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ABSTRACT Factor graph, as a bipartite graphical model, offers a structured representation by revealing
local connections among graph nodes. This study explores the utilization of factor graphs in modeling the
autonomous racecar planning problem, presenting an alternate perspective to the traditional optimization-
based formulation. We model the planning problem as a probabilistic inference over a factor graph, with
factor nodes capturing the joint distribution of motion objectives. By leveraging the duality between
optimization and inference, a fast solution to the maximum a posteriori estimation of the factor graph is
obtained via least-squares optimization. The localized design thinking inherent in this formulation ensures
that motion objectives depend on a small subset of variables. We exploit the locality feature of the factor
graph structure to integrate the minimum curvature path and local planning computations into a unified
algorithm. This diverges from the conventional separation of global and local planning modules, where
curvature minimization occurs at the global level. The evaluation of the proposed framework demonstrated
superior performance for cumulative curvature and average speed across the racetrack. Furthermore, the
results highlight the computational efficiency of our approach. While acknowledging the structural design
advantages and computational efficiency of the proposed methodology, we also address its limitations and
outline potential directions for future research.

INDEX TERMS Motion planning, autonomous racing vehicles, probabilistic inference, factor graph, model
predictive control.

I. INTRODUCTION

THEPRIMARY objective of an autonomous racing vehi-
cle is to navigate the racetrack with maximum velocity,

aiming for the shortest lap time. Achieving this goal poses
a substantial challenge, requiring advanced motion planning
algorithms capable of managing the vehicle near its stability
limits. Given the high-speed nature of the movement of the
vehicle, the computing efficiency of the planning algorithm
emerges as a paramount consideration. In essence, the
planning algorithm must not only address planning objectives
but also prioritize computational efficiency. Motion planning
in autonomous racing is typically divided into three tiers:
global planning, local planning, and behavior planning, as
noted by Betz et al. [1]. Behavioral planning entails details

1The review of this article was arranged by Associate Editor Johannes
Betz.

about the racecar’s high-level mission planning. However,
for the scope of this work, we will not delve into behavior
planning. Our focus remains on global planning and local
planning aspects. Global planning focuses on determining
the optimal path, known as the raceline [2], allowing the
racecar to attain higher cornering speeds. On the other
hand, local planning generates a trajectory for a shorter
horizon, contingent on the optimal raceline derived from
the higher-level global planning module. The local planning
ensures a reliable trajectory that adheres to feasibility criteria,
including but not limited to obstacle avoidance, physical
limits, and compliance with modeling constraints.
Trajectory optimization emerges as the preferred method-

ology [1] for the development of fast and reliable global and
local planning algorithms. However, it is noteworthy that the
optimizing criteria differ between the global and local planning
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modules. Global planning typically seeks to optimize for the
lowest lap time.While a minimum time optimization approach
theoretically yields anoptimal raceline thatminimizes lap time,
it is computationally expensive. Alternatively, geometrical
optimization can be employed to generate a raceline with
minimum curvature. Heilmeier et al. [2] emphasize the
preference for this approach due to its relatively lower
computational cost, yet it achieves lap times comparable
to those obtained through the minimum time optimization
methodology. The optimal raceline entails a balance between
the shortest path, which minimizes distance, and the minimum
curvature path, which offers higher speeds at turns, leading
to an overall faster lap time.
Local planning strategies based on trajectory optimization

frame racecar planning as an optimal control problem,
facilitating the systematic incorporation of obstacles and con-
straints. The Model Predictive Contouring Control (MPCC)
approach proposed in [3] stands out as a computationally
efficient solution tailored for 1:43 scaled RC cars in which
convex optimization using Quadratic Programming (QP) is
employed to derive the best solution. Achieving the optimal
trajectory involves weighing the performance of following a
reference path against maximizing progress.
Inspired by [3], we adopt a similar receding horizon

strategy for generating the output trajectory. However, the
planning problem is formulated in the context of planning-
as-inference (PAI). The optimization objective for trajectory
planning in an autonomous racecar involves multiple terms
that exhibit a local nature, meaning they depend on a limited
subset of variables. Leveraging this observation, we propose
to model the planning problem using a factor graph, which
systematically captures this locality structure. This approach
structures all the planning objectives as probability distri-
bution [4], [5], represented as factors on the factor graph.
This Bayesian perspective on planning, rooted in trajectory
optimization as probabilistic inference [4], [6], [7], has not
been explored in the context of autonomous racecar planning
to the best of our knowledge. Our research seeks to fill this
gap by framing racecar planning as a probabilistic inference
problem on a factor graph.
In our proposed approach, we aim to balance adherence

to the reference centerline against progress maximization.
This is achieved by generating a trajectory that minimizes
cumulative curvature, thereby enhancing speed. By structur-
ing planning objectives as factor nodes on a factor graph,
we consolidate planning into a unified framework, systemat-
ically integrating motion models, constraints, and curvature
minimization to optimize the trajectory for maximizing
progress within the planning horizon. The signed distance
field is computed offline from the racetrack boundaries, and
then the output trajectory is generated online in a receding
horizon manner by estimating Maximum a Posteriori (MAP)
inference of the factor graph.
While our planning algorithm shares the receding horizon

controller concept with [3] to maximize racecar progress
within a horizon, we innovate by representing optimization

objectives as a joint distribution over coupled random
variables on a factor graph. Unlike traditional methods
that segregate path curvature minimization between global
and local planning, our approach integrates curvature
minimization into the local planning framework.
We compute the MAP estimation of the formulated factor

graph via numerical optimization [8] that results in enhanced
computational efficiency. In order to validate the effective-
ness of our proposed framework, we perform a comparative
analysis against the QP optimization-based MPCC [3] for
two exemplary racetracks. The results illustrate the superior
performance of our method in terms of both cumulative
curvature and average speed, resulting in better lap time. In
summary, the contributions of this work are as follows:
• A factor graph-based racecar planning framework is
introduced that offers a structured representation of
planning objectives highlighting the insights into the
local design thinking of modeling the problem.

• We propose a novel methodology to minimize the
cumulative curvature of the path by introducing a factor
node attached to three consecutive variable nodes, which
is integrated into the rest of the factor graph. This leads
to a unified planning framework considering raceline
curvature, vehicle motion model, and other constraints
within a single planning module.

The rest of the paper is structured as follows: In Section II,
we provide an overview of the related work in the field.
Preliminaries, vehicle model adopted in this work, and the
background about PAI is presented in Section III. The
problem statement and key methodology of the proposed
approach are introduced in Section IV. Section V details
the formulation of factors based on the motion objectives
and constraints. Implementation details of the proposed
algorithmic framework and the results are presented in
Section VI. A detailed discussion about the limitations of
the proposed methodology and future research directions are
presented in Section VII. Conclusive remarks are outlined
in Section VIII.

II. RELATED WORK
In the context of autonomous racing, research in the field of
global planning is very broad, and it can be categorized based
on the overall optimization criteria [1]. These optimizing
criteria may include lap time [9], energy consumption [10],
and geometric properties of the raceline [11]. These diverse
optimization goals have led to the formulation of distinct
global planning strategies. Notably, geometrical optimization
approaches [2], [11], [12] have gained preference for their
computational efficiency in generating an optimal raceline.
Finding an optimal raceline is a complex task, as the shortest
path does not necessarily offer the minimum lap time for
curved racetracks since the speed is considerably reduced at
turns. Due to racetrack curves, the path with the minimum
curvature offers higher speed. Therefore, the optimal raceline
is a compromise between the shortest path, which minimizes
the path length, and the minimum curvature path, which
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offers higher speed at turns, ultimately resulting in reduced
lap time.
Braghin et al. [11] proposed a race car driver model that

uses geometric optimization of the path along a racetrack
to find the minimum curvature raceline. The output of
the proposed algorithm is the best compromise between
the shortest path and path with the minimum curvature,
resulting in a speed profile that allows to minimize the
lap time. Kapania et al. [12] followed a similar approach
and divided the trajectory generation into two sequential
steps. The first step involved generating a velocity profile,
followed by minimizing the path curvature using convex
optimization. Recently, Heilmeier et al. [2] proposed a QP-
based optimization formulation for finding the minimum
curvature raceline. It has also been noted that the raceline
produced by QP optimization by minimizing the cumulative
curvature of the path produces comparable lap time as
compared to the minimum time optimization strategy while
being computationally efficient. However, to refine the
raceline further, an iterative QP optimization strategy is
employed, leading to increased computation time.
Similar to existing methods for minimum curvature race-

line planning [2], [11], our objective is also to minimize the
cumulative quadratic curvature of the centerline. However, in
contrast to conventional QP-based optimization approach [2],
we propose a novel method that utilizes probabilistic
inference and factor graph. We transform the representation
of the racetrack and centerline into the Normal-Tangential
(N-T) coordinate system, which leads us to the proposition
that the cumulative curvature of an arc can be reduced
by minimizing the tangential rotational angle between two
waypoints along the centerline. Based on this, we design
factors that consider the minimization of the tangential
rotational angle and integrate these into the factor graph that
also includes the local planning module related factors.
Regarding local planning, the Model Predictive Control

(MPC) approach has garnered significant attention within the
autonomous racing research community in recent years [1].
In MPC case, the global plan (raceline) is optimized, keeping
the consideration of obstacle avoidance, constraints, and the
system model. The cost function is used to represent planning
objectives such as progress along the racetrack, obstacle
avoidance and deviation from the optimal raceline. There is
a wide range of MPC approaches proposed in recent years,
such as an MPC methodology that mimics a professional
driver [13], introducing a two-mode switching approach
aimed at optimizing either for the minimum-time or maxi-
mum velocity objective. A sampling-based MPC [14] relying
on path integral control to achieve entropy minimization. An
approach that considers vehicle stabilization, path tracking,
and collision avoidance is proposed in [15]. Similarly, a
nonlinear-MPC in [16], and a Stochastic MPC in [17] to
plan efficient overtaking maneuvers by utilizing Gaussian
Process (GP) to predict the opponent’s maneuver. Recently,
a model-based learning of control policy has been proposed
in [18] that updates the control policy based on lap time

gradient with respect to control parameters, leading to
performance improvement. However, in terms of computing
efficiency, MPCC approach [3] stands out as a framework
that utilizes linear time-varying models at each sampling time
to construct local approximations in the form of convex QP.
The resultant QPs are efficiently solved to achieve real-time
working of the control scheme for 1:43 scaled RC racecars.
On the other hand, PAI emerges as an alternative approach,

providing fast solutions to planning problems [4], [5],
thereby indicating its potential utility in the field of
autonomous racing. A recent work by Bazzana et al. [19] also
proposes a factor graph-based MPC for navigation. While
our algorithm shares similarities with [19] in formulating
the planning problem as factor graph-based MPC, there are
two key distinctions. Firstly, we address the more complex
problem of autonomous racing, including the incorporation
of curvature minimization alongside navigation. Secondly,
we employ least square optimization for MAP estimation,
ensuring faster computation, a crucial factor in the context
of autonomous racing.
While the fundamental idea of our proposed planning

algorithm is also to maximize the progress of the racecar
within the horizon as a performance measure similar to [3],
we represent optimizing objectives as a joint distribution over
coupled random variables on the factor graph. Unlike tra-
ditional approaches that separately minimize path curvature
at the global level, our approach eliminates the distinction
between global and local planning. The factor responsible for
optimizing minimum curvature is integrated along with other
local planning factor nodes on the factor graph. Other exist-
ing works also consider global planning and local planning as
a unified framework [20], [21]. However, these approaches
do not incorporate cumulative curvature minimization in their
optimizing criteria. Moreover, all these methods adopt the
traditional trajectory optimization approach, contrasting with
our probabilistic inference-based framework. Our approach
not only demonstrates computational efficiency and superior
performance but also introduces a local perspective within
the structured representation of motion objectives on a factor
graph.

III. PRELIMINARIES AND BACKGROUND
The racetrack is defined by left and right track boundaries,
denoted as bl → R

2 and br → R
2, respectively. The

centerline p of the racetrack is assumed to be available
as a set of discretized waypoints, represented by p =[
pi · · · pN

]� → R
2, equidistant from bl and br. The

workspace of the racing vehicle χ ⊂ R
D is partitioned

into obstacle-space χobs ⊂ χ , and the space within the
racetrack boundaries χtrack ⊂ χ which is considered free
space. The racing vehicle’s state is denoted as θ(t):t→ R

D,
where D is the state dimensionality, and θ(t) is a continuous
time function mapping time t to vehicle states θ . Following
Mukadam et al. [5], racing vehicle states are sampled from
a continuous time GP,

θ(t) = [θ0 , . . . , θN]T ∼ N (μ(t),K), (1)
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where N represents the total number of states for a set
of times t = t0, . . . , tN . Here, μ(t) is the mean vector,
and K(t, t′) is the covariance function matrix. The racecar
planning problem is characterized as finding the optimal
control u∗ that generates optimal state θ∗.

A. FACTOR GRAPH FOR PLANNING AS INFERENCE
In this section, we revisit the formulation of the planning
problem as probabilistic inference following [5], [7] on
a factor graph. In a general planning problem, we are
interested in finding the optimal state sequence θ∗0:N and
control sequence u∗0:N−1 that maximizes the joint probability
distribution p(�). Where, � = {θ,u}. To model the belief
over continuous, multivariate random variables �, a factor
graph G = (�,F , E) is employed. The joint probability
distribution p(�) is factorized as follows:

p(�) ∝
M∏

m=1

fm(�m), (2)

where fm ∈ F are factors associated with the corresponding
variable nodes �m ∈ � connected through the edges E of
the factor graph.
The optimal state θ∗0:N and control input u∗0:N−1 are

computed by obtaining MAP inference,

�∗ = arg max
�

M∏

m=1

fm(�m). (3)

This factor graph formulation (3) offers a structured repre-
sentation of the planning problem, where system state and
control input variables are portrayed as variable nodes. An
inference algorithm on the factor graph is utilized to compute
the MAP estimation, aligning with the planning objectives
dictated by the attached factors.
The optimal control sequence u∗ is determined by mini-

mizing the negative logarithm of the probability distribution
p(�) represented over the factor graph G. This results
in an unconstrained nonlinear least squares optimization
problem [5], which is a well-explored domain with numerous
numerical algorithms available, such as the Gauss-Newton
or Levenberg-Marquardt algorithms. These algorithms itera-
tively solve a quadratic approximation until convergence is
achieved. The proposed planning problem formulation for
autonomous racing and factors are discussed in detail in
Sections IV and V, respectively.

B. VEHICLE MODEL
We opt for a bicycle model to represent the dynamics
of the racecar, incorporating nonlinear tire force laws.
This model is commonly employed in autonomous racing
applications [3], [22].
The selected vehicle model relies on specific assumptions.

These assumptions include the vehicle operating on a
flat surface, neglecting load transfer and combined slip,
and the assumption that longitudinal drive-train forces act

FIGURE 1. The schematic drawing of the vehicle model with mass m. lf and lb depict
the distance from the CoG to the front and rear wheels. The vectors in red illustrate
the forces between the tire and the road, while vx and vy denote velocity components,
and αf and αb represent slip angles.

on the center of gravity (CoG). The vehicle state θ =
[x, y, vx, vy, ϕ, ω]T consists of the position of the vehicle p =
[x, y]T , the longitudinal and lateral velocity v = [vx, vy]T , and
the rotation component r = [ϕ, ω]T that includes heading
angle ϕ and yaw rate ω. The control input u = [δ, d]T

constitutes the steering angle δ and the PWM duty cycle d
of the electric drive train motor. The model, represented as
θ̇ = g(θ ,u), is depicted in Fig. 1. The associated nonlinear
equation of motion is:

θ̇ =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

vx cos ϕ − vy sin ϕ

vx sin ϕ − vy cos ϕ
1
m

(
Fb,x − Ff ,y sin δ + mvyω

)

1
m

(
Fb,y − Ff ,y cos δ + mvxω

)

ω
1
Iz

(
Ff ,ylf cos δ − Fb,ylb

)

⎤

⎥⎥⎥
⎥⎥⎥
⎦

= : g(θ ,u), (4)

where the car is characterized by a mass m and inertia Iz, lf
and lb denote the distances from the CoG to the front and
rear wheels axle, respectively. The tire forces F capture the
interaction between the car and the road, with subscripts x
and y indicating longitudinal and lateral forces, and f and b
representing the front and rear wheels.
Given the objective of racing, it is crucial for the tire

forces model to realistically depict the racecar’s behavior at
high speeds and handling limits. To strike a balance between
precision and computational efficiency, a simplified Pacejka
tire model [23] has been selected. This choice is informed by
the need to ensure a realistic representation of the racecar’s
dynamics during high-speed racing scenarios.

Ff ,y = Df sin
(
Cf arctan

(
Bfαf

))
,
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s.t. αf = − arctan

(
ωlf + vy

vx

)
+ δ, (5a)

Fb,y = Db sin(Cb arctan(Bbαb)),

s.t. αb = − arctan

(
ωlb − vy

vx

)
, (5b)

Fb,x = (Cm1 − Cm2vx)d − Cb − Cdv2
x . (5c)

The parameters B, C and D are experimentally identified to
define the shape of the semi-empirical curve. Whereas, α

is the slip angle. The longitudinal force of the rear wheel,
Fb,x (5c), is modeled employing a motor model for the
DC electric motor. We linearize the model (4) with respect
to the current state, followed by discretization step. The
resulting discretized model is utilized to predict future states
at steps j = 0, . . . , n, where n is the prediction horizon. This
prediction is based on the current state θ0 and the input
sequence over the prediction horizon, uj , j = 0, . . . , n− 1.
Refer to (cf. [3], Section II) for more details regarding the
racecar model.

IV. PROBLEM STATEMENT AND APPROACH
This work addresses the challenge of determining the optimal
trajectory for an autonomous racecar navigating a racetrack.
The objective is to identify the optimal control input u∗
that produces the optimal trajectory. This optimal trajectory
seeks to maximize progress while simultaneously adhering
to track boundaries and generating a path with minimal
curvature, thereby offering a better velocity profile. Formally,
the problem addressed by this work is defined as:
Problem 1: Given a racetrack with boundaries bl and br

and centerline p, find the optimal control input u∗ that
results in optimal state θ∗ from the start position p0 to the
goal position pN by taking into account of generating a
minimum curvature path resulting from optimizing the global
summed quadratic curvature k. The output trajectory should
remain within the racetrack boundaries, and both the state
and control input must adhere to the constraints specified
below,

p ∈ χtrack, (6a)

rmin ≤ r ≤ rmax, (6b)

umin ≤ u ≤ umax. (6c)

Here, r = [ϕ, ω]T captures the constraints as rmin and rmax
on the heading angle ϕ and yaw rate ω.

A. METHODOLOGY
To address the Problem 1, we find the optimal control
and state, denoted as �∗, that maximizes the conditional
posterior p(�|e). The prior on the trajectory is represented
as p(�), encompassing the initial belief regarding θ and u.
Similarly, l(�; e) is the likelihood of � given conditional
events e on �. Given the prior p(�) and likelihood l(�; e),
the optimal �∗ is obtained by MAP inference,

�∗ = arg max
�

p(�|e)︸ ︷︷ ︸
p(�)l(�;e)

. (7)

The posterior distribution p(�|e) in (7) can be represented
on a factor graph [4], [5] by factorizing the prior p(�) and
likelihood l(�; e). The prior p(�) is factorized as,

p(�) ∝ f s0
(
p0

)
f gN

(
pN

) N∏

i=0

f refi

(
pi

)

N∏

i=0

f veli (vi)
N∏

i=0

f rlimi (ri)
N−1∏

i=0

f ulimi (ui), (8)

where the factors f s0(p0) and f gN(pN) are used to provide the
functionality of fixing the start position and goal position.
The prior probability distribution of centerline and desired
velocity is captured by the factors f refi and f veli respectively.
The constraints for r from (6b), and for u from (6c) are
imposed as soft constraints by the factors f rlimi and f ulimi ,
respectively. Similarly, we factorize the likelihood l(�; e)
as,

l(�; e) ∝
N−1∏

i=1

f obsi

(
pi

) N∏

i=1

f sysi (θ i−1,ui−1, θ i)

N−2∏

i=0

f curvi

(
pi, pi+1, pi+2

)
. (9)

The likelihood function incorporates obstacle avoidance via
the factor f obsi . This ensures that the output trajectory remains
inside the boundary limits as per the requirement in (6b). The
system dynamics are included via the factor f sysi , and f curvi
is used for curvature minimization. The detailed formulation
of the factors is discussed in Section V.
Remark 1: The factor f veli corresponds to monitoring the

prior belief regarding velocity, denoted as p(v). This factor
serves as a reference for the maximum achievable velocity
ṽ, which is assumed to be known.
Also, pN represents the racing finish line, and the racecar
does not stop at this point, making it close to the real-
world racing scenario. Instead, it is assumed that the planning
extends to N + M steps, where M covers the deceleration
part in the end.
The methodology employed in this study is depicted in

Fig. 2. It consists of two distinct phases: an offline phase and
an online phase. During the offline phase, Signed Distance
Field (SDF) is computed based on the racetrack boundaries,
which is then used in obstacle avoidance factors (ref. to
Section V-B for details). In the online phase, we initiate the
process by formulating the factor graph and subsequently
solving it for the prediction horizon n. The factor graph
formulation of planning problem (7) is illustrated in Fig. 3,
which highlights local connections among graph nodes.
An inference algorithm, applied to the factor graph,

computes the posterior distribution over all trajectories,
adhering to planning objectives dictated by the attached
factors. The efficient solution of the factor graph is achieved
through the utilization of sparse least squares. This approach,
widely used in simultaneous localization and mapping [8]
and planning algorithms [5], transforms the sparse graphical
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FIGURE 2. Overall methodology of the proposed framework. The offline phase
includes computations conducted prior to the initiation of the race. The online phase
involves trajectory generation.

model representation into an unconstrained least squares
optimization problem. We convert the MAP inference
problem into a least square optimization problem by taking
the negative logarithm of the posterior distribution. Adopting
a similar approach as in [5], we employ the Levenberg–
Marquardt algorithm to solve the least square optimization
problem. In the following section, we elaborate on the
detailed design of the factor nodes.

V. FORMULATION OF FACTOR NODES
The factorization of the prior and likelihood in (8) and (9)
consist of different kinds of factor nodes. These nodes are
associated with distinct objectives, each defined by error
functions based on their connections with variable nodes in
the graph. The detailed description of each factor in both the
prior and likelihood is provided in the following sections.

A. FACTORIZATION OF PRIOR
Within our framework, constraints are managed in a soft
manner, treating them as prior knowledge on trajectory states
and control input. The factors f s0(p0) and f

g
N(pN) establish the

prior distribution for the start and goal positions. Following
the methodology from [5], the factor error function is defined
as the Mahalanobis distance, enabling the incorporation of
the constraint information as,

f s0
(
p0

) = exp

{
−1

2
‖e0‖2Ks

}
, (10)

f gN
(
pN

) = exp

{
−1

2
‖eN‖2Kg

}
, (11)

where e0 = p0 − μ0 and eN = pN − μN , represents the
differences from the known start μ0 and goal μN . The
kernels Ks and Kg are covariance matrices introducing soft
constraints managed by their values. Likewise, the centerline
information of the racetrack and the maximum desired
velocity information are considered as prior knowledge for
f refi (pi) and f veli (vi), respectively.

f refi

(
pi

) = exp

{
−1

2

∥∥∥erefi
∥∥∥

2

Kref

}
,

s.t. erefi = pi − μi, (12)

similarly,

f veli (vi) = exp

{
−1

2

∥∥∥eveli

∥∥∥
2

Kvel

}
,

s.t. eveli = vi − ṽi, (13)

where ṽ is the desired maximum velocity.
We use hinge loss to define the inequality soft constraints

as,

f rlimi (ri) = exp

{
−1

2

∥∥∥erlimi (ri)
∥∥∥

2

Krlim

}
,

s.t. erlimi (ri) =
{r− rmin if r < rmin
r− rmax if r > rmax

0 else
(14)

similarly,

f ulimi (ui) = exp

{
−1

2

∥
∥∥eulimi (ui)

∥
∥∥

2

Kulim

}
.

s.t. eulimi (ui) =
{u− umin if u < umin
u− umax if u > umax

0 else
(15)

Remark 2: The covariance matrices, such as Ks, Kg,
Krlim, and Kulim are assigned very small values to enforce
tight adherence to the constraints imposed by respective
factor nodes. On the other hand, the values of Kref and
Kvel are selected to allow for looser compliance with these
constraints, introducing the desirability.

B. FACTORIZATION OF LIKELIHOOD
We devised the likelihood factor to encapsulate the system
dynamics by modeling the error as a soft constraint,

f sysi (θ i−1,ui−1, θ i) = exp

{
−1

2

∥∥esysi
∥∥2

�sys

}
,

s.t. esysi = θ i − g(.), (16)

where g(.) represents the system model as described in (4).
The factor f sys provides the mapping of state θ i−1 and control
ui−1 on to next state θ i.

The factor f obsi (pi), which specifies the probability of
avoiding obstacles is defined as

f obsi

(
pi

) = exp

{
−1

2

∥∥∥eobsi

(
pi

)∥∥∥
2

�obs

}
, (17)

where eobs(p) represents the vector-valued obstacle cost, and
�obs is a hyperparameter matrix.
In order to design the minimum curvature factor f curvi , we

start with the assumption;
Assumption 1: Assuming a curvilinear motion of the

racecar, the centerline of the racecar p = [
pi · · · pN

]T is
parameterized by equidistant waypoints and it is represented
in an N-T coordinate system. The N-axis is normal to the T-
axis and points towards the center-of-curvature (CoC), while
the T-axis is tangent to the curve and points in the direction
of the racecar’s motion.
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FIGURE 3. Architecture of the factor graph for autonomous racecar planning. Note that the factor nodes are affixed to the state and control components, presented in the form
of variable nodes emphasizing the local connections among them.

FIGURE 4. Representation of vectors formed among pi , pi+1, and pi+2 for the
minimum curvature factor f curv

i .

In an N-T coordinate system (from Assumption 1), the two
equidistant waypoints pi+1, pi+2 that lie on the same straight
line will have unit tangent vector rotation angle �� = 0.
Then, the curvature ki is,

ki = lim
�t→ 0

∣∣∣∣
��i

�Si

∣∣∣∣, ∀i, (18)

where, ��i represents the unit tangent vector rotation angle
between pi and pi+1. �t is time and Si represents the arc
length. Note that minimizing the tangential rotation angle
�� in (18) results in reduced curvature of the arc p, which
leads us to the following proposition.
Proposition 1: For a racecar moving along a non-

degenerate arc parameterized by centerline p, minimizing
the tangential rotation angle ��i between two consecutive
waypoints pi and pi+1 will result in reduced cumulative
curvature k. Therefore, the minimum curvature planning
objective can be equivalently described as,

min
N∑

i=0

ki ∼= min
N−1∑

i=0

��i. (19)

Proof: See Appendix A.
In order to get ��i = 0 for pi and pi+1, we consider pi+1

as the reference point and adjust the pi so that it lies on
the same straight line as pi+1 and pi+2 resulting in reduced
curvature. Fig. 4 represent the vectors formed among the pi,
pi+1, pi+2. Vector ai provides the projection of pi onto the

straight line and it is considered the f curv error function.
Hence,

f curvi

(
pi, pi+1, pi+2

) = exp

{
−1

2

∥∥ecurvi

∥∥2
�curv

}
,

s.t. ecurvi = ai. (20)

where �curv is the hyperparameter matrix. The decision to
attach additional minimum curvature factors f curvi beyond
N − 2 is optional. Typically, attaching factors up to N − 2
is sufficient to cover all the centerline states. However, in a
scenario where the raceline is computed for multiple laps,
it is recommended to attach two additional factors up to N
to ensure that the raceline smoothly transitions from the last
state to the first state of the next lap.
Remark 3: The hyperparameter matrix �sys for factor f sys

is assigned a very small value to tighten the adherence to
the system model. Whereas the value of �obs is selected
based on the racetrack, and it usually changes in case of
major physical differences in the geometry of the racetrack.
�curv has relatively higher values and is selected based on
the performance requirements.
The control input, along with the predicted future trajec-

tory, is inferred by solving the factor graph for the prediction
horizon n. Following the execution of the first control and
receiving new estimates from optimizing the variable nodes,
we extend the time horizon one step further and repeat the
entire process. Algorithm 1 outlines this methodology of the
proposed framework.

VI. EVALUATION
The proposed framework is evaluated for two exemplary
racetracks. The MPCC-based optimization algorithm [3] is
used as a benchmark for a 1:43 scale racecar. Two solvers,
High-Performance Interior-Point Method (HPIPM) [24] and
the MATLAB QP solver (quadprog), are utilized for the
MPCC benchmark. The algorithms are evaluated by running
tests for both the racetracks to note cumulative curvature,
total distance, lap time, and computation time for each
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Algorithm 1: minCurvFG: Minimum Curvature Planning
via Factor Graph for an Autonomous Racecar
Data: track boundaries bl, br, centerline p, number of

states N, factor graph G = {�,F , E}, prediction
horizon n, convergence threshold for the
optimizer η

Result: u∗ and θ∗

Initialize: Compute SDF (Section VI)

for j = 0, 1, . . . ,N − 1 do
/* factor graph for horizon n */∏j+n

m=j fm(�m)

while �� ≥ η do
/* solve factor graph */

arg max
�

∏j+n
m=j fm(�m)

�← �+ δ�

apply: u∗j
obtain: θ∗j:n+j
update graph nodes: θ j:n+j ← θ∗j:n+j

return �∗

optimization step. While opting for a 1:43 scale racecar
for algorithm evaluation proves to be an effective choice,
capturing its performance well, we also present results for
a full-scale racing car to further validate the proposed
algorithm’s capabilities. All tests are conducted on a 2.1 GHz
AMD Ryzen 5 PRO 3500U quad-core processor with 16GB
of RAM.

A. IMPLEMENTATION DETAILS
The proposed framework has been implemented using the
Georgia Tech Smoothing and Mapping (GTSAM) library,
similar to the approach employed in Gaussian Process
Motion Planning (GPMP2) [5]. The algorithm is structured
into two layers: the top layer is developed in MATLAB and
encompasses the vehicle model, racetrack specifications, and
trajectory characteristics. On the lower level, the factor error
functions are implemented in C++ to augment the capa-
bilities of the GTSAM library. The Levenberg–Marquardt
algorithm from the GTSAM is employed as the numerical
optimization solver.
Following the trend observed in recent planning algo-

rithms [5], [25], the obstacle cost is eobs(pi) = c(d), where,
c is the hinge loss function such as,

c(d) =
{−d + ε if d ≤ ε

0 if d > ε
, (21)

where d denotes the signed distance to the closest bound-
ary, and ε represents the safety distance. As outlined in
Section IV, the computations for signed distance fields are
conducted offline prior to the commencement of the race.
For our experiments, we set ε to 0.015cm for 1:43 scale

car and 0.5m for the full-scale car. The selection of a

smaller safety distance is motivated by the observation that
in autonomous racing, minimum curvature trajectories often
lie close to the boundary, enabling higher speeds. A horizon
length of n = 40 with a sampling time of Ts = 20
ms is chosen for all experiments, resulting in a prediction
horizon of 0.8 seconds. Further details regarding the model
parameters for the 1:43 and full-scale racecar, state, and
control input constraint limits, and the selected values of the
hyperparameters of factor nodes can be found in Appendix B.

B. RESULTS FOR 1:43 SCALED CAR
The trajectory produced by the proposed algorithm for one
lap is depicted in Fig. 5, along with the velocity profile.
The proposed approach excels with the resulting cumulative
curvature of 767.26, outperforming the benchmark. This
improvement is attributed to the inclusion of the factor node
f curv in the factor graph, specifically designed to minimize
the cumulative curvature. Table 1 provides a summary of the
benchmark results obtained for Track-I.
There is a trade-off between the shortest path and the

minimum curvature path. The increase in total covered
distance on the racetrack was also observed for the case with
the minimum curvature path (as outlined in Table 1). In the
context of autonomous racing, the prioritization of a superior
velocity profile for better lap time justifies the preference
for reduced curvature, even with a marginal increase in
distances. The impact of reduced curvature is distinctly
visible in the improved velocity profile for Track-I. In our
case, the mean speed achieved is 2.47m/s, compared to
2.03m/s for the benchmark. Additionally, the increases in
maximum speed (from 3.22m/s to 3.30m/s) are recorded. The
increase in mean speed across the racetrack ensures a better
lap time of 6.93s demonstrating the effect of incorporating
minimum curvature characteristic.
While our approach demonstrates computational efficiency

compared to the quadprog solver for MPCC, the HPIPM
is more efficient in terms of providing fast solutions. The
comparatively better efficiency of the proposed approach as
compared to MPCC-quadprog solver is mainly attributed to
the proposed factor graph architecture that leads to sparse
non-linear least squares optimization. However, HPIPM
solver proved to be better in terms of computational
efficiency. We believe that the computation efficiency of
the factor graph-based planning algorithms can be further
improved by leveraging the parallel processing capabilities
(ref. to Section VII for more details).
Fig. 6 illustrates the state and control input for the trajec-

tory produced on Track-I. It also shows the longitudinal and
lateral components of velocity for the complete racetrack.
During our experiments, we observed that the algorithm’s
performance is highly influenced by the hyperparameters
of the factor nodes. Since constraints are handled softly,
determining the right hyperparameters for constraint-related
factors is crucial. Apart from the careful selection of these
parameters, having a safety buffer for constraints proved to
be a practical solution in case of constraint violation.

VOLUME 5, 2024 387



BARI et al.: FACTOR GRAPH-BASED PLANNING AS INFERENCE FOR AUTONOMOUS VEHICLE RACING

TABLE 1. Track-I quantitative results of 1:43 scaled car obtained for one lap. Bold values represent the best performing results.

FIGURE 5. The trajectory generated by the proposed algorithm in case of
1:43 scaled car for one lap on Track-I.

FIGURE 6. State and control input of 1:43 scaled car for Track-I.

Similar observations were made for Track-II, as shown
in Fig. 7 and Fig. 8. A significant reduction in curvature,
from 647.7 to 567.45 compared to the benchmark, is noticed,
highlighting the effectiveness of our proposed algorithm.
The increase in distance covered is less in this case due
to the racetrack having more sharp turns, emphasizing
the algorithm’s performance. We also observed substantial
improvements in terms of speed (Table 2), with a mean
speed of 2.23m/s compared to 1.82m/s in the benchmark,
reducing the resulting lap time to 4.92s. The maximum
speed increased from 3.08m/s to 2.84m/s. Computation time
results are consistent, with our proposed algorithm outper-
forming the quadprog solver but being less efficient than
HPIPM.
The impact of curvature minimization becomes more evi-

dent in the case of Track-II, particularly owing to its sharper

FIGURE 7. Output trajectory and velocity profile of 1:43 scaled car for Track-II.

FIGURE 8. State and control input of 1:43 scaled car for Track-II.

corners. The ability to achieve a better velocity profile around
these corners stems from curvature minimization, which
significantly contributes to an overall improvement in the
speed profile, which is a crucial factor in the context of
autonomous racing competitions. While our recorded results
are only for a single lap, it is important to note that the overall
planning horizon can be readily scaled to encompass multiple
laps. In that case, the outcomes from the preceding lap can
be considered as prior knowledge. Nonetheless, a limitation
arises concerning environment perception, particularly in
addressing changes in the racetrack over the laps, as the
environment perception component is executed during the
offline phase.
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TABLE 2. Track-II quantitative results of 1:43 scaled car obtained for one lap. Bold values represent the best performing results.

TABLE 3. Quantitative results of full-scale car obtained for one lap.

FIGURE 9. Full-scale car output trajectory and velocity profile for Track-I.

C. RESULTS FOR FULL-SCALE CAR
The obtained results for the full-scale car are depicted
in Fig. 9 for Track-I and Fig. 11 for Track-II. For the
evaluation, a maximum achievable velocity of 55.5m/s
was selected. The findings reveal that the full-scale car
consistently strives to maintain this velocity throughout the
race tracks while adhering to the minimum curvature path.
It’s noteworthy that the width of the racetrack facilitates
achieving and sustaining the maximum velocity throughout,
leading to minimal fluctuations once this velocity is attained.
It is especially evident during cornering maneuvers. The
ample space allows for smoother transitions and reduced
deceleration, contributing to improved overall performance.
This observation is supported by the state and control
inputs displayed in Fig. 10 and Fig. 12 for both racetracks,
respectively. The speed profile graphs show the quick
increase at the start of the race and as soon as the speed
reaches the maximum limit, it is maintained through the
racetracks by following the minimum curvature path.
A comprehensive summary of the results is presented

in Table 3, showcasing the effectiveness and computational
efficiency of our proposed framework across both racetracks.

FIGURE 10. Full-scale car state and control input for Track-I.

FIGURE 11. Full-scale car output trajectory and velocity profile for Track-II.

Specifically, for Track-I, the mean speed recorded is
54.13m/s, marginally exceeding the 53.99m/s achieved on
Track-II. This trend is consistent with the results obtained
from the 1:43 scale racecar experiments. However, the differ-
ence in mean speed between the full-scale and scaled-down
car experiments is more evident, reflecting the narrower track
widths for the latter. While the full-scale car results validate
the algorithm’s efficacy in real-world racing scenarios, the
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FIGURE 12. Full-scale car state and control input for Track-II.

evaluation of the 1:43 scale car provides valuable insights
into its performance under more challenging conditions.

VII. DISCUSSION
The proposed approach has a strong potential as an
approximation method of predictive control laws, leading
to better approximation quality and computation speed, as
we illustrate via simulation examples. However, factor graph
solution via unconstrained least square optimization does
not guarantee hard constraint satisfaction and feasibility.
We noticed that, in a practical aspect, this limitation can
be overcome by adding a safety buffer on top of the
specified constraint limits. A better yet trivial approach
that can be adopted to overcome this limitation is having
an additional layer for guaranteed constraint satisfaction
purposes. These kinds of approaches [26], [27] are used
for approximate MPC solutions to guarantee constraints
satisfaction and feasibility.
On the other hand, recent work [19], [28] has targeted the

constrained optimization solution of factor graphs. These still
rely on traditional constrained optimization approaches sim-
ilar to optimization-based planning algorithms. A potential
future research direction in terms of constraint handling in
factor graphs is via message passing [25], [29]. Adopting the
message passing framework can also provide the opportunity
to exploit the distributive properties of the factor graph in
terms of parallel computing capabilities of MAP inference
that can further lead to computational efficiency. The
factor graph-based planning techniques have not yet been
thoroughly studied in the field of autonomous racing. By
exploring this avenue, efficient inference-based algorithms
can be developed that can better handle the constraints and
generate racing trajectories.
Formulation of autonomous racecar planning via factor

graphs is a powerful approach that provides effective
reasoning in designing planning objectives with better
computational efficiency. However, the hyperparameters K(.)

and �(.) that define the stiffness of the assigned factors can
strongly affect the performance in practice. The hyperpa-
rameters need to be re-tuned if the racetrack architecture
changes significantly, making the manual tuning of these

parameters quite hard. This limitation can be addressed by
adapting these parameters from a trained model leveraging
expert data as proposed in [30].
Additionally, our methodology has only been tested in

a single racing car scenario. To better understand its
effectiveness, exploring its performance in a real racing
setting with multiple cars and common maneuvers such
as overtaking would be valuable, similar to multi-vehicle
approaches presented in [31], [32]. However, investigating
such scenarios is beyond the scope of this work and remains
a potential avenue for future research. Nevertheless, our
proposed framework offers the flexibility to incorporate
additional racing criteria through enhancements to the
factor graph and further racing functionalities for multi-
vehicles [31], [32] can be incorporated, suggesting that
addressing these challenges within our framework is a
promising area for future exploration.

VIII. CONCLUSION
This work proposes an alternate perspective on the
autonomous racecar planning problem by utilizing proba-
bilistic inference-based problem formulation. The proposed
framework decomposes the racecar planning problem by
exploiting the inherent structure among random variables
and formulates the planning objectives as a joint probability
distribution using a factor graph. The integration of the global
planning objective of curvature minimization into the local
planning module via a novel factor node design highlights
the utility of the factor graph-based formulation in modeling
planning problems. This structured representation of the
planning problem is computationally efficient and produces
results that are comparatively better than the optimization-
based benchmark. This work has opened a way forward
to exploit the distributive properties of factor graphs by
utilizing message passing-based solution techniques. Parallel
processing and storage during message passing among graph
nodes and different strategies for message scheduling can
further improve the computational efficiency that is crucial
in competitive autonomous racing scenarios.

APPENDICES
A. PROOF OF PROPOSITION 1
Assuming curvilinear motion of the racecar, we do not
consider a fixed center-of-curvature. Instead, the origin
is located on the individual states along the curve and
represented on an N-T coordinate system, as shown in
Fig. 13. The radius of curvature, denoted by ρ, is defined as
the perpendicular distance between the curve and the CoC.
The unit vectors N̂ and T̂ are always oriented in the positive
direction of the N-axis and T-axis, respectively. The radius
ρ determines the amount of curvature k of an arc. Curvature
k and radius ρ have an inverse relationship. Therefore, the
greater the curvature k, the smaller the radius ρ of an arc,
and vice versa.
The rotation of tangents between two states along the

curve characterizes the curvature such that, as the �� → 0,
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TABLE 4. The experimental parameter values for the covariance matrices of each factor node in the factor graph.

FIGURE 13. The figure shows an example of a racetrack represented in the N-T
coordinate system. The arrows N̂ and T̂ indicate the normal-tangent unit vectors
projected from pi+1 onto pi , which illustrate the formation of tangential rotation
angle ��i .

TABLE 5. Model parameters.

the radius of curvature ρ → ∞. The relation between the
��i and the curvature ki can be observed from Fig. 13.
Since the unit vectors T̂ and N̂ are perpendicular at any point
of the arc, the angle ��i along which the tangent rotates is
also the same angle along which the normal vector rotates.
If the time interval �t is very small, the two unit vectors
meet at the same CoC. By projecting the point pi+1 onto pi,
it can be observed (from Fig. 13) that by reducing the ��i,

TABLE 6. Limits on the state and control.

both the points will lie on the same straight line resulting
in ρ → ∞ and the curvature ki that reduces the overall
quadratic curvature k.

B. MODEL AND SIMULATION PARAMETERS
The hyperparameter matrices of the prior factors K and
likelihood factors � are defined as σ 2I, where, σ is the
variance for the respective factor constraint, indicating how
“tight” the constraint is. The values chosen for each factor
attached to the factor graph are detailed in Table 4 for both
the 1:43 and full-scale racecars. Note that for the minimum
curvature factor f curv in case of 1:43 racecar, the value
is set to 1e-2 for Track-I and 3.1e-2 for Track-II. The
racecar model parameters are presented in Table 5 (adopted
from [3]). The limitations on state and control are depicted
in Table 6.
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