn a policy resulting in good actions by trying to
maximize its reward. The reward r at timestep t is designed
as a sum of four terms, gr, car, cor and pr, is presented in
Eq. (5):

rt =
(gr)t +

(car)t +
(cor)t +

(pr)t. (5)

The objective of the agent is to reach the destination while
avoiding collisions on the way. As a result, constraining the
agent to reach the goal is intuitive. First, the agent is awarded
by grt for achieving its goal, where PGt and pt are the goal
position and position of the vessel at time step t respectively:

(gr)t =
{
rarrival if ‖pt − PGt ‖ < 1.0
kg

(‖pt−1 − PGt ‖ − ‖pt − PGt ‖
)
otherwise.

(6)

where the rarrival takes the value of 10.0 and kg is set to −0.1.
To learn an optimal policy for collision avoidance, there
should be a significant negative reward for being involved
in a collision. When the OS collides with the approaching
TSs, it will be penalized by (car)t:

(car)t =
{
rcollision if ‖ptOS − ptTS‖ < 2R
0 otherwise.

(7)

where the R takes the summation of the length between
OS and TS. A third reward component is caused by non-
compliance with COLREGs. When the OS comply with
COLREGs, it will get the positive reward. Otherwise, it will
be punished. The COLREGs reward rcolregs has the maximum
value 1 if the OS avoids a collision in those encounter
situations.

(cor)t =
{
rcolregs if comply with COLREGs
−rcolregs otherwise.

(8)

To ensure the vessel can smoothly converge to the
predefined path, the path following reward component
(pr)t = [(hr)t, (cr)t] dependent on the cross-track error ye
and course angle error ψe are selected as the performance
measure for the path following task.

(
hr

)
t
=

{
Cψee

−kh
(
(ψe)

2+(ψ̇e)2
)

if ψe < ψ

−rheading otherwise.
(9)

(cr)t =
{
Cyee

−kc
(
(ye)2+(ẏe)2

)
if ye < y

−rcross otherwise.
(10)

Training Network: The basic architecture of the developed
waypoint generation network is illustrated in Fig. 5. We
use the Convolutional Neural Networks (CNN) to map the
observation vector sr from the distance sensor to the desired
next waypoint p̂t = (r̂t, θ̂t). The first hidden layer convolves
16 one-dimensional filters with kernel size equals three over
the three input scans and applies ReLU non-linearity. The
second hidden layer convolves 16 one-dimensional filters
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FIGURE 5. Structure of waypoint generation networks.

with kernel size equals eight and uses ReLU. The third
hidden layer is a fully connected (FC) layer with 128 rectifier
units. The output of the third hidden layer is concatenated
with the other three feature inputs and then fed into the last
FC layer with 64 rectifier units. Consequently, the network
outputs an action from a Gaussian distribution.
Training Algorithm: We train our waypoint generation

networks using Proximal Policy Optimization (PPO), in an
actor-critic framework, to get an optimal policy πθ (at|st),
and a value function Ât. PPO updates policies via

θt+1 = θt + α 
θ LPPO(θ) (11)

Here, LPPO(θ) is given by Equation. 12, in which ε is
a clipping hyperparameter which roughly indicates how far
away the new policy is allowed to go from the old. The
value of epsilon is set to 0.2 in the paper. Ê denotes the
empirical expectation over time steps. Ât is an estimate
of the advantage function. The advantage function [25]
represents how good a state action pair is compared with
the average value of current state. rt(θ) = πθ (ai|si)

πθold (ai|si) denotes
the probability ratio between the updated and the previous
policies. Correspondingly, the clip function will constraint
the value of rt(θ) between 1− ε and 1+ ε.
LPPO(θ) = Ê

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1+ ε)Ât

)]

(12)

Algorithm 2 describes the waypoint prediction procedure
that runs on an agent. At each iteration, the agent collects
T time steps of data, and implements the policy for T time
steps. First, define the temporal difference residual δt = rt+
γVφ(st+1)−Vφ(st), and compute the Generalized Advantage
Estimator Ât based on the current state value function
Vφ(st), which is approximated with a neural network with
parameters φ. Second, we update the policy by maximizing
the surrogate objective function LPPO(θ) on these sampled
trajectories. It is via gradient ascent with the Adam optimizer
for Eπ epochs. Thirdly, we construct the mean squared
error loss LV(φ) for Vφ(st), and optimize it with Adam
optimizer for Ev epochs. πθ (at|st) and Vφ(st) are updated

Algorithm 2 Training the Waypoint Generation Network
With the PPO Algorithm [26]
1: Initialize policy network πθ and value network Vφ(st)

using hyper-parameters in Table. 3.
2: for iteration = 1, 2, . . . , do
3: Run policy πθ for T time steps, collecting {st, rt, at},

where at = p̂t, t ∈ [0,T]
4: Estimate advantages using GAE [25], Ât =∑T

l=0(γ λ)
lδt, where δt = rt + γVφ(st+1)− Vφ(st)

5: break, if T > Tmax
6: πold ← πθ
7: for j = 1, . . . ,Eπ do
8: rt(θ) = πθ (at|st)

πold(at|st)
9: LPPO(θ) = ∑Tmax

t=1 min(rt(θ)Ât,clip(rt(θ), 1 −
ε, 1+ ε)Ât)

10: Update θ with lrθ by Adam [27] w.r.t LPPO(θ)
11: end for
12: for k = 1, . . . ,EV do
13: LV(φ) = −∑T

t=1(
∑

t′>t γ
t′−trt′ − Vφ(st))2

14: Update φ with lrφ by Adam w.r.t LV(φ)
15: end for
16: end for

TABLE 3. The hyper-parameters of our training algorithm described in Algorithm 2.

independently since their parameters are not shared with each
other. Finally, the algorithm for predicting the waypoints is
given below:
The hyper-parameters during the training process are tuned

in Table 3.

C. LOS GUIDANCE MODULE
Given the predicted waypoint, a LOS guidance module
provides its desired heading to the waypoint. The LOS
guidance principle is illustrated in Fig. 6. The along-track
xe and cross-track error ye for the current position of the
OS p(x, y) are given by [28]. Only the cross-track error
is relevant for the path following purpose since ye = 0
indicates that the OS has converged to the straight line. The
line connects the previous waypoint p̂k−1 and the predicted
waypoint p̂k. [

xe
ye

]
= R

(
ψp

)[x− x̂k−1
y− ŷk−1

]
(13)

where R(ψp) is the rotation matrix from the initial frame to
the path-fixed reference frame; p̂k = (x̂k, ŷk) is the position of
the k-th predicted waypoint represented in North-East-Down
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FIGURE 6. Line-of-sight guidance geometry for straight lines. The heading angle
and sideslip angle are ψ and β, respectively.

coordinate frame, and ψp is the horizontal path-tangential
angle

ψp = atan2
(
ŷk − ŷk−1, x̂k − x̂k−1

)
(14)

In marine guidance applications, the LOS vector starts at
the OS’s current position and passes through a point pLOS,
which is located on the path-tangential line at a lookahead
distance 
 > 0 ahead of the direct projection of the ship’s
position p(x, y) on to the path [28]. The look-ahead distance
value is chosen as constant value in this study.
In the presence of external disturbances β, the desired

heading angle is derived in Eq. (15), based on the lookahead-
based guidance law (Line 8 in Algorithm 1).

ψd = ψp + arctan

(−ye



)
− β (15)

D. TRAJECTORY TRACKING CONTROLLER MODULE
This section focuses on tracking desired trajectories for
the nonlinear system using feedback linearization control
method [22] (Line 10 in Algorithm 1). Two feedback
linearizing controllers, which act as the speed and the yaw
rate controller; and One conventional PD controller, acting
as the heading controller are implemented in the simulator.
As presented in Eq. (16), the speed controller Xτ is on the
form

Fx = −
(
mvr + Yv̇vr + Yṙr2

)
− (Xu + X|u|u|u|

+ Xuuuu2)u+ Kp,um(ud − u) (16)

the yaw rate controller Yτ is shows in Eq. (17)

Fy = (mur − Xu̇ur)− (Yvv+ Yrr + Y|v|v|v|v
+ Yvvvv3)+ Kp,rIz(rd − r)/lr (17)

the heading PD-controller is in Eq. (18)

Fy = Kp,ψ Iz
(
(ψd − ψ)− Kd,ψ r

)
/lr (18)

where Fx,Fy are the control forces on the forward direction
and the yaw rate; u, v, r are the forward speed, lateral

TABLE 4. Simulation setup: case 2 and case 3 illustrate the multi-ship collision
avoidance scenarios.

speed, and the yaw rate respectively; m is the inertia of the
vessel; X,Y with different subscripts are the maneuvering
coefficients of the vessel; Kp,u, Kp,r, and Kd,ψ are the control
parameters in this study.

V. EXPERIMENTAL RESULTS
A. SIMULATION SETUP
To validate the proposed approach for solving the multi-ship
collision avoidance problem, we consider the autonomous
navigation for an ASV transiting through a strait. The
parameters of the ship model are referred to in the study [29].
Meanwhile, multiple TSs are approaching from its front,
port, and starboard sides. The simulation setting is summa-
rized in Table 4, from static obstacle to dynamic multiple TSs
collision avoidances that can demonstrate the scalability of
the proposed method. In all cases, the same hyperparameter
settings of the training are used.
The OS is approaching the destination while avoiding

collisions with encountered TSs. To achieve this, we trained
our agent using the PPO algorithm as presented in the
collision avoidance module. The time step size is set to
�t= 0.1s. For each training iteration, the agent exploits
the policy to generate trajectories until the maximum of
Tmax = 8000-time steps. We select samples randomly from
the trajectories, including the state, action, and reward. The
selected mini-batch is used to compute a loss function that
combines the policy surrogate and a value function error
term. The parameters of the function are updated by the
Adam optimizer. The procedure will repeat until completing
the given training iteration.

B. CASE 1: COLLISION AVOIDANCE WITH STATIC
OBSTACLES
Case 1 is shown in Fig. 7, the OS can converge to its desired
path and toward the destination in a narrow channel. Before
entering the channel, it starts to avoid static obstacles by
maneuvering to the starboard. The right side of the picture
shows a snapshot of the whole scenario. In stage 1, the
OS starts to alter its course to the destination as its initial
heading is −90 degrees. In stage 2, before arriving at the
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FIGURE 7. Collision avoidance with static obstacles: the desired trajectory passes
through a narrow channel.

FIGURE 8. Guidance system design based on the three methods.

channel entrance, the OS changes its course again by having
an acceptable distance to the entrance, which resides slightly
outside the channel. Subsequently, the OS converges to the
destination by avoiding static obstacles.

C. CASE 2: COMPARISON WITH MPC AND VO METHODS
When avoiding moving obstacles, the OS assumes to move
straight from south to north when three TSs appear in
front of it in constant heading and speed. Fig. 9 shows the
resulting trajectory of the proposed method, with trajectories
under MPC and VO as comparisons. All three guidance
system designs have the similar ability to avoid collision,
react to surrounding TSs, and return to course, while
in compliance with COLREGs. The proposed method is
therefore considered on par with the other two widely used
methods. As shown in Fig. 8, a LOS guidance module is

FIGURE 9. Head_on in case 2: based on the three methods, the OS successfully
complete its avoidance maneuver for the TS approaching from its head-on side.

used to calculate a course command that guides the ship
converging the straight line connecting the previous and the
current waypoints. The MPC module provides a course angle
offset χm such that the actual course command is χd =
χd′ +χm; While the VO-based guidance system simply reacts
and replans using the latest information of the surrounding
environment.
For the case considered, the MPC [10] and VO [22] meth-

ods solve the problem in the condition of the information
of pre-known of surrounding information, including the
dynamics of the ship, the dynamics of the steering and
propulsion system, and any number of TSs. While in this
study, with no a priori knowledge of the environment except
for the waypoints of its desired path, the agent of OS makes
decisions based on a range sensor measuring the distance
to surrounding obstacles. In comparison to the two methods
Fig. 9, the heading angle in this study presents a more stable
and smooth maneuvering effect.

D. CASE 3: COMPARISON WITH END-TO-END LEARNING
APPROACH
For end-to-end DRL, the system is directly trained holisti-
cally towards the final goal by the overall objective function
at each learning step. In the study of [14], the end-to-end
DRL directly maps the states of TSs to an OS’s control
commands in terms of rudder angle. The oscillation of the
control command is inevitable. The proposed method is
compared to the end-to-end DRL method by planning a
collision-free trajectory in case 3. It shows that the proposed
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FIGURE 10. Comparison with MPC and VO methods.

FIGURE 11. Comparison with end-to-end learning approach.

method can achieve a relatively stable effect better than the
end-to-end DRL method.
The trajectory of the OS and corresponding heading are

illustrated in Fig. 10 and Fig. 11. The considered scenario
1 is characterized by the OS that is transiting strait while
simultaneously is facing a starboard crossing and head-on
coming. The OS starts to alter its course when detecting
the collision risk with a margin of L = 300m. The optimal
control behavior corresponds to a course change toward
starboard side until all the TSs are passed at a safe distance
on OS’s port side.
Fig.11 illustrates a similar situation: while the OS is

transiting strait, two vessels TS2 and TS3 are approaching
from the starboard side, TS4 is approaching from starboard
side, and TS1 is coming from head-on side. At the beginning,
TS3 appears in the OS’s detection field. The optimal control
strategy of OS is to make a change in course towards
starboard as shown in stage 1. Later on, another TS2 comes

in from the starboard side such that the OS needs to alter its
course more to the starboard side. When the OS passes at
a safe distance in front of TS 2 and 3, it starts to converge
to its destination.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we have designed and implemented an
autonomous system, enabling the collision avoidance of
multiple ships. Due to the difficulties arising from uncer-
tainties of the dynamic model and the extremely high cost
of exploring and sampling computations. A hierarchical
method, combines global path planning based on DRL and
local motion control together to naturally handle the real-time
path planning and efficiency of both calculation and sampling
problems. The learning process and control procedure are
designated to achieve specific subgoals, instead of the entire
navigation stack. This combination emphasizes the benefit
of deploying DRL in global planning, i.e., providing a
collision-free trajectory that has online planning capabilities,
and alleviating the sensitivity to the heading angle changes.
Furthermore, the model-based control strategy can provide
an accurate control command to actuators, greatly offloading
the computational load from the learning process. Moreover,
it is expected to implement into the real application better
than the end-to-end reinforcement learning method. The
simulation result demonstrated that this proposed method can
successfully be applied to the autopilot task with relatively
smooth trajectories. For future work, we will deploy a more
accurate tracking controller, further validate the proposed
algorithm in real-world experiments.
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