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ABSTRACT Smart grids are nowadays featured by distributed energy resources, both renewables, tra-
ditional sources and storage systems. Generally, these components are characterized by different control
technologies that interact with the generators through smart inverters. This exposes them to a variety of cyber
threats. In this context, there is a need to develop datasets of attacks on these systems to evaluate the risks
and allow researchers to develop proper monitoring algorithms. This paper addresses this need by presenting
BESS-Set, an open-source dataset for cybersecurity analysis of a Battery Energy Storage System (BESS).

INDEX TERMS Dataset, cybersecurity, anomaly detection, smart grid, storage, distributed energy
resources.

I. INTRODUCTION

IN THE rapidly evolving landscape of distributed energy
resources (DERs) [1], Battery Energy Storage Systems

(BESS) play a pivotal role in improving grid stability,
energy efficiency, and overall reliability. As these systems
become integral components of modern energy infrastruc-
tures, ensuring the robust cybersecurity of such assets
becomes paramount. The relentless integration of digital
technologies into energy systems has enabled unprecedented
opportunities for efficiency gains but has also exposed these
systems to emerging cybersecurity threats [2]. Cyberattacks
targeting BESS jeopardize the reliability of energy storage
and pose a significant risk to the stability of the broader
power grid. Reference [3] presents a cyber attack scenario
targeting DERS, in which the power output of the DER
is manipulated to cause sustained oscillations or even sys-
tem instability. Reference [4] also evaluates the impact of
controlling a large number of DERs, but focusing on stor-
age systems. Reference [5] show how it can violate voltage
boundaries through cyberattacks on DERs on the CIGRE

medium voltage benchmark grid. Reference [6] consider the
case of electric vehicle charging for assessing the cyber
attack’s impact on that infrastructure.Reference [7] presents
a review of the impacts of cyber attacks on the smart distri-
bution grid. Also [8] propose a review of the state of the art
regarding Cyber-Attacks in Power Systems, both from the
impact perspective and detection and mitigation strategies.
A growing body of literature highlights how attacks toward
DERS can threaten the safety of the whole power system. The
work proposed in [9] analyzes adversarial capabilities and
objectives in attacking DER assets, showing how protocol
and device-level vulnerabilities can result in cyberattacks
impacting power system operations; authors also discuss mit-
igation strategies and future directions of DER cybersecurity
research.

To fortify defenses against such threats, there is a critical
need for data sets that facilitate developing and validat-
ing advanced cybersecurity monitoring and fault detection
algorithms specific to BESS [10]. In response to this need,
we present BESS-Set [11], a publicly accessible dataset
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tailored for monitoring and fault detection in a BESS. Our
dataset is composed of measures extracted by a BESS, serv-
ing as a representative example of the diverse challenges
encountered in the realm of DERs. This compilation encom-
passes a broad spectrum of operational scenarios, capturing
fluctuations in energy demand, varying environmental con-
ditions, and potential anomalies indicative of cyber threats
or system faults. By providing a public repository of these
measures, our aim is to foster collaborative research and
innovation in developing robust and resilient cybersecurity
solutions tailored to the unique characteristics of BESS.
We also made the Simulink model that we used to collect
the dataset public. To the best of our knowledge, this is the
first work that specifically provides a dataset for a BESS that
considers the physical measures.

The paper is structured as follows. Section II-A intro-
duces physics-based anomaly detection algorithms and ana-
lyzes related work regarding public cybersecurity datasets.
Section III presents in detail the use case, including the
system’s architecture and the attacks carried out. Section IV
presents the dataset in all its parts. Section V discusses some
possible dataset usage. Finally, in Section VI, conclusions are
drawn.

II. BACKGROUND
A. PHYSICS BASED ANOMALY DETECTION
Anomaly detection plays an important role in various fields,
including cybersecurity, by identifying patterns in data that
do not conform to expected behavior. These atypical pat-
terns often signal critical incidents like security breaches,
fraudulent transactions, or mechanical failures. Traditional
approaches to anomaly detection for cybersecurity take data
related to network traffic and/or logs generated by appli-
cations running on the nodes of the network as input
only. Physics-based anomaly detection introduces a novel
paradigm by leveraging domain-specific knowledge from
physics to enhance the detection process. This approach is
grounded in the understanding that many systems operate
according to fundamental physical laws, especially in engi-
neering and natural sciences. Incorporating these laws into
the anomaly detection framework makes it possible to model
system behaviors more accurately and identify deviations
that signify anomalies. Physics-based models can offer sev-
eral advantages over traditional approaches for cybersecurity
monitoring and can operate together to obtain better visi-
bility of the process. A literature review on physics-based
anomaly detection is presented in [12]; the paper analyzes
the works from different domains that usually do not inter-
act, such as control theory, information security, and power
systems, identifying the relationships between these fields
and facilitating interactions among researchers of different
disciplines. The paper also highlights the growing litera-
ture on the field. Newer approaches heavily rely on deep
learning, which can help to face issues such as the growing
volume of data and the need for domain-specific knowl-
edge [13] Physics-based techniques are already employed in

several scenarios in power systems. Reference [14] proposes
awatchdog algorithm that involves continuousmonitoring for
irregularities in the execution times of relay algorithms and
their related performancemetrics. Reference [15] proposes an
autoencoder-based anomaly detection algorithm for anomaly
detection of a Battery Energy Storage System connected
to the grid. This field of research is expanding thanks to
the advancements in neural network techniques. A promis-
ing technique is the implementation of physics constraints
between inputs in the optimization functions of a neural net-
work; this technique is also called ‘‘Physics-informed neural
network [16]. For these reasons, it is reasonable to foresee
a spread of the implementation of physics-based anomaly
detection techniques for security monitoring of ICS [17].
In this context, the proposed BESS-Set could be a useful tool
for cybersecurity research.

B. RELATED WORKS
Publicly available datasets are a very useful tool to promote
research and allow non-experts of the specific field, such
as machine learning engineers, to apply their methodologies
and algorithms. In [18] the authors propose a methodology
to generate reliable anomaly detection datasets in ICS, and
then use the proposed method to generate a dataset of electric
traction substations used in the railway industry, while [19]
proposes a survey on the testbed and datasets of industrial
control systems for security research; the survey focuses on
datasets of industrial control systems traffic and their spe-
cific protocols but does not analyze the datasets related to
the physical behavior of the processes. However, most of
the data sets focus only on network traffic, not providing
tools to develop physics-based anomaly detection algorithms.
Reference [20] presents a dataset to support researchers in
developing algorithms for Intrusion Detection Systems (IDS)
based on artificial intelligence and machine learning tech-
niques for the detection of attacks against Water Distribution;
data are acquired from a hardware-in-the-loop Water Dis-
tribution Testbed developed by the authors. Generating a
data set is very useful in promoting an integrated approach
to developing monitoring algorithms. Finally, [21] analyzes
typical distribution level substations and several of their crit-
ical electrical protection operation scenarios and simulates
several cyber-attack scenarios; then, it presents the dataset
with multiple traces that correspond to these scenarios to
support cybersecurity research.

III. SIMULATION ENVIRONMENT
A. BATTERY ENERGY STORAGE SYSTEM
Battery storage systems encompass a variety of electric,
electronic, and communication components. For our anal-
ysis, we focus on a typical scenario involving a storage
system linked to a microgrid under the supervision of a
SCADA system. From an electrical perspective, the system
includes:

• Modules of cells (one or more), each equipped with
its Battery Management System (BMS). The BMS
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FIGURE 1. Network architecture of the BESS.

FIGURE 2. Simulink model of the BESS.

maintains safe voltage, current, temperature, and other
physical parameters within the specified range.

• DC/DC converter: an electronic device that adapts the
cell voltages to a level suitable for the Active Front End
(AFE).

• Active Front End: an electronic converter that trans-
forms direct current into three-phase alternating current
(AC), facilitating bidirectional power flow.

The BMS, serving as an electronic system overseeing
a rechargeable battery, performs key functions such as
safeguarding the battery from unsafe operating conditions,
monitoring its state, calculating secondary data, reporting
information, controlling its environment, and authenticat-
ing and/or balancing it. Communication between the BMS
and a higher-level controller occurs through various solu-
tions, including serial communication protocols such as
CANBus and Modbus and specific protocols and gateways
in series [15].

Similar communication protocols are applicable to power
electronic converters for intra-communication and interaction
with a Process Control System (PCS), typically implemented
by an industrial PC. The industrial PC interfaces between

the SCADA system and local controllers. PCSs are equipped
with a local Human Machine Interface (HMI) that facili-
tates interaction with monitoring and control functions. The
overall scheme that comprehends electronic components,
electrical connections, and communication channels is shown
in Figure 1

A simulation model for storage systems has been devel-
oped, featuring different arrays of cells, a DC-DC boost
converter, and an active front-end inverter, each equipped
with its dedicated controller. The parameters of the BESS
are the following: VAC = 230V , (Voltage, single phase)
S = 60 kVA (Power Capacity), VDC = 750V (Voltage DC),
f = 50Hz (frequency). The AFE is connected to the main
grid with a three-phase connection. The model is electro-
magnetic in nature. The control strategy is structured with
a straightforward feedback loop for the DC-DC converter,
ensuring constant voltage at the DC link. A conventional
control approach for the inverter is also applied, employ-
ing Park transformation. The entire system is implemented
using MATLAB/Simulink software, leveraging the Simscape
library [22]. Figure 2 illustrates the comprehensive Simulink
schematic depicting the entire system.
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TABLE 1. Features of the dataset.

We extract a series of measures, which are typical mea-
sures that the inverter exchanges with a SCADA system. The
measures are detailed in Table 1

B. DETAILS OF THE ATTACKS
Several attacks can be carried out toward DERs. Refer-
ence [9] analyzes cyberattacks targeting DER assets on both
the device and communication levels. We took as reference a
simplified version of the taxonomy of attacks towards smart
inverters in the smart grid provided by [23]. In particular,
we distinguish three main categories of attacks:

• Bad Data Injection: in a bad data injection, the attacker
can modify the commands that a controller sends to the
inverter. Usually, the commands that can be sent to a
smart inverter are related to the power setpoints (Active
and reactive power setpoints, power factor, etc.). For
example, the attack can be implemented through a Man-
in-the-Middle attack on the communication network.
Several commonly-used protocols (such as Modbus,
IEC 61850 etc) do not present any authenticationmecha-
nism; therefore, the attack is even simpler and sufficient
to inject a packet into the communication network.

• FalseData Injection: in a false data injection, the attacker
is able to modify the measures that the inverter sends
to the main controller. In this case, any measure can be
tampered through a Man-in-the-Middle attack, or sim-
ple packet injection, exploiting the vulnerabilities of
communication protocols. The aim is to induce the cen-
tral controller, for example a SCADA system, to make
wrong decisions and, therefore, send wrong commands.

• Firmware Modification: in this case, the attacker can
modify the internal functioning of the inverter, poten-
tially controlling all the parameters of the power con-
verter. The attack could be implemented by having
physical access to the machine or remotely exploiting

the vulnerabilities of other web services that the inverter
may expose. In this case, the consequences may bemuch
more severe: the attacker may modify different param-
eters of the power converter, for example, to modify
the generated waveform, to cause problems to the local
distribution grid.

This classification can be used regardless of the actual
communication technology. For example, [24] shows the
implementation of the Man-in-the-middle attack on an IEC
61850-base network, which is a commonly used standard for
microgrids and for the control of DERs in general.

In our dataset, all the attacks have been carried out on the
previously described simulation environment. In particular:
the Bad Data Injection attack has been simulated through the
modification of the setpoint parameters at the terminals of the
inverter; the False Data Injection attack has been simulated
through the artificial modification of the data saved from
the model; the firmware modification attack has simulated
through the modification of the code for the control of power
converters.

IV. DATASET DESCRIPTION
The dataset is composed of 9 different parts, as shown in
Table 2. The Table provides the names of the files in the
publicly available repository, the dimensions of the dataset,
and a brief description. The following subsection details all
the datasets. In all the datasets, each line corresponds to
an instant of system functioning under a 1-second sampling
time. The training dataset does not contain any label, while
the last column of the other datasets is the label (0 for normal
behavior, 1 for anomaly).

As detailed in the next subsections, the attacks affect pri-
marily the BESS or the grid at a local level (such as in
voltage levels or power quality). Usually, a single genera-
tor cannot influence the distribution grid at a broader level,
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TABLE 2. Resume of .csv dataset files.

FIGURE 3. Bad data injection - P Exceeds Limits - P Trend.

due to the limited size of generation. Still, as discussed in
Section I the control of multiple generators can significantly
affect the grid. Therefore, a monitoring algorithm generated
through the proposed dataset should be implemented for all
the involved generators. Still, in some cases, the manipula-
tion of a single generator can cause severe damage. These
cases are mostly related to an islanded operation mode in
microgrids, as pointed out in [25]. In these cases, it would be
necessary to do a customized simulation, depending on the
specific architecture of the microgrid.

A. NORMAL FUNCTIONING
The model simulates a complete cycle of charge and dis-
charge of the battery, that lasts approximately 8 hours. During
this time, the battery starts with a SOC of 95%, discharges
up to 34%, and charges again to 95%. The active power
varies between+40kW and−40kW , while the reactive power
varies between +10kvar and 0 (it does not emit inductive
power). The parameters of the network (voltages over the
three phases) and control (voltages of the DC/DC link, of the
battery, THD) remain approximately constant.

B. BAD DATA INJECTION - P EXCEEDS LIMITS
In this case, the attacker sends the wrong setpoint of active
power to the inverter. In particular, the setpoint exceeds the

limits that the model learned during training. In particular,
after a period of normal functioning, starting from +40kW ,
the active power goes up following a ramp up to +60kW ,
which is a variation of +50% in respect to the limit. The
same behavior is repeated for negative power: starting from
−40kW , the active power goes down following a ramp up to
−60kW , which is a variation of −50%. Figure 3 depicts the
overall power trend.

The expected behavior of an anomaly detection algorithm
is that the model generalizes the limits of the training dataset
but recognizes significant variations concerning the normal
performance, that is the behavior of the training dataset.

C. BAD DATA INJECTION - Q EXCEEDS LIMITS
During this attack, the attacker sends the wrong reactive
power setpoint to the inverter. In particular, the setpoint
exceeds the limits that the model learned during training.
In particular, after a period of normal functioning, starting
from +10kW , the reactive power goes up following a ramp
up to +15kW , which is a variation of +50% in respect
to the limit. A similar behavior is repeated for negative
power: starting from 0, the active power goes down following
a ramp up to −5kW , which is the same variation in the
module of the ramp up. Figure 4 depicts the overall power
trend.
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FIGURE 4. Bad Data Injection - Q Exceeds Limits - Q Trend.

FIGURE 5. Bad Data Injection - P Oscillations - P Trend.

The expected actions of an anomaly detection algorithm
is that the model generalizes the limits of the training
dataset, but recognizes significant variations concerning
the normal behavior, that is the behavior of the training
dataset.

D. BAD DATA INJECTION - P OSCILLATIONS
This example represents an attacker that sends a wrong set-
point of active power to the inverter. In particular, the setpoint
of the power continues to vary, producing an oscillation.
This is the effect of partial Man-in-the-Middle attacks on
different industrial communication protocols. Usually, the
SCADA periodically sends the setpoint to the inverter, but
it does not implement any authentication mechanism. If an
attacker can send simply fake packets to the inverter, the
two setpoints overlap; the physical consequence is that the
inverter continues to believe to the last command received,
producing an oscillation between the legitimate setpoint and
the rogue one. We hypothesize that the rogue setpoint is a
ramp, resulting in a sine wave multiplied by a ramp. Figure 5
depicts the overall power trend.

The expected behavior of an anomaly detection algorithm
is that, after a few cycles, the algorithm recognizes the wrong
trend (the wrong variation over time), that is not present in
the training dataset (where the variations of power are simple
ramps).

E. BAD DATA INJECTION - Q OSCILLATIONS
Like the active power case, the attacker sends the wrong
reactive power setpoint to the inverter. In particular, the
setpoint of the power continues to vary, producing oscil-
lations. Similarly to the previous case, this is the effect
of partial Man-in-the-Middle attacks on different industrial
communication protocols. We make the hypothesis that the
rogue setpoint is a ramp; therefore, the result is a sine wave
multiplied by a ramp. Figure 6 depicts the overall power
trend.

The expected behavior of an anomaly detection algorithm
is that, after a few cycles, the algorithm recognizes the wrong
trend (the wrong variation over time), that is not present in
the training dataset (where the variations of power are simple
ramps).
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FIGURE 6. Bad Data Injection - Q Oscillations - Q Trend.

FIGURE 7. False Data Injection - P Tampering - P trend.

F. FALSE DATA INJECTION - P TAMPERING
During this attack, the attacker can modify the power injec-
tion measure that the inverter sends to the SCADA. This can
be achieved through aMan-in-the-Middle Attack.We assume
that the attacker can modify only a subset of measures per
time; in this case, it modifies only the active power measure.
This results in an impossible vector of measures: after the
attack, the active power that the SCADA receives is not
coherent with the measures of current and voltages (in par-
ticular, is not the vector product of voltages and currents).
We simulated three orders of magnitude of the attack. In par-
ticular, starting from three setpoints (5kW , 15kW and 25kW ),
the power increases and subsequently decreases as a ramp,
reaching a value of ±20% of the real value. Figure 7 shows
the overall trend of active power.

The expected behavior of an anomaly detection algorithm
is that it promptly recognizes the attack since the vector

of measures produced by the attack represents a physically
impossible functioning.

G. FDI + BDI - SOC TAMPERING
During this attack, the attacker is able to modify the measure
of the SOC that the inverter sends to the SCADA. This can be
achieved through aMan-in-the-Middle Attack.We conjecture
that the attacker can modify only a subset of measures per
time; in this case, it modifies only the SOC measure. This
results in an impossible vector of measures: in fact, after the
attack, the variation over time of the SOC that the SCADA
receives is not coherent with the measures of current and
voltages (in particular, the SOC does not increase or decrease
by the product of power over time, both in the DC and AC
parts of the system). In particular, the SOC varies as follows:
in the first phase, the SOC decreases more slowly than the
real value; then, it increases while the battery discharges.
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FIGURE 8. FDI + BDI - SOC Tampering - SOC Trand.

From a numeric point of view, there is an increasing distance
between the real value and the integral of the power over
time. In the second phase, following a ramp, the SOC exceeds
the training dataset’s limits. We expect that the inverter has
a safety function that prevents the battery from operating
outside the safe limits of charging of the cells. Therefore,
it is impossible that the system is operating, for example,
at 20% of the SOC, while the limit has been established
during training at around 35%. In this case, from a numeric
point of view, the error resides in exceeding the usual limits.

The expected behavior of an anomaly detection algorithm
is that it promptly recognizes the attack, since the vector
of measures produced by the attack represents a physically
impossible functioning over time.

H. FIRMWARE MODIFICATIONS - HARMONICS
TAMPERING
During this attack, the attacker can modify the internal func-
tioning of the inverter; in particular, the attack can modify the
waveform produced by the inverter. We make the hypothesis
of injecting an additional harmonic to the sine waveform. The
magnitude of the harmonic increases by five steps. Since the
first step, the THD has exceeded the power quality limits
defined by the IEEE 519-2022 Standard. This choice is to
produce an attack that can be distinguished by noise and
would effectively impact the grid. Then, the value further
increases, as detailed in Figure 9.

The expected behavior of an anomaly detection algorithm
is that it promptly recognizes the attack, since some measures
significantly vary, in particular the THD of the voltage in all
three phases.

I. FIRMWARE MODIFICATIONS - V BATTERY TAMPERING
During this attack, the attacker can modify the internal func-
tioning of the inverter; in particular, the attack can modify the
control of the DC/DC converter. This can be particularly dan-
gerous, since it may result in dangerous working conditions

of the cells, that can damage them. The magnitude of the
variation increases by five steps, as shown in Figure 10.

The expected behavior of an anomaly detection algorithm
is that it promptly recognizes the attack, since some measures
significantly vary, in particular, the Voltage of the Battery and
the Voltage of the DC/DC link.

V. USAGE OF THE DATASET
The dataset showed the effects on the electrical measures of
a cyberattack targeting a battery storage system connected to
the grid. Therefore, it can be used for multiple purposes:

• Evaluate the risk associated with cyberattacks: the
model and the dataset can be used during a risk assess-
ment phase to quantify the effects of a cyberattack.
While different works have taken into account the vul-
nerabilities associated with smart inverters, it is usually
hard to quantify the risk. The dataset can be used to
quantify the effects of a potential attack: for each attack
described in Section III-B the dataset provides the trend
of each critical measure of the system. Moreover, it is
possible to customize the simulation through the direct
use of the model, that has been published together with
the dataset.

• Developing proper electrical protections: the possi-
bility of using electrical protection functions as an
incident response tool will be an innovative field of
research. Power system engineers may decide to imple-
ment different protection functions on the relay to
guarantee the system’s safety under cyberattacks prop-
erly. The dataset quantitatively provides the effects of
cyberattacks, allowing engineers to set the protections
appropriately.

• Developing physics-based anomaly detection algo-
rithms: the main purpose of the dataset is to develop
algorithms able to identify all the possible attacks that
can be done on a BESS. Physics-based anomaly detec-
tion is a promising field of research, as discussed
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FIGURE 9. Firmware Modifications - Harmonics Tampering - THD Trend.

FIGURE 10. Firmware Modifications - V Battery Tampering - V Battery Trend.

in Section II-A. The dataset allows machine learn-
ing experts to work on a new use case: in particular,
providing labeled datasets allows testing monitoring
algorithms for machine learning researchers who do
not have a power system background. The development
of datasets for monitoring industrial control systems
is particularly important to exploit the interdisciplinary
competencies of researchers.

The set of features described in Table 1 has been chosen
after an analysis of manuals of the commercial inverters’
communication modules, and comprehends all the most

common exchanged measures and commands. Therefore,
BESS-Set allows testing algorithms before their actual imple-
mentation on the field for a wide range of commercial
inverters; in case a product produces a smaller set of mea-
sures, it is possible to remove the unused features from the
dataset and use the remaining.

VI. CONCLUSION
This paper presented BESS-Set, an open-source dataset of a
BESS under cyberattack. The dataset and the Simulink model
are publicly available for the scientific community [11]. The
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aim is to help the scientific community produce results in
the field of cybersecurity of DERs; in particular, the dataset
can be used to develop physics-based anomaly detection
algorithms, representing a promising field of research for
enhancing the security of the Smart Grid.
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