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ABSTRACT The widespread integration of renewable energy sources to the main electrical grids has led to
the increased adoption of AC microgrids. However, the protection of AC microgrids is a challenging task due
to inverter interfaces, bidirectional power flow, multiple modes of operation and the requirement for selective
phase tripping. This paper presents an innovative artificial neural network (ANN) based approach for fast and
accurate identification and localization of symmetrical and asymmetrical faults occurring in the distribution
networks of AC microgrids. In the proposed methodology, the three phase and the neutral currents which
are sampled at either ends of the distribution lines, undergo discrete wavelet transform to extract the features
exhibited during faults in the network. These features are used by two neural networks for classification and
localization of the fault. To achieve high accuracy and computational efficiency, the network architectures of
the ANNs are optimized, and the extracted features contain the detailed information required for ANNs to
clearly distinguish different fault types and locations. A comprehensive evaluation and validation reveal that
the proposed scheme accurately and efficiently classifies and localizes faults in AC microgrids. The existing
research gap of fault localization in AC microgrids is also addressed through this approach.

INDEX TERMS AC microgrids, artificial neural network (ANN), discrete wavelet transform (DWT), fault
classification, fault localization.

I. INTRODUCTION

THE integration of distributed energy resources (DERs),
such as solar photovoltaic (PV) systems, wind turbines,

and energy storage units, has transformed the traditional
power grid into a more decentralized and dynamic entity.
ACmicrogrids are an effective method used to integrate these
DERs into themain grid.Microgrids offer several advantages,
including increased reliability, improved power quality, and
reduced carbon emissions [1], [2]. They can operate in both
grid connected and in islanded modes of operation, allowing
them to function autonomously during grid disturbances and
contribute to the overall resilience of the power system.

However, the integration of diverse DERs and the complex
nature of AC microgrid operations introduce new challenges,
particularly in terms of detection and localization of the
faults. Detection and localization of faults occurring in the

distribution network are crucial tasks in any microgrid. Early
detection and accurate localization of these faults are vital
for minimizing downtime, preventing further damage, and
facilitating prompt recovery, thereby improving the reliability
of the microgrid.

Detection and localization of faults in AC microgrids
is challenging due to the various modes of operation,
bi-directional power flow, and presence of DERswith inverter
interfaces. DERs such as solar panels and battery energy
storage systems are connected to the microgrid through
inverter interfaces. Since the current carrying capacity of
these Inverter Interfaced Distributed Generators (IIDGs) is
lower, the contribution by them to the fault current during
islanded mode of operation is insignificant [3]. Conventional
protection relays depend on large fault currents to detect
faults in the distribution network. Due to the IIDGs, the fault
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currents are lower rendering the use of conventional relays
ineffective in microgrids. Bidirectional power flow occurring
in a microgrid can cause conventional protection strategies to
function incorrectly [4]. Issues such as sympathetic tripping,
protection blinding, variation in fault current, and coordina-
tion mismatch arise when such methods are used [4], [5], [6].
Furthermore, during a fault, the non-faulted phase or phases
must continue to operate in a microgrid, to ensure that supply
is not completely lost. Therefore, the faulted phase must be
identified, and selective phase tripping must be done so that
only the faulty phases are isolated during an unbalanced fault.
This is essential to prevent the complete shutdown of an
islanded microgrid and it is not a task achievable with con-
ventional protectionmethods [7]. The accurate localization of
the fault reduces the time for restoration of the supply during
a fault and this feature is especially useful if the distribution
network is underground.

The analysis of the literature related to this research
area revealed that methods used for fault detection in AC
microgrids can be broadly categorized into two types as
model-based and data-driven approaches. The evaluation
method of the model-based approach is to confirm that the
evaluated variables are coherent with the model. The foun-
dation of data-driven approaches is the analysis of system
data or finding the relationship between input and output state
variables. Data-driven fault methods are capable of finding
abnormalities that may not be successfully detected by a
model-based methods due to their lack of comprehensive
knowledge about the system.

In [8], the authors introduced a novel approach that com-
bines wavelet singular entropy theory and fuzzy logic for
efficient fault detection and classification in distribution lines,
specifically in the presence of distributed generations. The
method employed wavelet singular entropy theory to ana-
lyze voltage and current signals, extracting relevant features
indicative of faults. Subsequently, fuzzy logic was applied
to classify faults based on these features. In the paper by
A. R. Haron et al. [9], the authors proposed adaptive over-
current protection settings for microgrids. This involved
continuous monitoring and analysis of system conditions,
adjusting protective device settings to adapt to changes in the
microgrid’s operation. The paper also suggested developing
fault detection algorithms tailored for microgrids, consider-
ing parameters such as fault currents, voltage profiles, and
power flow patterns. In [10], the authors recommended using
different relays in microgrids for varied fault protection.
Authors stressed the importance of coordinated protec-
tive devices, suggesting communication-based schemes for
real-time information sharing. However, drawbacks include
increased costs and reliance on communication channels.
In [11], the authors proposed a multi-agent-based method for
fault detection in power systems, relying on agent communi-
cation. Limitations include potential communication failures,
resulting in an ineffective protection scheme, slower fault
detection, and a lack of discussion on the impact of renewable

energy penetration. In [12], the authors proposed an intelli-
gent protection scheme for microgrids, combining wavelet
analysis and decision trees. Wavelet transform decomposed
signals to identify abnormal patterns associated with faults,
and decision trees classified the system conditions. In [13],
the authors suggested a differential protection scheme for
microgrids using Hilbert space-based power setting and fuzzy
decision processes. Hilbert space theory optimized the power
settings in multidimensional space, enhancing sensitivity,
and fuzzy logic handled imprecise information in decision-
making. In [14], the authors focused on fault detection and
location in the low voltage DC bus of a DC microgrid using
artificial neural networks (ANNs). The solution involves
training two ANNs with historical fault data to learn fault
patterns and locations. In [15], the authors proposed a fault
classification method for microgrids using wavelet transform
and machine learning. Features from faulty signals were
extracted using wavelet and wavelet packet transforms, and
they were fed to an ANN, a neuro fuzzy (NF) and a wavelet
neural network (WNN). The paper [16] introduced a deep
learning-based approach for fault classification in a simulated
microgrid using wavelet transform and multi-resolution anal-
ysis. Long short-term memory (LSTM) and convolutional
neural networks (CNN) were employed, with LSTM exhibit-
ing higher accuracy using only half the data of the CNN.
In [27], the authors proposed a fault diagnosis method for
microgrids based on restricted Boltzmann machine (RBM)
within multiple layers of an ANN. The effectiveness of the
model was studied under varying inputs, sampling frequen-
cies and added noise. The paper [28] introduced a fault
classification method for microgrids based on CNNs. In this
approach, current and voltage signal images were converted
to scalograms using wavelet transform, and they were used
as inputs to the CNN.

Thorough analysis of the literature revealed the short-
comings of the existing schemes for fault classification and
localization in AC microgrids. The lack of versatility of
the existing schemes hinders them from being used for
microgrids with different architectures and this also lim-
its the performance when the operating conditions of the
microgrid changes. Conventional, analytical methods used
for protection of the microgrids are slower to generate an
output, and they require advanced hardware to process the
complex algorithms. Some protection schemes rely on com-
munication between devices which could lead to problems
during the operation. It was also revealed that the local-
ization of the faults in AC microgrids is not discussed in
existing literature. In an effort to bridge the existing research
gap, innovative approach combining discrete wavelet trans-
form (DWT), wavelet energy entropy (WEE), and ANNs
to achieve accurate and efficient fault analysis is proposed
in this paper. Compared to transmission lines, the protec-
tion of AC microgrids is significantly different due to use
of IIDGs, bi-directional power flow and different modes of
operation [6], [20], [28]. Therefore, the already existing work
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using DWT and ANN for transmission line protection cannot
be directly applied to the protection ofACmicrogrids. A com-
prehensive analysis and testing were done prior to adapting
these techniques for fault classification and localization inAC
microgrids. Furthermore, compared to deep learning models
such as CNNs, the use of ANNs for a protection scheme is
more suitable due to the significantly lower computational
power, and faster fault classification and localization ability.

The rest of the paper is structured as follows: Section II
describes the proposed approach for accurate and fast fault
classification and localization in AC microgrids. Section III
provides the details about the simulated ACmicrogrid used in
this research for generating current waveforms. A description
on DWT and the techniques used for extracting the required
input features from the current waveforms are described in
Section IV. The ANN models used for fault classification
and localization is explained in Section V of this paper.
Section VI discusses the performance and results of the
models used for fault classification and localization. The
validation of the models using an alternative software and
the results are described in Section VII. Finally, Section VIII
gives the conclusion and possible future works for this
research.

II. PROPOSED FAULT CLASSIFICATION AND
LOCALIZATION SCHEME
The proposed protection scheme combines DWT, WEE, and
ANNs to achieve accurate and efficient fault analysis. The
conceptual framework of the proposed protection scheme
is shown in Fig. 1. To gather the necessary data, current
measuring devices (CMDs) are installed at either ends of
the distribution lines to sample the currents flowing through
the three phase conductors and the neutral conductor. These
four current waveforms are then subjected to DWT, which
enables the extraction of suitable time and frequency infor-
mation from the fault current waveforms. To accomplish
this task, two separate DWT models are developed for fault
classification and fault localization. The DWTmodel for fault
classification extracts the four maximum and four minimum
detailed coefficients of the fault currents in the three phases
and the neutral. These coefficients are taken after the fourth
decomposition level. The DWT model for fault localization
extracts the maximum horizontal scale and the WEE of
the horizontal component of the zero-sequence current at
either end of the distribution line. These values are obtained
after second decomposition level.The extracted features are
given as inputs to the neural networks for fault classification
and localization tasks. A classification type ANN is used
for the fault classification function, and it gives the fault
type and faulted phase or phases as the output. A regres-
sion type ANN is used for the fault localization function
and the output of fault classification ANN is also given as
an input to the fault localization ANN. Information about
the specific location of the fault is developed by the fault
localization ANN.

FIGURE 1. Flowchart of the proposed fault classification and
localization scheme.

FIGURE 2. Single line diagram of the AC microgrid model.

III. THE AC MICROGRID
The AC microgrid system used in this paper is the microgrid
at University of Moratuwa, Sri Lanka and this is the first
intelligent protection system developed for this microgrid.
This AC microgrid operates at a nominal voltage of 400 V
and a frequency of 50 Hz. The simplified single line diagram
of the microgrid is illustrated in Fig. 2, and it can function in
either grid-connected or islanded modes, with mode control
facilitated by the switch at the Point of Common Coupling
(PCC). Comprising three types of DERs—specifically, three
PV arrays of varying capacities, a Battery Energy Storage
System (BESS), and a synchronous diesel generator—the
microgrid features Circuit Breakers (CB) for each DER to
disconnect them from the system. The PV arrays and BESS
are linked to the distribution network through voltage source
inverters. Within the microgrid, four loads L1 (200 kW,
50 kVAr), L2 (100 kW, 25 kVAr), L3 (24.4 kW, 6.1 kVAr) and
L4 (25.6 kW, 6.4 kVAr) are present. Three distribution lines
with lengths of 313 m, 160 m, and 160 m respectively con-
stitute the microgrid infrastructure. To gather the necessary
current signals for neural network data generation, CMDs are
strategically placed at both ends of each distribution line.

The study involves simulating the same microgrid using
MATLAB/Simulink software. The simulation is used to gen-
erate data for training and testing of the two ANNs. The data
used for training of the two ANNs encapsulate data obtained
during both islanded and grid connected modes of operation
of the microgrid. Furthermore, changing levels of irradiance
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for solar PV, varying generation combinations, varying fault
distances, and varying loads are also considered when gener-
ating the data for training.

IV. DISCRETE WAVELET TRANSFORM (DWT) AND
FEATURE EXTRACTION
The DWT is a highly effective method in digital signal pro-
cessing for decomposing time-series signals into orthogonal
components. It has significant utility in fault analysis and
detection, as it allows for the identification of concealed
time-frequency characteristics within fault currents. In the
proposed fault detection scheme, the DWT assumes a critical
role in pre-processing the input data before utilizing it in
ANNs for subsequent analysis. Utilizing a feature extraction
method such as DWT, instead of using current signals directly
to classify and localize faults provides several advantages
which can be outlined as follows. A major benefit of DWT
is multi-resolution analysis capability where high frequency
transient details and low frequency trends can be extracted
from current signals for improved accuracy [24]. Dimension-
ality reduction is another advantage where a large time series
data such as a current signal can be represented in a compact
manner. This reduces the computational burden and allows
for rapid classification and localization of the fault [24], [25].
Features taken from DWT is capable of capturing the specific
fault dynamics information compared to raw current signals.
This characteristic is vital for better generalization of the
ANNmodels. Furthermore, the use of DWT allows denoising
of current signals by focusing on the signal components at
various levels [26].
An advantageous aspect of the DWT lies in its efficacy in

analyzing transient phenomena, which commonly occur dur-
ing fault conditions. Transients contain crucial information
regarding the fault type and location, and the DWT excels
at capturing and representing these transient components.
Consequently, it is a suitable tool for tasks such as fault
classification and localization. In addition to its analytical
capabilities, the DWT offers practical benefits for fault anal-
ysis. It provides fast and reliable fault analysis capabilities,
enabling efficient processing of extensive datasets. Moreover,
the implementation of the DWT is relatively straightforward,
and it demands less computational time and resources com-
pared to alternative wavelet transform techniques, such as
the continuous wavelet transform. Utilizing the DWT as a
pre-processing step in fault detection schemes, allows the
input data to be effectively prepared for subsequent analysis
usingANNs. The capability of DWT to analyze transients and
its practical advantages make it a valuable tool in fault anal-
ysis applications, offering insights into fault classification
and localization while ensuring efficient and reliable fault
analysis.

Wavelets are mathematical functions characterized by hav-
ing a mean value of zero over time. The wavelet function
ϕa,b(t) can be derived from a mother wavelet ϕ(t) through

scaling and shifting operations [20].

ϕa,b(t) =
1

√
|a|

ϕ(
t − b
a

) (1)

The scaling parameter a and the shifting parameter b deter-
mine the size and position of the wavelet, respectively.

The DWT of a signal s(t) can be derived as shown in (2)
[20],

dj,k =

∫
∞

−∞

s(t)ϕ∗
a,b(t) dt =< s(t), ϕa,b(t) > (2)

where, dj,k is the wavelet detail coefficient at a specific
decomposition level j and location k , and ϕ∗

a,b(t) is the
complex conjugate of ϕa,b(t). This coefficient represents the
contribution of the signal at a decomposition level j and
location k , providing a detailed representation of the time-
frequency components of the signal.

In practical applications, finding analytical solutions for
most signals can be challenging. However, a technique
that provides a solution by decomposing the signal into a
multi-resolution representation is introduced in [23]. This
approach, widely accepted as a standard method for calcu-
lating the DWT, overcomes the analytical complexities. The
multi-resolution decomposition, described by (3), involves
computing approximation coefficients, denoted as aM ,k .
These coefficients capture the low-frequency components of
the signal, while the detail coefficients represent the high-
frequency components. By applying this transformation, the
original signal s(t) is decomposed into an approximation
coefficient, AM and a series of detail coefficients, Dj(t),
at level M . This decomposition enables a comprehensive
analysis of the signal’s frequency content at different reso-
lutions [20].

s(t) =

∑
k

aM ,k
1

√
2M

ϕ(
t
2M

− k)

+

M∑
j

∑
k

aM ,k
1

√
2j

ϕ(
t
2j

− k)AM (t) +

∑
j

Dj(t) (3)

A. MOTHER WAVELET AND DECOMPOSITION LEVEL
The selection of mother wavelets and decomposition levels
is crucial in the DWT for fault detection and feature extrac-
tion. Previous research has explored various wavelet families,
including coif, db, dmey, haar, bior, and sym, to leverage
their unique time-frequency characteristics [18]. However,
exhaustively testing all possible combinations of wavelets is
impractical. Therefore, the choice of mother wavelets should
be based on the specific properties of the data being ana-
lyzed. The db and sym families are generally preferred due
to their robustness across different data properties, making
them reliable choices regardless of the length and number of
samples [20]. Conversely, wavelets with longer filter lengths
may limit the achievable levels of decomposition and impair
feature extraction capability. Thus, when selecting mother
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wavelets, it is crucial to consider their filter lengths and
compatibility with the desired decomposition levels.

Decomposition level is another critical parameter that sig-
nificantly affects the performance. It determines the level of
detail captured in the signal decomposition and subsequent
feature extraction. A higher decomposition level provides a
more comprehensive description of the input signal, but it
increases computational complexity. The maximum decom-
position level is determined by the size of the input signal and
the filter size of the chosen mother wavelet.

By carefully choosing suitable mother wavelets and
decomposition levels, the input signal can be effectively
decomposed into approximation and detail coefficients. This
decomposition enables a thorough analysis of the signal’s
frequency content at different resolutions, facilitating fault
detection and feature extraction tasks. Strategic choices based
on wavelet properties and consideration of the input sig-
nal’s characteristics enhance the effectiveness of the DWT in
revealing time-frequency domain characteristics and improv-
ing fault detection capabilities

B. FEATURE EXTRACTION
1) FAULT CLASSIFICATION MODEL
In the fault classification phase, the DWT-based approach
involves decomposing the signal into different frequency
bands using the DWT. The DWT effectively captures both
high and low-frequency components of the signal, allowing
for better fault detection. The resulting wavelet coefficients
are then utilized as input features for a neural network. This
approach has demonstrated its ability to accurately and effi-
ciently detect faults inACmicrogrids, while also significantly
reducing the volume of input data required for the neural
network, thereby enhancing computational efficiency [5].
To implement this approach, the three-phase and neutral

current signals are taken as inputs and subjected to the
DWT for feature extraction. MATLAB/Simulink model of
the microgrid is used to simulate different faults at different
distances in the microgrid. In this particular study, a One-
Dimensional DWT with the Daubechies family and a DB4
filter is employed. The signals are decomposed at a resolution
level of 4 to analyze faults occurring in distribution lines.

To generate faulty waveforms for analysis, the distance
parameter is modified incrementally. This allows for the
simulation of various fault scenarios at different distances
within the microgrid. For each fault scenario, the maximum
and minimum detail coefficients of the line current at level
4 are extracted as features. These coefficients provide valu-
able information about the fault characteristics and contribute
to distinguishing different fault types, such as single-phase
to ground fault, double-phase fault, double-phase to ground
fault, three-phase fault, and three-phase to ground fault.

The faults are applied by varying the distance to the fault
and operating conditions of the ACmicrogrid. By considering
both sides of the distribution line, a total of 8 coefficients are
obtained for each fault scenario. These coefficients consist

of 4 maximum and 4 minimum coefficients for each of the
three phases and the ground. This comprehensive set of coef-
ficients serves as the input data for an ANN, which performs
fault classification tasks with high accuracy. To ensure robust
training and testing of the neural network, a sufficient amount
of data is necessary. Therefore, 1000 data points are generated
for each fault scenario, providing a substantial data set for
analysis.

2) FAULT LOCALIZATION MODEL
The proposed methodology centers around the analysis of
the zero-sequence current acquired from recorded data sub-
sequent to a fault incident at the starting and ending points of
a distribution line. The initial phase of the approach entails
the utilization of the Fortescue transform on the three-phase
current obtained through simulation. This transformative pro-
cess facilitates the extraction of the zero-sequence current at
both terminals of the distribution line, forming a fundamental
basis for further analysis.

To capture specific fault characteristics, the wavelet trans-
form is applied to the zero-sequence current at both terminals,
resulting in the generation of four components (approximate,
horizontal, vertical, and diagonal) for each level of signal
decomposition. The primary focus of the current research is
on analyzing the horizontal components at the second level of
signal decomposition. Following that, the maximum scales of
the horizontal components are extracted from both ends of the
transmission line. The energy stored in each horizontal com-
ponent is then calculated, resulting in the acquisition of four
input data points for the ANN. These data points comprise
two energy values stored in the horizontal components and
two maximum scales of the horizontal component on each
side of the line. The selection of training data is crucial as it
should intelligently capture changes in resistance, angle, and
fault type. This ensures that the neural network can effectively
recognize and distinguish these variations, preventing any
issues during operation.

The Fortescue method is a valuable technique employed
to analyze asymmetric faults in transmission lines, encom-
passing scenarios such as short-circuits, line impedance,
equivalent impedance of lines with ground, or conductor
interruptions. This method showcases the ability to divide any
unbalanced n-phase system into n-balanced phase systems.
Specifically, in the case of unbalanced three-phase systems,
the Fortescue method provides insights into three distinct
components: the positive sequence component system, the
negative sequence component system, and the zero-sequence
component system. By utilizing the Fortescue method and
examining these individual components, a comprehensive
understanding of the characteristics and behavior of unbal-
anced three-phase systems can be attained, enabling effective
fault analysis and identification in distribution lines.

To extract the fault characteristics with minimal training
data and optimal accuracy, the transformation of three-phase
current into zero-sequence current can be employed. This
method allows for efficient processing of current data
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with reduced complexity. This approach aims to further
reduce the amount of data needed by focusing solely on
the zero-sequence current at both sides of the line. The
zero-sequence current for an ABCG fault is shown in Fig. 3.

FIGURE 3. Zero-sequence current for an ABCG fault.

Fig. 4 shows the wave separation of the zero-sequence
current signal at one corner of the distribution line through
second level of decomposition using db4. This separation
results in two components, approximate and detailed, at each
decomposition level, with the latter including horizontal, ver-
tical, and diagonal elements that relate to the high-frequency
information of the signal. In this approach, the focus is on
the horizontal component of the second level of decomposi-
tion (H2) as it provides essential information about the fault
characteristics [22].

To extract meaningful features from these horizontal com-
ponents for fault localization, WEE is employed to measure
the stored energy within them. Additionally, previous studies
have indicated that the maximum scale of the horizontal
components exhibits variation depending on the specific fault
type being examined. Therefore, two properties of the hori-
zontal component of the zero-sequence current of the faulty
waveform, namely the maximum scale of the horizontal com-
ponent and the WEE are extracted.

The wavelet energy of the horizontal component of
zero-sequence current at scale j and moment k is obtained
using the (4) [22],

Ej,k = |Hj(k)|2. (4)

There are various methods for signal analysis, and one
effective approach is to use entropy as an algorithm for signal
decomposition. Entropy provides a measure of the amount
of information contained within a signal. To perform this
analysis, consider a signal on scale j, where k = 1, 2, 3,. . . ,
N (the number of moments or coefficients on the j scale), and
L is the number of decomposition levels. The wavelet energy
spectrum of the horizontal component on the j scale can be
expressed as (5) [22].

Ej =

N∑
k=1

Ejk , j = 1,L (5)

Equation (6) represents the distribution of energy in the
form of relative wavelet energy [21].

Pjk =
Ejk
Ej

, j = 1,L (6)

Equation (7) allows for the calculation of the WEE of the
horizontal component of zero-sequence current [21].

WEE = −

∑
kPjk0.log(Pjk0), j = 1,L (7)

The maximum scale of the horizontal component and the
wavelet energy entropy are extracted from both ends of the
distribution line, resulting in a total of four features. These
features are utilized as inputs for the ANN. A data set of
1000 data points was generated for each fault, and the faults
are applied at varying distances and under different operating
conditions of the AC microgrid.

V. ARTIFICIAL NEURAL NETWORK MODELS
A. ANN MODEL FOR FAULT CLASSIFICATION
The classification ANN Model is designed to classify dif-
ferent types of faults based on the inputs provided to it.
The inputs for this model are derived from the fourth level
of DWT decomposition, specifically the four maximum and
four minimum detail coefficients obtained from this level.
The model’s objective is to accurately determine the type of
fault, whether it is symmetrical or asymmetrical, based on the
given inputs. There are 11 fault types that fall into categories
such as LL (line-to-line), LLG (line-to-line with ground),
LG (line-to-ground), LLL (three-phase), LLLG (three-phase
with ground), as well as a no-fault condition. These fault
types represent various fault scenarios that can occur in the
microgrid.

The architecture of the fault classification ANN consists of
eight input nodes, corresponding to the four maximum and
four minimum detail coefficients obtained from the fourth
level of DWT. These coefficients capture important informa-
tion about the fault characteristics. The model’s output layer
consists of twelve nodes, representing the different fault types
and the no-fault condition. Each output node corresponds to
a specific fault type, and the model determines the fault type
by activating the appropriate output node.

During the training process, the ANN learns from a labeled
data set where fault scenarios are simulated and the corre-
sponding fault types are provided. The network adjusts the
connection weights between the neurons using an optimiza-
tion algorithm, such as back-propagation, to minimize the
discrepancy between the predicted fault type and the actual
fault type. This iterative training process allows the model
to improve its accuracy over time. Once trained, the fault
classification ANN can be deployed in real-time applications
to classify faults based on the input coefficients obtained from
the fourth level of DWT.

B. ANN MODEL FOR FAULT LOCALIZATION
The fault localization ANN model is specifically designed
to determine the location of the fault in a distribution line.
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FIGURE 4. Approximate (A2), horizontal (H2), vertical (V2), and diagonal (D2) components after second level decomposition.

Unlike the fault classification model, this model utilizes a
regression approach as the objective is to determine the dis-
tance to the fault on the distribution line of the microgrid.
To train the neural network effectively, it is crucial to identify
a set of fault properties that can accurately localize faults.
In this case, two key characteristics are considered: the max-
imum horizontal component and the WEE of the horizontal
component. These characteristics are derived from both sides
of the distribution line after the second level of decomposition
using the DWT. These properties provide valuable informa-
tion about the fault location. In addition to the fault properties,
the fault type obtained from the fault classification ANN
model is also provided as an input to the localization ANN
model. By incorporating the fault type information, the accu-
racy of fault localization can be further improved, as different
fault types may exhibit distinct localization patterns.

This model consists of five input nodes, representing the
five input features. These features include the maximum
horizontal component, theWEE of the horizontal component,
and the fault type obtained from the fault classification ANN
model. These inputs serve as the basis for the regression
model to predict the distance to the fault on the distribution
line. The output layer of the fault localization ANN model
consists of a single node, representing the predicted distance
to the fault. The neural network is trained using a data set that
includes labeled examples with known fault properties and
corresponding fault distances. The network adjusts the con-
nectionweights during training tominimize the error between
the predicted fault distance and the actual fault distance, opti-
mizing the model’s ability to accurately localize faults. Once

trained, the fault localization ANN model can be utilized
in real-time fault localization applications. By providing the
required input features, the model predicts the distance to the
fault on the distribution line. This information is crucial for
efficient fault management and enables prompt actions to be
taken to restore the system’s normal operation.

VI. RESULTS AND PERFORMANCE
A. RESULTS OF FAULT CLASSIFICATION MODEL
The fault classification ANN model demonstrated excep-
tional performance, achieving a remarkable training accuracy
of 99.83% and a validation accuracy of 99.39%. The train-
ing accuracy of 99.83% suggests that the model achieved
near-perfect classification results on the training data set.
It accurately identified the fault types with only a marginal
error rate. Similarly, the validation accuracy of 99.39% indi-
cates that the model performed exceptionally well on unseen
data, demonstrating its robustness and ability to general-
ize effectively. Training and validation accuracy graphs are
shown in Fig. 5. This ANN model has a training loss of
0.0004 and a validation loss of 0.0212.

The confusion matrix was also examined to evaluate the
model’s performance in classifying fault types. The confu-
sion matrix provides a detailed breakdown of the model’s
predictions compared to the actual fault types. In the confu-
sion matrix, the events which were correctly classified are
represented in the diagonal cells, whereas the erroneously
classified events are indicated in the off-diagonal cells. The
confusion matrix obtained for the classification ANN is
shown in Fig. 6. In Fig. 6, A, B, and C represents the three
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FIGURE 5. Training and validation accuracy graphs for
classification ANN model.

FIGURE 6. Confusion matrix for fault classification ANN model.

phases while G represents the ground. As evident from the
confusion matrix, the classification ANN model was able to
determine the type of the fault with high accuracy when tested
with previously unseen inputs.

The proposed scheme for fault classification is capable
of generating the fault type information within a very short
time duration as well. The average total time for providing
the fault type information since receiving the faulty current
signals from the current sensing devices is less than 72.5 ms.
The total time comprises of a feature extraction time of less
than 0.8 µs and 72 ms of classification process time in the
fault classification ANN. Lower computational time for the
proposed fault classification model makes it suitable for real-
time applications.

B. RESULTS OF FAULT LOCALIZATION MODEL
The fault localization ANN model achieved notable perfor-
mance, as evidenced by various evaluationmetrics. TheMean
Absolute Error (MAE) value of 0.2122 indicates the average
absolute difference between the predicted fault distances and
the actual fault distances on the distribution line. A lower
MAE signifies better accuracy in estimating fault distances.
The Mean Squared Error (MSE) value of 0.1413 represents
the average of the squared differences between the predicted
and actual fault distances. The MSE considers both large

FIGURE 7. Predicted vs. true value graph of fault localization
ANN model.

and small errors, with a lower value indicating a better fit
of the model to the data. The Root Mean Squared Error
(RMSE) value of 0.3759 is the square root of the MSE
and provides an estimate of the average magnitude of the
errors. A smaller RMSE value indicates better precision in
predicting fault distances. The R2 score of 0.8660 measures
the proportion of variance in the fault distances that can be
explained by the fault localization ANN model. A higher R2
score suggests that the model accounts for a significant por-
tion of the variability in the fault distances. The adjusted R2
score of 0.8650 adjusts the R2 score based on the number of
predictors in the model. It takes into account the complexity
and potential overfitting of the model. A higher Adjusted R2
score indicates a better balance between model performance
and complexity.

This ANN model has a training loss of 0.07 and a val-
idation loss of 0.05. Low training loss suggests that the
model successfully minimized the errors between the pre-
dicted fault distances and the actual fault distances during
the training process. Moreover, a low validation loss implies
that the model demonstrated good generalization ability by
accurately predicting fault distances for unseen data. The pre-
dicted versus true value graph for the fault localization ANN
model is shown in Fig. 7. The close alignment of the data
points to the perfect prediction line demonstrates the ANN
model’s ability to make accurate predictions, as the predicted
fault distances closely match the actual values. This suggests
that the model has successfully learned and captured the
underlying patterns and relationships in the input features,
enabling it to make reliable predictions for fault localization.

The proposed scheme for fault localization is capable of
generating the fault location information within a very short
time duration as well. The average total time for providing
the fault type information since receiving the faulty current
signals from the current sensing devices is less than 80.5 ms.
The total time comprises of a feature extraction time of less
than 0.6µs and 80 ms of localization process time in the fault
localization ANN. Fast localization of the fault location using
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the proposed scheme allows for prompt recovery of faults and
to minimize downtime of the microgrid.

VII. VALIDATION OF RESULTS
In order to validate the simulation results and assess the
performance of the ANN models for fault classification
and localization, an alternative software, PSCAD/EMTDC
software was utilized. The same microgrid described in
Section III was simulated within PSCAD, replicating the
operational conditions and various fault scenarios. The
validation using PSCAD software was done for varying irra-
diance levels, varying loads, varying combination of sources,
and for both islanded and grid connected modes of operation
of the AC microgrid. Fault waveforms were generated within
this simulated environment, closely resembling real-world
fault conditions.

Once the fault waveforms were obtained from the PSCAD
simulation, the features of these waveforms were extracted
using DWT algorithms. These features served as inputs to
the neural network models for classification and localization
tasks. The neural network models were then tested using
these features to predict the fault types and fault locations.
By comparing the predicted results from the neural network
models with the actual fault types and locations obtained
from the PSCAD simulations, the accuracy and effectiveness
of the proposed classification and localization models were
evaluated.

FIGURE 8. ABC fault waveform obtained using PSCAD software.

Validation process for both classification and localization
models performed for an ABC fault is described subse-
quently. The waveform obtained using PSCAD for validation
of the ABC fault applied at a distance of 0.0025 km is shown
in Fig. 8. The maximum and minimum DWT coefficients
obtained using the PSCAD waveform for an ABC fault is
shown in Table 1, while an image of the output generated
by the fault classification ANN model is shown in Fig. 9.
As seen here, the classification model was able to determine
the fault type accurately. The ABC fault was applied at a
distance of 0.0025 km from one end of the distribution line,
and maximum horizontal scale and WEE obtained from the
corresponding waveform at both ends are shown in Table 2.
In Table 2, Max(H2) represents the maximum horizontal
scale after second level of decomposition. When these fea-
tures were given as inputs to the fault localization ANN, the

TABLE 1. Maximum and minimum detailed coefficients values for
the ABC fault.

FIGURE 9. Result obtained from classification ANN for the ABC
fault.

TABLE 2. Maximum horizontal scale and WEE for the ABC fault.

model was able to predict the distance to be 0.00235 km as
shown in Fig. 10. The error of the prediction for this particular
scenario was 6.38%.

FIGURE 10. Result obtained from localization ANN for the ABC
fault.

Similarly, for the validation of the proposed fault classi-
fication model, 533 fault waveforms were generated using
PSCAD. The features of these waveformswere extracted, and
given as inputs to the classification ANN model. Out of the
total faults generated, 511 faults were correctly predicted by
the model. Table 3 presents the number of generated faulty
waveforms for each fault type, the number of faults correctly
predicted, and the prediction accuracy for each fault type.

TABLE 3. Validation results for prediction accuracy of fault
classification model.
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TABLE 4. Validation results for prediction accuracy of the fault
localization model.

For validation of the fault localization model, ten faults
for each fault type were applied at varying distances along
the distribution lines of the AC microgrid under different
loads, irradiance levels, and different modes of operation.
The goal was to evaluate the performance of the localization
ANN by calculating the mean value of absolute error for the
predicted results. The faulty waveforms at varying distances
were generated using PSCAD software and relevant features
were extracted as inputs to the ANN. For each fault type, the
mean value of absolute error was measured for the predicted
results as a percentage. The fault types included AB, BC,
BG, CG, AG, BCG, ABG, ABC, AC, ACG, and ABCG.
By considering ten different distances for each fault type,
a comprehensive assessment of the localizationmodel’s accu-
racy across a range of scenarios was performed. The summary
of the results of the validation for localization model is shown
in Table 4 and it can be seen that the mean error values range
from 2.64% to 6.45% across different fault types.

VIII. CONCLUSION
A novel approach for fault classification and localization
in AC microgrids using DWT and ANNs is presented in
this paper. The input features required for the ANNs can be
extracted from the three phase and ground current signals
sampled at either end of the distribution line. The inputs to the
fault classification ANN model include maximum and min-
imum detailed coefficients obtained through DWT of fault
current waveforms. For fault localization ANNmodel, inputs
consist of the maximum scale and WEE of the horizontal
component, along with the fault type. The use of ANNs in
the proposed scheme enables the accurate classification and
localization of the faults unaffected by the mode of operation
of the AC microgrid, loading and generating conditions, fault
resistance and other events. The ANNmodel for fault classifi-
cation shows a training accuracy of 99.89% and a validation
accuracy of 99.39%. The ANN model for fault localization
shows an adjusted R2 score of 0.8650 indicating a higher
accuracy. In addition to the higher accuracy, the proposed
scheme is capable of generating the outputs within a short

duration allowing the fast isolation of faults and therebymini-
mize possible damages to themicrogrid. Hence, this approach
is suitable for real time application in AC microgrids. Fur-
thermore, the proposed deep learning-based approach can
minimize the risk of damage or outages, ultimately leading
to cost savings and increased reliability of the AC microgrid.
The generalization of the proposed scheme for other AC
microgrid architectures is possible mainly due to the utiliza-
tion of DWT and modular design of the ANNs. DWT of the
three phase and neutral current signals capture the essential
temporal features of a fault which are common for any AC
microgrid and this is crucial for generalization. Furthermore,
the ANN architecture is easily scalable by changing the num-
ber of layers or neurons based on the size and complexity of
the AC microgrid.

In the future work related to this research, simulations and
experimental setups that accurately represent high impedance
faults, converter faults, and other variations in weather con-
ditions will be developed to comprehensively assess the
effectiveness of the proposed approach. Also, this approach
will be expanded to include more complex microgrid archi-
tectures, and testing the approach in real-world scenarios with
data from physical AC microgrids.
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