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ABSTRACT Incipient faults (IFs) are abnormal states before the permanent failure of power equipment. IFs
are typically transient and generally do not trigger the operation of relay protection devices. This leads the
difficulty in capturing IF data fromwaveformmonitoring or recording devices. However, traditional detection
methods cannot achieve satisfactory performance when faced with limited data. Besides, some signal analysis
methods based on waveform conversion to images cannot obtain understandable image data and cannot
analyze both current and voltage signals simultaneously. To resolve these problems, a few-shot meta-learning
framework for incipient fault detection (FSMLF-IFD) is proposed in this paper. For better data processing,
a waveform image conversion strategy is proposed to convert waveforms into understandable images from
the time domain perspective. Then, an adaptive image fusion strategy is developed to concurrently analyze
voltage and current images. Next, at the meta-training stage, an adaptability-enhancing weighting initializa-
tion strategy is constructed to address the data differences between the meta-training stage and IF detection
stage. Finally, an IF detection model based on convolutional neural networks (CNNs) is obtained through
the fine-tuning process. In the numerical results, the IF detection and classification accuracy of FSMLF-IFD
reached 0.9720 and 0.9840 based on simulation and field IF data, which validates the effectiveness of the
proposed method.

INDEX TERMS Incipient fault detection, power quality, data scarcity, waveform image, few-shot learning,
meta-learning.

NOMENCLATURE
1− shot Use one sample for meta-training

process.
2− D Two-dimension.
CNN Convolutional neural network.
DFA Distribution fault anticipation.
DG Distributed generator.
EFD Early fault detection.
FSMLF − IFD Few-shot meta-learning framework for

incipient fault detection.
GASF Gramian Angular Summation Field.
IF Incipient fault.
LL Line-to-line.
LLG Line-to-line-to-ground.

LLLG Three-line-to-ground.
LR Logistic regression.
Micro− PMU Micro-phasor measurement

units.
PQ Power quality.
RBF Radial basis function.
RMS Root mean square.
SLG Single line-to-ground.
SNR Signal-To-Noise Ratio.
SPM space-phasor model.
ST S-transform.
TSML Task-sequencingmeta-learning.
WMU Waveform measurement units.
WT Wavelet transform.
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I. INTRODUCTION

NOWADAYS, the integration of a significant proportion
of renewable energy sources into power distribution

and transmission systems poses challenges to grid stabil-
ity and fault detection [1]. To ensure the safe operation of
power systems, the development of intelligent fault detection
or location strategies is imperative [2], [3], [4], [5]. Fault
events in a power system can be divided into two types:
unpredictable and predictable faults [6]. Generally speaking,
unpredictable faults are unexpected events caused by bad
weather, human misoperation, tree contacts, and other fac-
tors, which are usually random. On the contrary, predictable
equipment failure events are generally not instantaneous.
Some equipment faults such as cable joint failures could be
predicted by IFs. The damage of these faults may not be fatal
at first. As time goes by, equipment permanent failure events
may eventually occur. Permanent failure may lead to a series
of cascading faults, ultimately leading to widespread power
outages [7].
IFs are precursory phenomenons before permanent failure

of power equipment [8], [9]. Various categories of IFs exist,
each exhibiting distinct features and failure patterns, often
resulting in unique signatures. However, the challenge lies in
the fact that some IFs may not trigger relay protection mech-
anisms and can self-clearing under specific circumstances,
such as underground cables [10]. Furthermore, another chal-
lenge lies in the difficulty of distinguishing between IFs of
certain devices and other faults. When an IF occurs, it is
necessary to detect it, make appropriate decisions and acti-
vate appropriate alarm signals. For this reason, effective IF
detection can help avoid catastrophic permanent failures of
different devices, thus improving power supply reliability [8].
Due to the differences in the network structure, topology,

equipment parameters, and other aspects of the distribution
network with renewable energy sources, it is difficult to
set unified IF detection rules. A feasible way of detecting
IFs is to analyze the power quality (PQ) data [11], [12].
PQ monitors passively observe the dynamics of power sys-
tems [13]. In recent years, engineers and researchers in the
field of power system protection and equipment testing have
demonstrated that power equipment faults or failures, such as
the arcing of cable joints and the unsuccessful synchronous
closing control, can produce different signatures. Therefore,
the analysis and mining of PQ data can help detect and
identify IFs of power equipment.

In view of the above facts, many researchers have explored
fault characteristics and detection methods of IFs. In gen-
eral, characteristics of IFs are obtained by analyzing PQ
waveforms from three perspectives: time domain, frequency
domain [14], and time-frequency domain [15]. The magni-
tude and duration of fault waveforms are usually analyzed in
the time domain. For instance, Kulkarni et al. [16] proposes
an IF location algorithm of underground cables that considers
the time domain analysis and fault arc voltages. Besides,
some signal decomposition methods based on frequency

domain and time-frequency domain, such as Fourier trans-
form [14], wavelet analysis [17] and S-transform (ST) [6],
[18], are applied to fault feature extraction. To effectively
mine extracted fault features, machine learning methods have
recently been widely applied in IF detection [19], [20], [21].
A machine-understandable pre-training model based on fast
Fourier transform and natural language processing technique
is established for general-purpose IF detection in [14]. Con-
sidering ST and Kullback-Leibler divergence, [6] adopts two
feature measures to obtain seven peculiar features from volt-
age waveforms of abnormal phases recorded by PQ meters
at substations. A two-step strategy for IFs monitoring of
underground cables has been proposed based on cumulative
sum and adaptive linear neuron [10]. However, the previ-
ously mentioned approaches focus on analyzing the discrete
fault waveforms, which only extract fault characteristics from
one-dimensional waveform series data.

With the development of artificial intelligence, some excel-
lent image recognition technologies have emerged like mush-
rooms after rain. Converting waveform signals into images
and using these advanced technologies can improve the accu-
racy of fault identification [20], [22], [23], [24], [25], [26].
Salles and Ribeiro [27] transform voltage signals into 2-D
images with time-frequency representation by continuous
wavelet transform (WT). Similar image conversion methods
can also be found in [24] and [25]. Izadi and Mohsenian-
Rad [20] and [26] have converted the synchro-waveform
data into synchronized Lissajous images to mine the power
event characteristics from the time domain. Besides, the
space-phasor model (SPM) and Gramian Angular Summa-
tion Field (GASF) are applied to convert waveforms into
images in literature [23] and [28], respectively. However,
the above conversion methods cannot obtain understandable
image data focused on fault waveform distortion. More-
over, both current and voltage images cannot be analyzed
simultaneously.

In addition, since most traditional detection methods are
supervised learning algorithms, these methods usually need a
lot of fault data with labels [29]. A hybrid algorithm based
on decision trees and computational intelligence is trained
through 162 samples to diagnose IFs of power transforms
in Menezes et al. [30]. An intelligent learning method based
on probability uses one hundred and twenty abnormal event
data to realize the classification of IFs in the literature [19].
Andresen et al. [31] discuss that many machine learning
methods are trained using the collected long-term PQ data to
predict the fault in the grid. However, the reality is that data
are scarce on actual incipient failures. This dilemma reveals
that traditional supervised learning methods are not effective
in detecting IF under the limited fault sample.

The aforementioned dilemma encourages researchers to
explore the new perspective of fault data mining and to
construct an IF detection model that can learn IF fault char-
acteristics from limited samples. Xiong et al. [19] propose a
human-level concept learning framework based on Bayesian
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TABLE 1. The contribution compared to existing literature.

learning to detect and classify subcycle and multicycle
IFs under data scarcity. However, this framework requires
strong prior knowledge. Furthermore, some researchers have
focused on the meta-learning framework for fault detec-
tion [32], [33]. Hu et al. [32] propose a task-sequencing
meta-learning method to address the few-shot fault diagno-
sis problem. However, these studies neglect the differences
between meta-training and realistic fault detection tasks.

To address the above issues, a few-shot meta-learning
framework for incipient fault detection (FSMLF-IFD) is
constructed. This method includes three contributions: a
waveform image conversion strategy, an adaptive image
fusion method, and an adaptability-enhancing weighting ini-
tialization strategy. To clearly compare our contributions with
previous research, a taxonomy table is provided in Table 1.
The detailed contributions are summarized as follows:

• A PQ waveform image conversion strategy is pro-
posed. This strategy converts PQ waveforms into under-
standable waveform images from the time domain
perspective.

• An adaptive image fusion strategy based on the ampli-
tude deviation of PQ waveforms is developed. This
strategy can fuse current and voltage waveform images
into one image to simultaneously process the current and
voltage data.

• A few-shot meta-learning framework for incipient fault
detection (FSMLF-IFD) is constructed. This method
is based on the meta-learning framework to learn the
fault characteristics of IFs with limited samples. In this
method, an adaptability-enhancing weighting initializa-
tion strategy is proposed. This strategy can address the
data differences between the meta-training stage and IF
detection stage. This enhances adaptability and robust-
ness during the meta-training stage.

The rest of the paper is organized as follows. Some IF
characteristics are analyzed in Section II. The data prepara-
tion process of FSMLF-IFD is provided in Section III. The

FIGURE 1. Typical IF waveforms of cables in a distribution
network [34].

proposed FSMLF-IFD is demonstrated in Section IV. The
numerical results are displayed in Section V. Finally, the
conclusion is present in Section VI.

II. ANALYSIS OF INCIPIENT FAULTS CHARACTERISTICS
IFs refer to transient faults that occur before the complete
failure of the equipment. If IFs are not dealt with, they
may develop into permanent failures. According to [9], the
fault characteristics of IFs can be captured from PQ wave-
forms. Fig. 1 presents two current and voltage waveforms
of cable termination failures [34]. As we can see, although
the inception time of fault waveform 1 and fault waveform
2 is different, they present similar waveform variation trends.
This implies that the detection and identification of IFs can
be achieved through the analysis of voltage and current wave-
forms. Consequently, the development of a machine-learning
algorithm for IF detection using voltage and current data
is a viable approach. In addition, due to the brief duration
of faults and the low level of fault current, the protec-
tive device is typically not activated. As a result, capturing
the IF waveforms becomes challenging. Consequently, the
machine-learning model for IF detection can not only inte-
grate IF characteristics but also solve the limited sample
problem. In addition, this paper focuses on single-phase
IFs. The IF of cables is caused by insulation damage and
degradation, which generally appears in a single phase. The
probability of simultaneous failure in all three phases is low.
The related theories of IFs are usually analyzed based on
single-phase faults [17], [35].

III. DATA PREPARATION PROCESS OF FSMLF-IFD
In this section, the data preparation process of FSMLF-IFD
is presented and the remaining two parts will be introduced
in the next section. Firstly, the waveform image conversion
strategy is proposed to convert discrete waveform data from
the time domain into understandable images. This conversion
strategy can mine time-varying characteristics of amplitude
and deformation characteristics of waveforms. Furthermore,
this strategy is more sensitive to changes in the amplitude
of waveform signals. After converting high-amplitude wave-
forms of IFs into images, the IF image data becomes easier
to distinguish compared to discrete waveform data. Secondly,
the voltage and current images are fused into a image through
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FIGURE 2. A standard waveform image after conversion.
Simulated event: load adding.

the adaptive image fusion strategy. Finally, based on these two
strategies, a fault database is constructed.

A. WAVEFORM IMAGE CONVERSION
To transform waveform data into comprehensible waveform
images a waveform image conversion strategy is proposed.
Firstly, a sliding window is employed to capture the cur-
rent and voltage waveforms. It is worth noting that 3-phase
current and voltage waveforms are considered at the same
time for detecting equipment failures. Because the ampli-
tude information is very important for fault detection, the
amplitude information of voltage or current signal should
be reflected in generated waveform images. Secondly, two
dotted lines are added to the waveform image to indicate
the amplitude value under the steady-state condition. Thirdly,
utilizing the predetermined image dimensions, graphical rep-
resentations of the current and voltage waveforms can be
produced.

Based on the above three steps, discrete fault or abnor-
mal waveform data of a sliding window can be transformed
into waveform images. For instance, the current and voltage
images of load switching by circuit breaker operation are
shown in Fig. 2. The red, black, and blue curves represent
the instantaneous values of 3-phase voltage or current, while
the black dashed line illustrates the magnitude value during
stable operating conditions.

Compared to raw waveform data, the benefits of waveform
images are as follows.

• Transforming into waveform images for analysis can
avoid the cumbersome process and difficulty in deter-
mining parameters associated with signal processing
methods [22]. Analyzing raw waveform data typically
relies on signal analysis techniques such as waveform
transform (WT), ST, etc. Thesemethods not only require
manual parameter settings but also involve a complex
analysis process. Improper parameter settings often lead
to poor classification accuracy. In contrast, using wave-
form images for analysis eliminates parameter setting
issues and simplifies the process.

• Intuitiveness. Converting waveforms can visually
depict essential information about waveforms such
as amplitudes and distortion. Fig. 3 shows current
waveform images of IFs. As depicted in Fig. 3, our
image-conversion method effectively captures wave-
form amplitudes and distortions.

FIGURE 3. Two current waveform images of IFs.

FIGURE 4. Fusion process of current and voltage waveform
images of the cable IF.

B. ADAPTIVE IMAGE FUSION STRATEGY
Since the characteristics of faults are reflected in both voltage
and current signals [8], it is advantageous to concurrently
analyze voltage and current data. Consequently, we consider
merging the voltage and current waveform images into one
image as the input of the detection model. For a certain fault
type, the fusion process of voltage and current images is
shown in Fig. 4. The current and voltage waveforms are fused
into one image based on the proposed image fusion strategy,
which cannot be achieved using raw data. The fused images
alleviate the challenge of separately analyzing current and
voltage data. Then, the detailed fusion process is described
as follows.

It is reasonable that prominent fault characteristics are
displayed in significant waveform signal deformation. For the
waveform images, the clearer the trend of waveform changes
in the image, the larger the pixel value. The clear wave-
form variation can be more effectively learned by subsequent
models. Therefore, the purpose of the adaptive image fusion
strategy is to ensure that the distorted current or voltage wave-
form is more prominently represented in the fused waveform
image.

In this paper, the difference in root mean square (RMS)
value between the fault voltage or current waveform and
the steady-state waveform is used to describe the amplitude
deviation. Assuming that the amplitude deviation of voltage
is represented by VAD, its calculation formula is as follows:

VAD = |VRMS − Vnom| , (1)

where VRMS is the RMS value of the voltage waveforms,
and Vnom represent RMS values of the steady-state voltage
waveform. |·| denotes the absolute value. To ensure λV and
λI are greater than 0, the absolute value should be applied to
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VRMS − Vnom. For a sampling window, the voltage or current
series can be considered as the sum of time-varying sinusoids
and noise, as presented in Eq. (2).

Vn = vm sin(ωn + φn)+ dn, (2)

where vm is the max magnitude. ωn and φn are the angular
frequency and phase angle of the nth sampling instant, respec-
tively. The noise dn represents noise from the measuring
device. Under normal circumstances, ωn is the fundamental
component. The calculation formula of VRMS is as follows:

VRMS =

√√√√ 1
k + 1

k∑
i=0

V 2
i , (3)

where k is the number of sampling points within a sampling
period. The amplitude deviation of current IAD can be calcu-
lated through the above process.

Then, given the voltage image xV and current image xI
of a certain fault, the adaptive fusion strategy is realized as
follows:

x̂ = λV xV + λI xI , (4)

where x̂ represents the combined waveform image data. xV
and xI represent the voltage and current images of a spe-
cific fault type, respectively. λV and λI represent the fusion
weights of voltage and current images, respectively. It is
worth noting that the scaling values of the two images repre-
sent fusion weights. Then, the detailed calculations of fusion
weights according to the amplitude deviation are as follows:

λV =
VAD
Vnom

, (5)

λI =
IAD
Inom

, (6)

where VAD and IAD are the amplitude deviation of voltage and
current waveforms.

C. CONSTRUCTION OF THE FAULT DATABASE
In the meta-training phase of the proposed FSMLF-IFD,
the initialization parameters of the IF detection model are
obtained by training numerous classification tasks. This pro-
cess also necessitates a substantial amount of fault data. Then,
the parameters are fine-tuned to learn the characteristics of
IFs. The data distribution of meta-training and meta-testing is
preferably similar. For the task of IF detection, the classifica-
tion tasks during the meta-training stage should be as relevant
as possible to the fault classification of power systems. There-
fore, we need to build a fault database that includes various
types of fault and event data. This will be based on waveform
image conversion and adaptive image fusion strategies for the
meta-training stage of FSMLF-IFD.

In the fault database, both fault and non-fault waveform
image data are included. Fault events include single line-
to-ground (SLG) faults, line-to-line-to-ground (LLG) faults,
three-line-to-ground (LLLG) faults, and line-to-line (LL)
faults. Non-fault events include steady-state, increasing load,

and removing load. To ensure the diversity of the dataset, the
inception angle of each fault event is considered in six cases:
0◦, 60◦, 90◦, 120◦, 180◦, and 270◦. The inception angle is
calculated with respect to the voltage of Phase A. To simu-
late the aforementioned events, a power system distribution
network is constructed, and detailed specifics are outlined
in Section V. Through the simulation model, a significant
amount of fault and non-fault discrete waveform data is
acquired. Then, the simulation discrete current and voltage
data of various events are converted into waveform images.
Consequently, a fault database containing a large amount of
fault information is established. By mining the fault database
during the meta-training stage of FSMLF-IFD, a set of initial-
ization parameters for the IF detection model is obtained. The
parameters contain rich fault information and can be easily
fine-tuned for a new IF detection task.

IV. PROPOSED IF DETECTION METHOD BASED ON
FEW-SHOT LEARNING FRAMEWORK
In this paper, we propose an intelligent strategy to detect and
identify IFs for the stability of the power system. Considering
the scarcity of IF samples, we aim to train an IF detection
model that can learn from a small number of IF samples and
capture the characteristics of failure equipment. Therefore,
this paper proposes FSMLF-IFD.

The schematic diagram of the proposed IF detection frame-
work is shown in Fig. 5. The framework is divided into
three parts: data preparation, meta-training, and IF detec-
tion. Firstly, for data preparation, the fault image database
based on the waveform image conversion and the adaptive
image fusion strategies is constructed. This fault database is
used for the meta-training process. Secondly, many classifi-
cation learning tasks are constructed and trained during the
meta-training stage. This stage aims to obtain excellent ini-
tialization parameters for neural networks. An adaptability-
enhancing weighting initialization strategy is proposed to
ensure that the initialization parameters are suitable for IF
detection. Finally, at the IF detection stage, the detection
model with initialization parameters is fine-tuned through a
small number of IF images. Through the fine-tuning process,
an IF detection and identification model is obtained. Then,
this detection model is integrated into the PQ monitoring
system. IFs and other disturbances can be detected and iden-
tified. Since the data preparation process is introduced in
Section III, the subsequent sections provide detailed descrip-
tions of the remaining components of FSMLF-IFD.

A. META-TRAINING STAGE AND ADAPTABILITY-
ENHANCING WEIGHTING INITIALIZATION
STRATEGY
The goal of the few-shot learning framework is to obtain good
initialization parameters for an IF learner based on the fault
database. During the meta-training stage of FSMLF-IFD, the
learner with initialization parameters has strong adaptability
and good generalization performance on new fault types.
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FIGURE 5. Schematic diagram of the proposed IF patterns learning approach.

When used for detecting IFs, the learner becomes the detec-
tion model after fine-tuning with a few IF waveform images.

During meta-training, the learner is trained on a set of
tasks sampled from the constructed fault database. In other
words, various fault classification tasks are considered as the
training set at this stage, which is significantly different from
the traditional machine learning setting. Convolutional neural
networks (CNNs) are chosen as the learner for FSMLF-IFD.
The reason is presented as follows. On the one hand, due to
CNN’s operation principle of extracting image features by
continuously moving convolutional kernels forward, it excels
in handling generated waveform image data. CNNs leverage
the forward movement of convolutional kernels to effectively
capture and process the temporal correlations of waveform
images, thereby enhancing the accuracy of early fault detec-
tion. On the other hand, convolutional and pooling layers
of CNNs can automatically learn local patterns and global
features of waveform imageswithout the need formanual fea-
ture extractor design. The distortion of IFs can be adaptively
learned.

The dataset at the meta-training stage consists of two
parts: the support set S and the query set Q. The S is
utilized to train the parameters of the learner, while Q is
employed to update the parameters of the learner. In the
training process based on S, the loss function is the same as
that in reference [36]. During the parameter updating process,
we propose an adaptability-enhancing weighting initializa-
tion strategy. This strategy integrates the data characteristics
of IFs into the meta-training process, focusing on obtaining
initialization parameters for IF detection.

The specific details of the training process can be
found in [36]. Then, the updating process and an
adaptability-enhancing weighting initialization strategy will
be described. Suppose θ ′j is the obtained parameters of the

support set S, the loss LTj(Q)

(
fθ ′j

)
is calculated through the

corresponding query sets Q. The calculation process is based
on the cross-entropy loss and gradient descent. When testing
tasks differ from training tasks, it is necessary to employ
a specific strategy to enhance the initialization parameters.

During meta-training, the diversity of tasks should be ensured
to achieve improved few-shot learning and generalization
capabilities. For this reason, the image database for training
initialization parameters contains numerous other perma-
nent fault images. The fault current of these faults varies
significantly, leading to the activation of relay protection
devices. However, in reality, the fault currents of the distri-
bution network with renewable sources are not significant.
Due to the significant difference in fault amplitudes, the
fault images exhibit remarkable variations in feature space.
Therefore, different tasks have varying degrees of importance
for the parameter update process. Tasks similar to minor
fault currents of IFs should be prioritized, and the signifi-
cance of permanent failure should be given minimal weight.
Therefore, an adaptability-enhancing weighting initialization
strategy for IFs is proposed.

The RMS value of the current is used to assess the degree of
magnitude variation. A larger RMS value indicates a greater
change in amplitude. The weight of the ith classification task
loss is calculated as follows:

wi =

∑N
n=1 e

1RMSn

e1RMSi
, (7)

where 1RMS = IRMS − Inom and N is the number of
classication. To this end, based on the weighting initialization
strategy, the loss LTj(Q)

(
fθ ′j

)
in the query setsQ is calculated

as:

LTj(Q)

(
fθ ′j

)
= −

∑
(xi,yi)∈Tj(Q)

wiyi log
(
fθ ′j (xi)

)
. (8)

The learner parameters are updated via stochastic gradient
descent as follows:

θ∗← θ − η∇θ

∑
Tj∼p(T )

LTj(Q)

(
fθ ′j

)
, (9)

where θ∗ is the initialization parameter for IF detection,
η is the meta step number of the updating process, and
← indicates that the updated value of θ is assigned to θ∗.
Until a superior initialization parameter suitable for IF detec-
tion is achieved, the aforementioned procedure is repeated.
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We incorporate IF data properties into the meta-learning
approach, making it more suitable for IF detection
tasks.

B. IFs DETECTION BASED ON OBTAINED INITIALIZATION
PARAMETERS
To achieve IF detection, an IF detection model is necessary.
The IF detection model can be obtained by fine-tuning the
initialization parameters θ∗ with the CNN model. The CNN
model with θ∗ has fast adaptability and is easily fine-tuned to
learn the IF characteristics. The data, parameters, optimizer,
and epoch of the fine-tuning process are described in detail.
The data of the fine-tuning process are a few waveform
images of themultiple categories, including IF equipment and
other types (e.g., steady state, disturbance, etc.). These data
construct a classification task and are used for fine-tuning the
CNN model with the initialization parameter θ∗. For parame-
ters of the fine-tuning process, the convolutional, pooling, and
final classification layers of CNN are used for fine-tuning.
The optimizer of the fine-tuning process is Adam. The epoch
of the fine-tuning process is 100. Through the fine-tuning
process, the CNN model becomes the IF detection model,
capable of distinguishing the IFs, steady state, and distur-
bances. It should be emphasized that if the data of multiple
fault devices are used to fine-tune initialization parameters
θ∗, the obtained detection model can detect multiple IFs at
the same time. Then, we can integrate this IF detection model
into the event-triggered analysis (e.g. fault recorders, PQ ana-
lyzers, etc.) and gap-less monitoring devices (e.g. waveform
measurement units (WMU), micro-phasor measurement
units (micro-PMU), etc.), to achieve IF detection and
identification.

For the detection process, a slidingwindowwith a period of
length N is utilized to capture voltage and current waveform
data for analysis. In practical scenarios, the initiation mech-
anisms vary across different application scenarios. When
applied to the relevant event-triggered devices, the proposed
method involves analyzing recorded waveforms by the con-
tinuously sliding window to thoroughly inspect all the voltage
and current waveform data. In the case of gap-less monitoring
equipment, an appropriate triggering mechanism needs to be
defined. For instance, using voltage data as a reference, the
sliding window will be activated when the supply voltage
drops or increases to a certain value, such as 0.8 pu or 1.1 pu.
Then, waveform image conversion and adaptive image fusion
strategies are implemented to get a waveform image. Next,
the obtained waveform image is fed into the IF detection
model, and the monitoring result is obtained. When an IF
occurs multiple times in the distribution system, the alarm
signal will be transmitted to the system operator instead of
triggering relay systems. Because typical IFs are sub-cycle
or multi-cycle, the above detection process is also suitable for
sub-cycle faults. Formulti-cycle IFs, we consider dividing the
multi-cycle IF into multiple sub-cycle faults. If a fault occurs
in multiple consecutive cycles, this fault is determined as a
multi-cycle fault. Based on this idea, even if the fault is not

detected in the first cycle, it can be detected by subsequent
cycles.

V. NUMERICAL RESULTS
In this section, the proposed FSMLF-IFD is evaluated
through experiments in various aspects. We use realistic IF
data of cables and simulation systems to verify the effective-
ness of the proposed method. The realistic data are collected
from power quality monitoring from [9] and [19]. The sam-
pling rate of collected data is 6.4 kHz. The length of the
sliding window is set as 10 cycles.

Several systems have been used for testing our method.
A distribution network system shown in Fig. 6 [37] is the
benchmark model. All testing distribution network systems
are simulated in MATLAB/Simulink. The voltage class and
frequency of this system are 25 kV and 60 Hz, respectively.
Two distributed generators (DGs) are included in this bench-
mark model. The types of DGs A and B are synchronous
generators and wind farms, respectively. The synchronous
generator is rated at 4.17 kV, 9 MVA. The wind farm is
rated at 575 V, 6.6 MVA, and is based on the type IV wind
turbine model. Based on this distribution model, we obtain
some simulation IF data. In detail, some settings of simulation
models are as follows:
• Fault type and location. The simulation fault types of
IF are divided into sub-cycle and multi-cycle. The fault
locations are set to F1, F2, and F3 (red mark in Fig. 6).
The measurement points are set as the upstream buses
of fault locations at nodes B-2, B-8 and B-21. The
impedance between three faults and meter points is
0.4757+j1.618, 0.1815+j0.6712, and 0.6222+j2.1160,
respectively.

• IF simulation model. In this paper, we employ
Kizilcay’s arc model [38] to simulate the IFs of cables.
The equation of this arc model is presented as:

dg (t)
dt
=

1
τ

( ∣∣if (t)
∣∣

u0 + r0
∣∣if (t)

∣∣ − g (t)

)
(10)

g (t) =
uf (t)
if (t)

(11)

where g (t) is the arc conductance, if (t) is the arc cur-
rent, uf (t) is the arc voltage, τ is the arc time constant,
r0 is the characteristic arc resistance, u0 is the charac-
teristic arc voltage. The range of these parameters are
set as [19]: τ = 0.2 ∼ 0.4 ms, u0 = 300 ∼ 400 V,
r0 = 0.01 ∼ 0.015Ω . The three parameters were inde-
pendently set each time to values within their respective
ranges with an equal probability.

• Noise addition. We add the random Gaussian noise into
the simulated current and voltage waveform to simu-
late load changes, communication disturbances, etc. The
Signal-To-Noise Ratio (SNR) is randomly set as 20, 30,
and 40 dB.

Because of page limit, only some experimental results are
based on simulation IF data. In the paper, the IF detection
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FIGURE 6. Single line diagram of used distribution network model [37].

FIGURE 7. Visualization of the fault current image before the image fusion. The database contains four types of events:
load adding, grounding fault, load shedding, and line-to-line faults. Load adding and load shedding are realized by
implementing circuit breakers. Grounding faults include single line-to-ground (SLG) faults, line-to-line-to-ground (LLG)
faults, and three-line-to-ground (LLLG) faults. It is worth noting that the constructed fault database is used for training
the initialization parameters.

performance is evaluated using Accuracy, Precision, Recall
rate, and F1 score. Furthermore, to obtain well-performing
detection models, some critical parameters need to be set in
advance. To avoid overfitting and ensure optimal parameters,
we used a small-scale validation set to determine hyperpa-
rameters. This validation set is from the constructed fault
database. The experimental platform of this paper is NVIDIA
GeForce RTX 1650. All codes are implemented based on
Pytorch. The size of waveform image is 256× 256.

A. FAULT DATABASE CONSTRUCTION BASED ON A
DISTRIBUTION NETWORK
To implement the meta-training stage of FSMLF-IFD, it is
essential to construct a fault database that includes various
types of faults and events. This fault database is used for
the meta-training stage. In this subsection, the construction
process of the fault database based on the distribution network
model is described in detail.

As mentioned in the previous section, various fault and
non-fault events are simulated using a distribution network
model to obtain fault waveform image data. Several buses are
considered for detecting current and voltage waveform data.
For example, we can set the output at buses 2 and 14 to extract

two different output behaviors under the same fault and event
configurations. This way, we can analyze the impact of faults
and events on different buses. In our research, we typically
position the measurement points at the buses to the generators
and the buses from the fault and event location. This allows
us to observe changes near the generators and at more distant
locations within the grid. Based on the above description,
some current waveform images of the fault database are
shown in Fig. 7. For a specific fault or event, the waveform
image in the database displays some variations. The reason is
that the fault and event waveform images are from different
measurement buses, phases, or locations.

B. PERFORMANCE UNDER THE TRANSITION TO
WAVEFORM IMAGE PROCESSING
In general, traditional methods analyze discrete current and
voltage signals to locate or detect IFs of power equip-
ment. However, this strategy cannot capture the dynamic
time-varying trend of the waveform as a whole. For this
purpose, discrete waveform data is converted into wave-
form images. This subsection will discuss the advantages of
converting discrete waveform data into waveform images.
Table 2 shows the classification performance comparison of
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TABLE 2. Comparison between time-frequency methods and
image processing methods.

simulation data between the CNN model and two traditional
fault detection strategies. The inputs of the CNN model are
waveform images obtained from waveform conversion and
adaptive image fusion strategies. In [39], WT and radial basis
function (RBF) networks are combined to analyze the power
quality disturbances. In addition, a hybrid method based on
ST and support vector machines (SVM) is proposed for IF
detection in [6]. We set a three-class classification problem to
evaluate the classification performance of detection models.
The three classes are normal, disturbance (non-IFs), and IFs
of cable.

As shown in Table 2, two detection strategies based
on signal processing cannot achieve good results and the
classification accuracy is only 0.6850 and 0.7258.Waveform-
CNN represents the use of one-dimensional CNN to learn
raw waveform data directly, but its performance is not as
good as the other two signal processing methods. Compared
with these results, the accuracy of Waveform image-CNN
is improved by 10.58%, 4.38%, and 10.58%, which shows
the superiority of the waveform conversion and image fusion
strategies. Waveform image-LR and Waveform image-SVM
represent the identification of generated waveform images
using LR and SVM, respectively. Compared with CNN, two
machine learning methods cannot obtain good identification
performance. In terms of accuracy, the two machine learning
methods LR and SVM are 20.01% and 8.01% lower than
CNN. This comparison results demonstrate the necessity of
CNN for IF detection and identification. Furthermore, the
results in the table are based on a small number of samples,
which is the reason for poor performance.

C. STRONG LEARNING ABILITY AND ADAPTABILITY OF
FSMLF-IFD
We use a three-class classification problem to evaluate
learning ability and adaptability of FSMLF-IFD. Table 3
shows the multi-classification performance of different mod-
els for real and simulation IF data. Hybrid-SVM [6] and
TSML [32] are two state-of-the-art detection methods. Com-
pared with FSMLF-IFD, the hybrid approach [6] without
considering limited samples cannot achieve good perfor-
mance. Although [32] achieves decent performance, it is
still not as excellent as our method. In terms of real data,

TABLE 3. IF identification performance comparison of different
models for real and simulation IF data.

FIGURE 8. Accuracy variation of training and testing phase
during gradient updating.

the accuracy is 3.96% lower than FSMLF-IFD. The image
conversion and adaptability-enhancing weighting initializa-
tion strategy may be the reason for performance differences,
which verifies the advantages of FSMLF-IFD. In addition,
the classification accuracy of CNN is only 0.7879 in Table 3.
With the help of FSMLF-IFD, satisfactory performance has
been achieved, and its improvement in Accuracy, Precision,
Recall rate, and F1 score are 23.37%, 8.70%, 19.30%, and
24.80%, respectively. This improvement strongly proves the
learning ability of FSMLF-IFD.

To demonstrate the effectiveness of FSMLF-IFD in rapidly
learning new samples, Fig. 8 illustrates the accuracy variation
process of the proposed method with gradient updating dur-
ing themeta-training stage and IF detection stage of an epoch.
The data learned by the model during the meta-training pro-
cess is the fault database, and the IF detection stage involves
a fine-tuning process using the IF images. As shown in Fig. 8,
the blue solid line represents the accuracy variation of the
meta-training. The accuracy tends to be stable and increases
from 0.375 to 1 with only 3 gradient steps. It indicates that
the model has a strong adaptive learning ability. Additionally,
the red dotted line represents the change in accuracy resulting
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TABLE 4. The effectiveness of FSMLF-IFD for bidirectional power
flow.

from fine-tuning in the few-shot learning. Similarly, the
test accuracy increases significantly during the fine-tuning
process with only a few gradient steps. This not only demon-
strates the strong and rapid adaptation of the model but also
underscores the effectiveness of the fault database.

To verify the effectiveness of FSMLF-IFD under bidirec-
tional power flow conditions, qualitative analysis and quan-
titative evaluation are presented. As for qualitative analysis,
we considered the bidirectional power flow in the distri-
bution system and included corresponding instances in the
training dataset. Through the training process, FSMLF-IFD
can learn the characteristics of this bidirectional power flow
and achieve IF detection and identification under bidirec-
tional power flow conditions. As for quantitative evaluation,
we present two cases to verify that FSMLF-IFD is effective
under bidirectional power flow conditions.

• Case 1 (forward power flow): The load is set to
15.06 MW, and the wind farm’s output is 4 MW. At this
time, the power flow is from the grid to the load, which
is the forward power flow.

• Case 2 (reverse power flow): The load is set to
11.06 MW, and the wind farm’s output is 6 MW. At this
time, the power flow is from the load to the grid, which
is the reverse power flow.

Table 4 shows the IF identification accuracy of the pro-
posed method under the conditions of the two cases. In both
cases, the proposed method achieved good performance and
consistency. This indicates that the proposed method is effec-
tive under bidirectional power flow conditions.

In addition, for multi-cycle IFs, we consider dividing the
multi-cycle IF into multiple sub-cycle faults. If a fault occurs
in multiple consecutive cycles, this fault is determined as
a multi-cycle fault. Based on this idea, even if the fault is
not detected in the first cycle, it can be detected by sub-
sequent cycles. To further demonstrate the effectiveness of
this idea for FSMLF-IFD, the confusion matrix for detecting
multi-cycle IFs is shown in Fig. 9. For 10 multi-cycle IFs,
only one fault event is not detected, which proves the effec-
tiveness of the proposed detection strategy.

D. EFFECTIVE ADAPTIVE IMAGE FUSION METHOD
The adaptive image fusion method is essential for our
proposed framework. The weight of merging the current
waveform image and the voltage waveform image is cal-
culated using the adaptive image fusion strategy. Fig. 10
illustrates the performance comparison of various fusion

FIGURE 9. Confusion matrix for detection multi-cycle IFs. The
value in this figure represents the number of current events.

FIGURE 10. Performance comparison diagram of different fusion
weights.

weights for IF detection, where λ1 and λ2 denote the fusion
weights of the current image and voltage image, respectively.
Although the adaptive fusion method increases the computa-
tional burden, the performance of the fusion method used in
this paper is significantly superior to the fixed fusion weight
under the four evaluation indicators. When λ1 and λ2 are
0.5 respectively, the fixed fusion weight achieves the best
performance. However, it is still 2.1%worse than the classifi-
cation accuracy of the adaptive fusion strategy, demonstrating
the superiority of this method in performance. Additionally,
when λ1 = 0.1 and λ2 = 0.9, the classification accuracy after
fusion is only 93.8% of the adaptive fusion strategy. It can be
seen from Fig. 10 that the fusion parameters are sensitive to
the detection method based on waveform images. Therefore,
the adaptive fusion strategy is necessary and effective.

E. ADVANTAGES BASED ON ADAPTABILITY-ENHANCING
WEIGHTING INITIALIZATION STRATEGY
We will demonstrate the advantages of the adaptability-
enhancing weighting initialization strategy of FSMLF-IFD
based on real IF data. Table 5 presents the IF detection
results of different shots with and without the initialization
strategy. It is worth noting that the results presented in the
table are the average of multiple experiments. The results
shown in the table are based on the performance of adap-
tive image fusion. Firstly, the accuracy of FSMLF-IFD can
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TABLE 5. Performance comparison of different shots with and
without the initialization strategy for IF detection.

achieve 94.87% with 1-shot, which shows the effectiveness
of the proposed framework. Secondly, compared with the
meta-learning without initialization strategy, the performance
of FSMLF-IFD has improved by 5.19%, 3.24%, 1.80% under
1-shot, 3-shot, and 5-shot learning, respectively. As a result,
the adaptability-enhancing weighting initialization strategy
ensure that FSMLF-IFD is specifically designed for IF
detection.

F. COMPLEXITY AND SENSITIVITY ANALYSES OF
FSMLF-IFD
In this subsection, the complexity and sensitivity analyses
of FSMLF-IFD are provided. The computational complexity
is important for detection method. To evaluate the compu-
tational requirements of the IF detection method, the big
O notation [40] and detection time are considered. Because
input image sizes and sampling rate of signals have a crucial
impact on estimation accuracy, the sensitivity of FSMLF-IFD
for two parameters is analyzed.

The big O notation of the IF detection process for
FSMLF-IFD and two state-of-the-art methods is discussed.
In Hybrid-SVM [6], ST and SVM are used for IF detection.
The time complexity of the ST is O(N 2), where N is the
length of the input data and O (·) represents big O notation.
Considering the Gaussian kernel, the complexity of SVM is
O
(
N 2
)
. In sum, the overall complexity of [6] is O(N 2) +

O(N 2) ≈ O(N 2). For FSMLF-IFD and TSML [32], CNNs
are used for IF detection. In the forward propagation process,
the computational load mainly comes from convolution and
pooling operations. The time complexity of the CNNs is
approximate O(LKMCS2), where L is the number of layers,
K is the number of convolution kernels, C is the size of the
channel, M is the size of convolution kernels, S is the size
of the waveform image. According to the parameters set in
this article, the obtained result of complexity isO(108S2). For
the waveform generation strategy, the complexity is approxi-
mately equal toO(4S2). Then, the complexity of FSMLF-IFD

TABLE 6. Comparison of computational requirement.

is still O(108S2)+O(4S2) ≈ O(112S2). Due to O(112S2) >

O(N 2), FSMLF-IFD and TSML have higher computational
requirements compared to [6].

Next, we tested the detection time of three methods on the
current experimental equipment. For a detection process, all
three methods are very fast. The time required for detection
by FSMLF-IFD, TSML, and Hybrid-SVM is approximately
0.0012 s, 0.0010 s, and 0.0008 s, respectively. Although
FSMLF-IFD takes the most time, the differences compared
to the other two methods are negligible.

The comparison of computational requirements is pre-
sented in Table 6. The discussion from the two perspectives
presented above leads to the conclusion that FSMLF-IFD
requires slightly more computational demands compared to
two state-of-the-art methods, however, this discrepancy is
inconsequential.

Table 7 shows the performance comparison results of
different image sizes and signal sampling rates. For differ-
ent image sizes, the performance exhibited by FSMLF-IFD
varies to some extent. When the image size is 32 × 32, the
accuracy of FSMLF-IFD can still achieve 0.7916. When the
sizes of images are higher than 64 × 64, the accuracy of
FSMLF-IFD can be greater than 0.8625, which proves that
the proposed method is insensitive to image size. As seen
in Table 7, at different sampling rates, FSMLF-IFD exhibits
varying performance. As the sampling rate increases, the per-
formance gradually improves. At a sampling rate of 1.6 kHz,
FSMLF-IFD can still achieve an accuracy of 0.8222. This
indicates the performance of FSMLF-IFD is not sensitive to
changes in the sampling rate. In addition, it is important to
emphasize that the sampling rate for FSMLF-IFD is not lim-
ited to 6.4kHz. The sampling rate of 6.4kHz is not a necessity
for the proposed method and 6.4kHz is merely an example
used in our case study. Of course, the proposed method is
applicable to data with various sampling rates, depending on
the sampling rate of the waveform data collection equipment.

G. COMPARISON WITH COMMERCIAL PRODUCTS FOR
IF DETECTION
To furthermore verify the advantages of the proposedmethod,
comprehensive comparison results with two commercial
products are presented in Table 8. The two commercial
products are Early Fault Detection (EFD) [41], [42] and
Distribution Fault Anticipation (DFA) [43].
The red area represents the drawbacks of the two products.

For the product EFD, the data is based on current and voltage
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TABLE 7. The performance comparison results of different image
sizes and signal sampling rate on the realistic dataset.

TABLE 8. Comparison results between FSMLF-IFD and two
commercial products.

traveling waves. The algorithm is based on the traveling wave
algorithm and pattern recognition. The basic principle of this
product is that failing equipment emits the traveling wave
and some specific measuring devices are used to capture
these traveling waves. Then, the obtained current and voltage
traveling wave data was analyzed using the traveling wave
algorithm. According to the results of online searches, the
traveling wave algorithm is based on the frequency-time sig-
nature analysis method. Finally, the traveling waves are based
on pattern recognition to translate into condition monitoring
information such as ‘equipment type’ and ‘location’ [41].
However, in the signal transmission process, radio frequency
sensors are needed for communication among the various
receivers of the power line signal [42]. This indicates the
product requires additional equipment and the cost of such
equipment is high. In contrast, our proposed method focuses
on analyzing current and voltage waveforms, which can be
obtained from substation-based feeder CTs and bus PTs, etc.,
thus avoiding high costs.

As for product DFA, its drawback is that large amounts
of data and very complex computational algorithms. These
drawbacks resulted in longer detection times. The algorithm
of DFA is based on traditional learning methods, such as
expert systems. However, these algorithms lack intelligence
and are outdated. Compared with DFA, this paper proposes
a waveform image generation strategy and a few-shot meta-
learning framework. The greatest advantage is the ability to
learn from small samples.

It is worth noting that the above analysis does not indicate
that the method referred to is stronger than the existing prod-
ucts, we only prove the proposed method is outstanding in
some respects.

VI. CONCLUSION
This paper focuses on learning power systems waveform IF
patterns through an intelligent strategy. A few-shot learning
framework, FSMLF-IFD, is presented to achieve learning
incipient patterns with only a few samples. This framework
provides prior knowledge for the IF learner by mining cur-
rent and voltage waveform images of other fault types and
is helpful to power system protection and the development
of smart grids. To obtain input images of FSMLF-IFD, the
waveform image conversion strategy and adaptive image
fusion strategy are proposed. These two strategies integrate
voltage and current waveform data information into com-
prehensible images. The comprehensible image can capture
the time-varying characteristics of amplitude and wave-
form shapes. To address data differences during training the
FSMLF-IFD, an adaptability-enhancing weighting initializa-
tion strategy is developed. This strategy enhances adaptability
and accuracy of IF detection model. In the numerical results,
the superiority and efficiency of FSMLF-IFD are verified
by the field IF data and simulated distribution systems with
renewable energy sources. However, the IF detection models
based on data-driven methods are susceptible to factors such
as changes in power flow and topology. In future work, the
impact of bidirectional flow and the solutions to address
changes in system parameters will be studied.

REFERENCES

[1] L.M. Bieber, L.Wang, andW. Li, ‘‘A low-loss thyristor-based hybrid three-
level and modular multilevel converter with DC fault blocking capability
for HVDC transmission,’’ IEEE Open Access J. Power Energy, vol. 7,
pp. 111–121, 2020.

[2] M. Parsi and P. A. Crossley, ‘‘Optimised time for travelling wave fault
locators in the presence of different disturbances based on real-world fault
data,’’ IEEE Open Access J. Power Energy, vol. 8, pp. 138–146, 2021.

[3] G. N. Lopes, T. S. Menezes, D. P. S. Gomes, and J. C. M. Vieira, ‘‘High
impedance fault location methods: Review and harmonic selection-based
analysis,’’ IEEEOpen Access J. Power Energy, vol. 10, pp. 438–449, 2023.

[4] B. Chen, ‘‘Fault statistics and analysis of 220-kV and above transmission
lines in a southern coastal provincial power grid of China,’’ IEEE Open
Access J. Power Energy, vol. 7, pp. 122–129, 2020.

[5] M. Bin Gani and S. Brahma, ‘‘A closed-form mathematical model and
method for fast fault location on a low voltage DC feeder using single-
ended measurements,’’ IEEE Open Access J. Power Energy, vol. 9,
pp. 523–536, 2022.

VOLUME 11, 2024 543



[6] G. W. Chang, Y.-H. Hong, and G.-Y. Li, ‘‘A hybrid intelligent approach
for classification of incipient faults in transmission network,’’ IEEE Trans.
Power Del., vol. 34, no. 4, pp. 1785–1794, Aug. 2019.

[7] X. Dong, Y. Huang, H. Wang, B. Chen, H. Wang, and Q. Dong, ‘‘Analysis
and simulation research of cascading faults in AC/DC hybrid grid,’’ IEEE
Open Access J. Power Energy, vol. 9, pp. 514–522, 2022.

[8] P. Q. Subcommittee, ‘‘Electric signatures of power equipment failures,’’
IEEE, USA, Tech. Rep., PES-TR73, Dec. 2019.

[9] H. Mohsenian-Rad, Smart Grid Sensors: Principles and Applications.
Cambridge, U.K.: Cambridge Univ. Press, 2022.

[10] M. Jannati, B. Vahidi, and S. H. Hosseinian, ‘‘Incipient faults monitoring
in underground medium voltage cables of distribution systems based on a
two-step strategy,’’ IEEE Trans. Power Del., vol. 34, no. 4, pp. 1647–1655,
Aug. 2019.

[11] J. A. Wischkaemper, C. L. Benner, B. D. Russell, and K. Manivannan,
‘‘Application of waveform analytics for improved situational awareness
of electric distribution feeders,’’ IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 2041–2049, Jul. 2015.

[12] H. Mohsenian-Rad and W. Xu, ‘‘Synchro-waveforms: A window to the
future of power systems data analytics,’’ IEEE Power EnergyMag., vol. 21,
no. 5, pp. 68–77, Sep. 2023.

[13] X. Jiang, B. Stephen, and S.McArthur, ‘‘A sequential Bayesian approach to
online power quality anomaly segmentation,’’ IEEE Trans. Ind. Informat.,
vol. 17, no. 4, pp. 2675–2685, Apr. 2021.

[14] Y. Weng, Q. Cui, and M. Guo, ‘‘Transform waveforms into signature
vectors for general-purpose incipient fault detection,’’ IEEE Trans. Power
Del., vol. 37, no. 6, pp. 4559–4569, Dec. 2022.

[15] Q. Li et al., ‘‘Incipient fault detection in power distribution system: A
time–frequency embedded deep-learning-based approach,’’ IEEE Trans.
Instrum. Meas., vol. 72, pp. 1–14, 2023.

[16] S. Kulkarni, S. Santoso, and T. A. Short, ‘‘Incipient fault location
algorithm for underground cables,’’ IEEE Trans. Smart Grid, vol. 5, no. 3,
pp. 1165–1174, May 2014.

[17] T. S. Sidhu and Z. Xu, ‘‘Detection of incipient faults in distribution under-
ground cables,’’ IEEE Trans. Power Del., vol. 25, no. 3, pp. 1363–1371,
Jul. 2010.

[18] M. F. Faisal, A. Mohamed, and H. Shareef, ‘‘Prediction of incipient faults
in underground power cables utilizing S-transform and support vector
regression,’’ Int. J. Electr. Eng. Informat., vol. 4, no. 2, pp. 186–201,
Jun. 2012.

[19] S. Xiong, Y. Liu, J. Fang, J. Dai, L. Luo, and X. Jiang, ‘‘Incipient fault iden-
tification in power distribution systems via human-level concept learning,’’
IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 5239–5248, Nov. 2020.

[20] M. Izadi andH.Mohsenian-Rad, ‘‘A synchronized Lissajous-basedmethod
to detect and classify events in synchro-waveform measurements in
power distribution networks,’’ IEEE Trans. Smart Grid, vol. 13, no. 3,
pp. 2170–2184, May 2022.

[21] Y.Wu, P. Zhang, and G. Lu, ‘‘Detection and location of aged cable segment
in underground power distribution system using deep learning approach,’’
IEEE Trans. Ind. Informat., vol. 17, no. 11, pp. 7379–7389, Nov. 2021.

[22] S.Wang and H. Chen, ‘‘A novel deep learning method for the classification
of power quality disturbances using deep convolutional neural network,’’
Appl. Energy, vol. 235, pp. 1126–1140, Feb. 2019.

[23] A. Bagheri, I. Y. H. Gu, M. H. J. Bollen, and E. Balouji, ‘‘A robust
transform-domain deep convolutional network for voltage dip classifica-
tion,’’ IEEE Trans. Power Del., vol. 33, no. 6, pp. 2794–2802, Dec. 2018.

[24] S. Wang and P. Dehghanian, ‘‘On the use of artificial intelligence for high
impedance fault detection and electrical safety,’’ IEEE Trans. Ind. Appl.,
vol. 56, no. 6, pp. 7208–7216, Nov. 2020.

[25] S. Ekici, F. Ucar, B. Dandil, and R. Arghandeh, ‘‘Power quality event
classification using optimized Bayesian convolutional neural networks,’’
Electr. Eng., vol. 103, no. 1, pp. 67–77, Feb. 2021.

[26] M. Izadi and H. Mohsenian-Rad, ‘‘Characterizing synchronized Lissajous
curves to Scrutinize power distribution synchro-waveform measure-
ments,’’ IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4880–4883, Sep. 2021.

[27] R. S. Salles and P. F. Ribeiro, ‘‘The use of deep learning and 2-D wavelet
scalograms for power quality disturbances classification,’’ Electric Power
Syst. Res., vol. 214, Jan. 2023, Art. no. 108834.

[28] J. Shukla, B. K. Panigrahi, and P. K. Ray, ‘‘Power quality disturbances
classification based on Gramian angular summation field method and
convolutional neural networks,’’ Int. Trans. Electr. Energy Syst., vol. 31,
no. 12, Dec. 2021, Art. no. e13222.

[29] P. Hart et al., ‘‘Application of big data analytics and machine learning
to large-scale synchrophasor datasets: Evaluation of dataset ‘machine
learning-readiness,’’’ IEEE Open Access J. Power Energy, vol. 9,
pp. 386–397, 2022.

[30] A. G. C. Menezes, M. M. Araujo, O. M. Almeida, F. R. Barbosa, and
A. P. S. Braga, ‘‘Induction of decision trees to diagnose incipient faults in
power transformers,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 29, no. 1,
pp. 279–286, Feb. 2022.

[31] C. A. Andresen, B. N. Torsæter, H. Haugdal, and K. Uhlen, ‘‘Fault detec-
tion and prediction in smart grids,’’ in Proc. IEEE 9th Int. Workshop Appl.
Meas. Power Syst. (AMPS), Sep. 2018, pp. 1–6.

[32] Y. Hu, R. Liu, X. Li, D. Chen, and Q. Hu, ‘‘Task-sequencing meta learning
for intelligent few-shot fault diagnosis with limited data,’’ IEEE Trans. Ind.
Informat., vol. 18, no. 6, pp. 3894–3904, Jun. 2022.

[33] S. Zhang, F. Ye, B.Wang, and T. G. Habetler, ‘‘Few-shot bearing fault diag-
nosis based on model-agnostic meta-learning,’’ IEEE Trans. Ind. Appl.,
vol. 57, no. 5, pp. 4754–4764, Sep. 2021.

[34] S. Kulkarni, A. J. Allen, S. Chopra, S. Santoso, and T. A. Short, ‘‘Waveform
characteristics of underground cable failures,’’ in Proc. IEEE PES Gen.
Meeting, Jul. 2010, pp. 1–8.

[35] W. Zhang, Y. Jing, and X. Xiao, ‘‘Model-based general arcing fault
detection in medium-voltage distribution lines,’’ IEEE Trans. Power Del.,
vol. 31, no. 5, pp. 2231–2241, Oct. 2016.

[36] C. Finn, P. Abbeel, and S. Levine, ‘‘Model-agnostic meta-learning for
fast adaptation of deep networks,’’ in Proc. 34th Int. Conf. Mach. Learn.,
Aug. 2017, pp. 1126–1135.

[37] Q. Cui, K. El-Arroudi, and Y. Weng, ‘‘A feature selection method for
high impedance fault detection,’’ IEEE Trans. Power Del., vol. 34, no. 3,
pp. 1203–1215, Jun. 2019.

[38] M. Kizilcay and K. H. Koch, ‘‘Numerical fault arc simulation based on
power arc tests,’’ Eur. Trans. Electr. Power, vol. 4, no. 3, pp. 177–185,
May 1994.

[39] M. Oleskovicz, D. V. Coury, O. D. Felho, W. F. Usida,
A. A. F. M. Carneiro, and L. R. S. Pires, ‘‘Power quality analysis
applying a hybrid methodology with wavelet transforms and neural
networks,’’ Int. J. Electr. Power Energy Syst., vol. 31, no. 5, pp. 206–212,
Jun. 2009.

[40] S. G. Devi, K. Selvam, and S. Rajagopalan, ‘‘An abstract to calculate big O
factors of time and space complexity of machine code,’’ in Proc. Int. Conf.
Sustain. Energy Intell. Syst., 2011, p. 844.

[41] IND-EFD Installed on VIC Peninsula. Accessed: 2021. [Online]. Avail-
able: https://ind-technology.com.au/efd-installed-on-vic-peninsula

[42] Incubatenergy Labs 2020 Pilot Project Report: IND Technology—Early
Fault Detection for Power Lines. Accessed: 2021. [Online]. Available:
https://www.epri.com/research/products/000000003002020659

[43] B. Don Russell, C. Benner, J. Wischkaemper, and K. Muthu-Manivannan,
‘‘Incipient electric circuit failure detection and outage prevention using
advanced electrical waveform monitoring: Field experience,’’ IEEE Ind.
Appl. Mag., vol. 29, no. 3, pp. 36–45, May 2023.

LIXIAN SHI received the M.S. degree in instru-
ment engineering from Kunming University
of Science and Technology, Kunming, China,
in 2021. He is currently pursuing the Ph.D. degree
in electrical engineering with Chongqing Univer-
sity. His work centers on incipient fault detection
and power quality disturbance detection and
identification.

544 VOLUME 11, 2024



Shi et al.: Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning

QIUSHI CUI (Member, IEEE) received the M.Sc.
degree in electrical engineering from Illinois Insti-
tute of Technology and the Ph.D. degree in
electrical engineering from McGill University.
He was a Post-Doctoral Researcher with Arizona
State University (ASU) and the Associate Director
of the Machine Learning Laboratory for Power
Systems, Ira A. Fulton Schools of Engineer-
ing, Chongqing University. Prior to joining ASU,
he was a Research Engineer with OPAL-RT Tech-

nologies Inc., from November 2015 to November 2017. Currently, he is an
Associate Professor with the School of Electrical Engineering, Chongqing
University. His research interests include machine learning and big data
applications in power systems, power system protection, smart cities, micro-
grid, EV integration, and real-time simulation in power engineering. He has
won three best paper awards from U.K., China, and the USA, all ranking the
first. He was the Winner of the Chunhui Cup Innovation and Entrepreneur-
ship Competition for Overseas Chinese Scholars in the Energy Sector
in 2018. He received the Post-Doctoral Research Scholarship from both
Natural Sciences and Engineering Research Council of Canada (NSERC)
and Quebec Research Fund-Nature and Technology (FRQNT) and held the
MITACS Accelerate Research Program Fellowship from Canada.

YANG WENG (Senior Member, IEEE) received
the B.E. degree in electrical engineering from
Huazhong University of Science and Technology,
Wuhan, China, the M.Sc. degree in statistics from
the University of Illinois at Chicago, Chicago, IL,
USA, the M.Sc. degree in machine learning of
computer science, and the M.E. and Ph.D. degrees
in electrical and computer engineering from
Carnegie Mellon University (CMU), Pittsburgh,
PA, USA.He joined StanfordUniversity, Stanford,

CA, USA, as a TomKat Fellow of Sustainable Energy. He is currently an
Assistant Professor in electrical, computer, and energy engineering with
Arizona State University, Tempe, AZ, USA. His research interests include
power systems, machine learning, and renewable integration. He was a
recipient of the CMU Deans Graduate Fellowship in 2010, the Best Paper
Award at the International Conference on Smart Grid Communication (SGC)
in 2012, the First Ranking Paper of SGC in 2013, the Best Papers at the
Power and Energy Society General Meeting in 2014, the ABB Fellowship in
2014, and the Golden Best Paper Award at the International Conference on
Probabilistic Methods Applied to Power Systems in 2016.

YIGONG ZHANG (Student Member, IEEE)
received the B.S. and M.S. degrees from
Chongqing University, Chongqing, China, in 2018
and 2021, respectively. He is currently pursuing
the Ph.D. degree in electrical engineering with
a focus on multienergy microgrids and artificial
intelligence methods in power systems.

SHILONGCHEN received the Ph.D. degree from
Kunming University of Science and Technology,
Kunming, China, in 2012. He is currently a Pro-
fessor and a Master’s Supervisor with the Faculty
of Electric Power Engineering, Kunming Univer-
sity of Science and Technology. He has presided
over three projects funded by the National Natural
Science Foundation of China. His main research
interests include HVDC transmission and new
relay protection for power systems.

JIAN LI (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in electrical engineering
from Chongqing University, Chongqing, China,
in 1997 and 2001, respectively. He is currently
the Vice President of Chongqing University. His
major research interests include the intelligence
energy, the Internet of Things, online detection of
insulation condition in electrical devices, partial
discharge, and insulation fault diagnosis for high-
voltage equipment.

WENYUAN LI (Life Fellow, IEEE) is currently a
Professor with Chongqing University, Chongqing,
China. His research interests include power sys-
tem planning, operation, optimization, and reli-
ability assessment. He is a fellow of Canadian
Academy of Engineering and the Engineering
Institute of Canada and a Foreign Member of
Chinese Academy of Engineering. He was a recip-
ient of several IEEE PES awards, including the
IEEE PES Roy Billinton Power System Reliability

Award in 2011 and the IEEE Canada Electric Power Medal in 2014.

VOLUME 11, 2024 545


