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ABSTRACT A fall-detection system was implemented utilizing a 2.45 GHz continuous wave radar along
with power-efficient and fully-analog integrated classifier architectures. The Power Burst Curve and the
effective acceleration were derived from the short time Fourier transform, and then processed by the analog
classifier. The proposed classifier architectures are based on different approximations of the Decision tree
classification model. The architectures consist of three main building blocks: sigmoid function circuit,
analog multiplier and an argmax operator circuit. To assess the hardware design, a thorough analysis is
performed, comparing it to commonly used analog classifiers while exploiting the extracted data. The
architectures were trained using Python and were compared to software-based classifiers. The circuit
designs were executed using TSMC’s 90 nm CMOS process technology and the Cadence IC Suite was
employed for tasks including design, schematic implementation, and post-layout simulations.

INDEX TERMS Analog hardware classifier, decision tree, fall-detection, radar-based system, sigmoid-
based implementation, sub-threshold region.

I. INTRODUCTION

FALL detection systems are essential for safeguarding
individuals, particularly those prone to accidental falls,

like the elderly or those with mobility challenges [1], [2].
These systems utilize a range of sensors and cutting-
edge technologies to swiftly identify instances of falls,
enabling prompt intervention and potentially preventing
severe injuries [3], [4]. The advancement of robust fall detec-
tion technology is a significant focal point in healthcare and
assistive technologies, with progress in sensor technology
and machine learning algorithms contributing to more precise
and dependable systems [1], [2]. Ultimately, this enhances

the quality of life and independence for those requiring
additional support and care.
Biomedical engineering has played a pivotal role in

advancing fall detection technology, especially in the
realm of healthcare and assistive technologies [5]. By
integrating state-of-the-art sensors, advanced signal pro-
cessing techniques and machine learning algorithms,
biomedical engineers have developed sophisticated systems
capable of accurately detecting and responding to
falls [3], [4]. These systems leverage various sensors,
including accelerometers [6], [7], gyroscopes [8] and some-
times radar-based technology [9], [10], [11] to monitor
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individuals’ movements and orientation. Through meticu-
lous design and implementation, these technologies can
effectively differentiate between routine activities and a
genuine fall event, facilitating prompt intervention [12].
The integration of biomedical engineering and fall detection
not only enhances the safety of vulnerable populations but
also underscores the transformative potential of technol-
ogy in improving healthcare outcomes and overall quality
of life.
Analog computing has emerged as a valuable tool in the

field of biomedical engineering, offering unique advantages
in processing and analyzing biological data [13], [14], [15].
The continuous nature of analog signals is particularly
well-suited to modeling and simulating biological systems,
where physiological processes often exhibit intricate and
dynamic behavior [16]. Biomedical engineers have leveraged
analog computing to create high-precision analog electronic
circuits that can mimic and study physiological responses,
such as neural activity, cardiac rhythms or biomechan-
ical movements [17], [18]. These analog models enable
researchers to gain deeper insights into complex biologi-
cal phenomena, providing a bridge between mathematical
modeling and real-world biological systems [13], [14], [15].
Furthermore, analog computing can be employed in spe-
cialized medical devices, including analog signal processing
for diagnostic tools, patient monitoring and data acquisition,
contributing to enhanced healthcare solutions and improving
patient outcomes [19], [20]. The synergy between analog
computing and biomedical engineering continues to drive
innovation in the development of novel diagnostic and
therapeutic approaches in the realm of healthcare and life
sciences.
Motivated by the need for energy-efficient and

compact biomedical smart sensor systems in fall detec-
tion [21], [22], [23], this study introduces a Radar-based
system for detecting human falls. This system consists of
a Radar-based method and a low-power analog integrated
decision tree classification model. Regarding the Radar-
based method is described in two simultaneously submitted
articles: one herein (Data Collection) and the other [24].
The work in [24] elaborates on the technical aspects and
on how to deliver a real time estimation of an elder fall.
Therein, for the final classification method was achieved
with software-based Support Vector Machine (SVM), thus
needing an external processor unit (e.g., laptop) to carry
out the computational burden thus the size, cost and power
dissipation are not optimized. On the contrary, the effect
herein is focused on minimizing the power consumption
along with delivering a very fast processing of the collected
data from the radar operation. For this purpose, the classi-
fication step is implemented into an appropriately designed
fully analog hardware classifier. Thus, the effort herein is
directed toward the design of this classifier with particular
attention to optimizing its performance. These two articles
present complementary approaches which could ultimately
be combined in an advanced system.

The implemented fall-detection method was tested utiliz-
ing the processed radar’s data, which are described in more
details in [24], with ultimate purpose to operate in real-time
scenario. Instead of using a Support vector machine [24],
the extracted data (acceleration and power burst curve) are
subsequently processed by the proposed low-power analog
decision tree classification model. Post-layout simulations
conducted in a TSMC 90 nm CMOS process via Cadence IC
Suite validate the accuracy of the implemented classifiers.
Moreover, the proposed classifiers are compared with a
software-based implementation and related analog classifiers
in the measured dataset.
The rest of the paper is organized as follows. The motiva-

tion and our vision is explained in Section II. The proposed
fall-detection method based on CW Radar system is analysed
in Section III. The related background concerning the
Decision tree classification model is presented in Section IV.
Section V refers to the proposed design methodology,
which includes the system level architecture, along with the
transistor level implementation of the main circuits used.
The offline training and architecture’s parametrization is
analysed in Section VI. In Section VII, the post-layout
simulation result in the measured data are provided along
with the implemented layout. A comparison study between
this work and related analog-based classification systems is
summarized in Section VIII. Finally, Section IX concludes
the article.

II. MOTIVATION AND VISION
Indoor radars offer immunity from external factors such as
acoustical noise, lighting, and smoke, and enable “seeing”
through different objects or walls, allowing for accurate
detection and ensuring privacy in almost every situation.
This stands in contrast to camera-based systems, which are
sensitive to these factors [25]. A continuous wave (CW)
radar system offers a simple structure and operation, making
it perfect for real-life applications where target localization
is not required. In [24], an acceleration-based fall detection
technique was proposed utilizing a CW radar consisting of
a Software Defined Radio (SDR), a mid-range processing
unit (a mid-range laptop with an Intel Core i5-10210U
processor), and two antennas. A simplified block diagram
of the system’s operation is depicted in Fig. 1. In summary,
the SDR generates the signal in the digital domain, converts
it to analog, and transmits it using the antenna. Next, the
scattered signal from the target is collected through the
antenna and processed in the analog domain before being
converted back into digital form. In most cases, the digital
system’s processing is performed on an external processing
unit (e.g., a laptop) due to the limiting capabilities of the
SDR’s internal processing unit. Subsequently, the Short-
Time Fourier Transform (STFT) and feature estimation are
applied, and the features are inputted into a digital classifier
(e.g., Support Vector Machine) to determine if a fall has
occurred [24].
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FIGURE 1. Radar Fall Detection System based on Acceleration [24] and Proposed Analog Transformation Modifications.

However, this method is power-hungry due to the multiple
conversions between the analog and digital domains and
the constant operation of the digital processing unit. Our
vision is the development of a novel, fully-analog, power-
efficient fall detection system. To achieve this goal, as
depicted in Fig. 1 with the dotted line, we aim to replace
the digital interface and back-end with analog IC blocks.
Specifically, the SDR will be substituted with an analog
radar system, eliminating the need for the digital interface
and energy-consuming converters [26]. It is important to
note, that analog processing will occur in the baseband or
Intermediate Frequency, rather than in the RF signal, because
CW radar does not require high bandwidth to operate, thus
allowing for down-conversion in the analog front end [27].
In more details, the clutter removal in analog signal is
well-established method from the introduction of radar
systems [27]. In past years, in the literature different works
were proposed about calculating Fast Fourier Transform
(FFT) in analog domain [28], [29], [30]. The procedure
to estimate the metrics (PBC and acceleration) includes
summations, products and differentiations which can be
implemented with translinear circuits [31], [32] or low-
power approaches [33], [34]. The same operations will be
utilized to numerically approximate feature extraction with a
degradation in accuracy to reduce the power consumption of
the overall system [35], [36], [37], [38]. Finally, the classifier
will be a purely analog energy-efficient approach with a
power consumption lower than μW.

In this study, building upon our previously published
work [24] where the system methodology was validated
using a CW radar based on SDR, we introduce a novel fully-
analog classifier to replace the digital counterpart. Following
this initial step, once the functionality of the analog classifier
is confirmed, we will proceed to implement the remaining
blocks of the digital back-end using analog components.
In the end, the entire system will be evaluated under real-
time conditions to assess its overall performance and average
power consumption.

III. DATA COLLECTION
Measurements were conducted in the facilities at Department
of Electrical and Computer Engineering of Democritus

FIGURE 2. Experimental site (office) where the data set measurements were
recorded by the CW radar.

University of Thrace in Xanthi. The central operating
frequency was determined to belong to free industrial
scientific and medical (ISM) band 2.45 GHz. An office was
selected as the experimental site where the SDR (USRP
B205-mini) and the laptop were positioned on a desk and
the antennas were located in the next desk as depicted in
Fig. 2. This specific USRP is a general low cost and footprint
transceiver with limited computational power and operational
bandwidth. It is connected through a USB port to a portable
computer (e.g., laptop) with a power consumption around
2.5 W. The power consumption is almost constant due to the
use of Variable Attenuators in RF analog front end for power
control. This is a common practise in RF modules, because
the design and implementation of power variable microwave
sources and amplifiers is almost impossible. The data set
includes a total of 187 different cases of daily activities such
as walking around, sitting in a chair, kneeling and falling in
different angles. We selected to perform 37 fall cases and
150 non-fall cases because the fall cases will be unlikely to
happen and we do not want the algorithm to be biased. To
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verify the validity of our system Line-of-Sight (LoS) tests
were conducted with an approximately duration of 10 s each
one by a volunteer undergraduate student. We selected the
LoS conditions in order to test the accuracy of the proposed
analog classifiers based on the presented metrics. In a future
work, we will test their operation for LoS and Non LoS
cases in the same dataset. It is important to note that in
Line-of-Sight tests the low power level Wi-fi signal was not
interfered with the relative higher power radar signal. The
average distance of the antennas and the volunteer in each
case was 2.5 m while the maximum distance was defined at
5 m. The fall cases were performed with the limitation of not
being perpendicular to the propagation of the electromagnetic
wave in order to be able to detect a radial velocity due to
Doppler’s effect.
The raw data from radar were collected and then

processed, as detailed analyzed in [24], and the power
burst curve (PBC) and human’s effective acceleration were
derived. In summary, the CW signal travels through free
space, encounters a multibody target (e.g., person), and
gets scattered. Some of this scattered signal is reflected
back and captured by the receiving antenna. This received
signal is then amplified and converted back to digital for
processing. The processing involves removing the influence
of stationary targets by suppressing the DC component using
a moving average, from which real-time adjustments are
subtracted. Additionally, a Short Time Fourier Transform
(STFT) is applied to determine the Doppler-shifted frequency
response indicative of moving targets over time. The system
calculates a power burst curve and its moving average to
determine if the signal exceeds a certain threshold, indicating
movement. If so, acceleration is computed based on a
specified methodology [24].

The PBC expresses the power per time instant [39] and
is a good way to determine intense moving of the target
(such as human fall) [40]. This is a measure of the signal
energy, in the spectrum within a specific frequency band
and is estimated summing at each time step the power
of each frequency sample of the band [39]. The effective
acceleration is a combination of the response scatterers
(human torso, arms, head or legs) isolating it from slow
moving or stationary targets and electromagnetic interference
signals from other sources (Wi-Fi) [41]. A weighted average
of Doppler frequency shifts at each time step is used
to calculate this acceleration. Then, a Gaussian filter is
employed to focus on velocity ranges indicative of a fall,
filtering out slower movements that could be associated with
non-fall activities like sitting or standing. The choice of a
band-pass filter over a high-pass filter minimizes interference
from electronic noise and external signals which will display
higher frequencies than expected. For example for a human
fall, it is expected the maximum velocity to reach 5 m/s [42]
while the acceleration will be around 10 m/s2. In the
STFT spectrum analysis, both positive (movement towards
the radar) and negative (movement away from the radar)
frequency bands are important, requiring the use of two

FIGURE 3. A Simple Flowchart of the estimation of the PBC and effective
Acceleration and their indicative graphs for a fall case.

FIGURE 4. A Comparison between fall and non-fall case for PBC metric.

Gaussian distributions with the same variance but opposite
mean values to effectively cover both scenarios. A simple
flowchart of the above procedure is presented in Fig. 3.
It was proved that this effective acceleration curve could
be exploited to determine if a fall occurred or not with a
SVM [24]. In Figs. 4 and 5, a comparison between a fall and
a non-fall case (walking around the office) is taken place for
the PBC and effective acceleration. As someone can observe
the amplitude of the PBC curve cannot be used to determine
the fall because the high power low frequency components
contributes. However, when the acceleration is estimated the
difference in fall and non-fall cases is more distinguishable.
In this work, from the PBC and the effective acceleration,
ten features will be extracted, as it will be analyzed in the
next sections, and train different analog architectures in order
to test their fall detection capabilities.

IV. DECISION TREE CLASSIFICATION MODEL
A Decision tree classification model is a fundamental
machine learning algorithm used for both classification and
regression tasks [43], [44], [45]. It operates by recursively
partitioning the dataset based on feature values, creating
a tree-like structure. The process starts at the root node,
where the algorithm selects the most discriminative feature
using metrics like Information Gain or Gini Impurity [46].
The chosen feature splits the data into subsets, each branch
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FIGURE 5. A Comparison between fall and non-fall case for the effective
acceleration metric.

representing a possible outcome. This process continues until
the leaf nodes, which contain the predicted class labels.
Mathematically, a Decision tree can be represented as a
function f (x) that takes an input vector x and maps it to a
predicted class label or value. This can be expressed as:

f (x) =
N∑

i=1

ci · I(x ∈ Ri) (1)

where N is the number of leaf nodes, ci is the predicted
class or value for the i − th leaf node and Ri is the region
of feature space associated with the i− th leaf.

The split criteria in a Decision Tree Classification Model
is determined using metrics that quantify the impurity or
disorder of a dataset. For example, the Gini Impurity is
commonly used and is defined as:

Gini(p) = 1 −
K∑

i=1

p2
i (2)

where K is the number of classes and pi represents the pro-
portion of samples belonging to class i in the dataset. Another
metric is Information Gain IG(D,A), which measures the
reduction in entropy after a split:

IG(D,A) = H(D) −
∑

u

Du
D

H(Du) (3)

where u ∈ Values(A), Values(A) are the possible values of
feature A, A is a candidate feature for splitting, H(D) is the
entropy of dataset D, Du is the subset of D where feature A
takes value u and H(Du) is the entropy of subset Du. These
equations illustrate the mathematical underpinnings of how
a Decision Tree Classification Model makes decisions and
performs splits based on impurity metrics.
The Decision tree model’s effectiveness lies in its inter-

pretability and ability to handle various types of data [45]. By

FIGURE 6. A block diagram of a Decision tree classification model. In a decision
tree classification model, nodes can be of two types (decision node and leaf nodes).
At each node, the algorithm selects the best feature and condition to split the data,
aiming to maximize the purity of the resulting subsets with respect to the target
variable. This process continues until a stopping criterion is met, such as a maximum
tree depth or a minimum number of samples per leaf node. The resulting tree can then
be used to make predictions on new, unseen data by traversing the tree from the root
node down to a leaf node.

visually representing the decision-making process, it offers
valuable insights into the underlying relationships within
the data. Moreover, Decision trees serve as building blocks
for more complex ensemble methods like Random Forests
and Gradient Boosted Trees. These ensembles combine
multiple Decision trees to enhance predictive accuracy. By
aggregating the predictions of individual trees, they can
mitigate overfitting and improve generalization performance.
This versatility, combined with the inherent transparency
of Decision trees, makes them a valuable tool in machine
learning across a wide range of applications.
A decision tree begins its classification process by starting

from the root node, where it compares the attribute value
of the dataset with that of the root [43], [44], [45]. Based
on this comparison, it proceeds along the corresponding
branch to the next node. In Fig. 6, a block diagram illustrates
a Decision tree classification model which introduces key
terminology. The root node serves node, on the one hand,
as the starting point for the tree and represents the entire
dataset, which is subsequently partitioned into two or more
homogeneous sets. Leaf nodes, on the other hand, signify the
final output and mark the endpoint of further segregation.
Splitting involves the division of decision and root nodes
into sub-nodes based on specified conditions. A sub-tree is
formed by this process of splitting. On the contrary, pruning
entails the removal of unnecessary branches from the tree.
The root node is referred to as the parent node, while the
remaining nodes are known as child nodes.

V. PROPOSED ARCHITECTURES AND MAIN BUILDING
BLOCKS
In this section, three analog architectures of the Decision
tree classification model, along with the fundamental circuits
constituting it, are presented. More specifically, the proposed
architectures approximate the behavior of the specific model
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TABLE 1. Extracted features.

based on the classification process it employs. The conducted
study focuses on the classification of data collected from
the implemented Radar-Based system for detecting Human
Falls. As a result, the classification task initially comprises
2 classes and 10 features. However, these architectures
can be extended to accommodate Ncla classes and Nd
features, allowing for greater generalization. The selected
features (both type and number) are determined through
feature extraction methods employed during the algorithm’s
training [47], [48], [49], [50]. This is done to attain maximum
accuracy without encountering issues of overfitting. In
Table 1 the 10 features are summarized. More specifically,
they are selected based on their ability to capture important
characteristics of signals, such as their amplitude distribution,
frequency content, shape, and temporal dynamics. These
features are commonly used in signal processing and are
known to be informative in various applications such as
pattern recognition, classification, and anomaly detection.

A. ANALYSIS OF MAIN BUILDING BLOCKS
The aforementioned architectures comprise varying combina-
tions of the following three circuits: sigmoid function circuit
(SFC) [31], [51], multiplier (MP) [52], and Winner-takes-
All (WTA) circuit [53]. Both transistor-level implementations
and the behavior of each circuit are provided. Referring to
the first one, an alternative implementation of the classic
SFC [31], [51] that generates a univariate sigmoid curve is
introduced. Since its output is in the form of current, it
can be easily expanded to higher dimensions by connecting
additional SFCs to the same node. Concerning the analog MP
here it employs the same implementation that was used to
regulate the height of Gaussian curves in an analog Support
Vector Machine (SVM) implementation [52] and is well-
suited for small currents. As for the argmax operation, the
standard Lazzaro WTA circuit [53] is employed. All of the
mentioned circuits provide the necessary functionalities to
achieve a high classification accuracy. Moreover, in order
to minimize the system’s power consumption, all transistors
operate in the sub-threshold region [54] and the power supply
rails are set to VDD = −VSS = 0.3V across the entire
architectures.
Since a low-power design is one of the main goals of

this work, all transistors operate in the sub-threshold region,
with power supply rails set to VDD = −VSS = 0.3V . The
selection of the basic building blocks and power supply rails

FIGURE 7. The analog hardware circuit related to the realization of sigmoid-based
curves. It is a differential difference SFC with cascode current mirrors. The voltage Vin

is related to the system’s input. The voltage parameters Vr and Vc , along with the bias
current Ibias tune the mean, variance and amplitude of the sigmoid function.

is guided by a trade-off between achieving high accuracy,
minimizing power consumption, and ensuring the correct
operating principles for the whole classifier. Also, we run
noise-transient simulations to check the behavior of the
proposed classifier. The classification result appeared to be
quite robust. To a certain extend this tells us that the errors
due to internal noise is small with respect to the errors in
the data. Moreover, the ease of implementation of SFC, MP
and WTA, makes them favorable candidates for area efficient
and low-power classifiers.

1) SIGMOID FUNCTION CIRCUIT

Typical SFCs output a univariate sigmoid function curve.
In this study a customized version of the SFC, which
is illustrated in Fig. 7, is introduced and implemented to
elevate the output curve’s quality and enhance robustness.
In particular, instead of a simple current mirror used
in [31], [51], a cascode one (Mp2,Mp3,Mp5,Mp6) is selected
(robust mirroring for small currents). Furthermore, for the
purpose of adjusting the width of the output curve, a bulk-
controlled differential difference pair (denoted as Mn1−Mn4)

is employed in place of a basic one. In practice, this differ-
ential difference pair comprises two distinct differential pairs
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TABLE 2. SFC’s transistor dimensions.

capable of generating currents characterized by sigmoidal-
shaped curves with adaptable slopes [55]. The transistors
Mn1 and Mn4 are deep-n-well. Via the parameter voltage Vc
and the body effect the output curve’s width is tuned. In
order to enhance the linearity of the block containing the
differential difference pairs, the size ratio between transistors
Mn1 − Mn2 and Mn3 − Mn4 is adjusted to 2, as opposed to
the original ratio of 1 [56], [57].
All the circuit inputs and parameters affect the behavior of

the output curve. The transistors Mn1 and Mn3 are connected
to the input voltage, Vin, serving as conduits for information
pertinent to the dataset. The electronic tuning of the sigmoid
function’s height, center and width is achieved through the
manipulation of three circuit parameters: Ibias, Vr and Vc.
These parameters are provided through the training process
of the classifier (via a software-based implementation). It’s
worth noting that this calibration process is a one-time
operation, after which the resultant parameters are extracted
and stored in an analog memory system [58].
The bias current Ibias, depicted in Fig. 8, tunes the height

of the resulting sigmoid output current under constant Vr = 0
and Vc = −300mV . The mean value of the derived sigmoid
function is altered through the voltage Vr, as shown in
Fig. 9, keeping the values of Ibias = 5nA and Vc = −300mV
constant. The SFC’s tunability in width, regulated by the
parameter voltage Vc, is illustrated in Fig. 10 with fixed
values of Ibias = 5nA and Vr = 0. Elevating the parameter
voltage Vc corresponds to an expansion of the sigmoid
curve’s width. Effective operation is achieved across a broad
range of parameter voltage Vr, spanning from Vrmin =
−250mV to Vrmax = 50mV . This range is chosen because it
is the effective range for the training procedure. For higher
Vr values, a decrease in the output current is observed, which
is no longer equal to the maximum but has a deviation. This
is undesirable as it cannot achieve the desired separation
between high and low currents for a small bias current Ibias.
In this work, this circuit is employed as an approximated
high-low output circuit. For Vin > Vr: Iout is equal to 2 ·Ibias.
For Vin = Vr: Iout = Ibias. For the rest, the output current
is very close to zero. The SFC’s transistor dimensions are
summarized in Table 2.

2) ANALOG MULTIPLIER CIRCUIT

To achieve precise linear scaling, an analog multiplier
circuit illustrated in Fig. 11 is employed. This multiplier
(MP) operates on the translinear principle [31], [51], which
stipulates that the product of clockwise translinear ele-
ments’ currents in a translinear loop equals the product
of counterclockwise translinear elements’ currents derived

FIGURE 8. The output current of the SFC as a function of Vin and parameterized on
Ibias , for Vr = 0mV and Vc = −300mV .

FIGURE 9. The output current of the SFC as a function of Vin and parameterized on
Vr , for Ibias = 5nA and Vc = −300mV .

FIGURE 10. The output current of the SFC as a function of Vin and parameterized on
Vc , for Vr = 0mV and Ibias = 5nA.

within the same loop. Essentially, in sub-threshold region
operating MOS, the translinear principle transforms the sum
of gate-to-source voltages around the loop into a current
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FIGURE 11. The analog translinear implementation of the multiplier. The three input
currents are used to tune the output current based on a mathematical equation. An
interesting observation is that when Ib is set to a high current value (more than 2nA)

and Ibias is set to a low current value (for example, 500pA), the output current equals
the low current value.

TABLE 3. Multiplier’s transistor dimensions.

product. This transformation is made possible due to the
exponential characteristics of sub-threshold region operating
MOS [54] current relative to its gate-to-source voltage, which
stems from Kirchhoff’s voltage law applied within the loop.
The designed translinear MP circuit features transistors

Mn5, Mn6, Mn8, and Mn9 arranged in an alternating loop
topology [52]. This configuration ensures that the output
current remains unaffected by the sub-threshold slope factor
κ . Additionally, we incorporate cascode NMOS and PMOS
current mirrors (consisting of transistors Mn1–Mn4 and Mp1–
Mp8, respectively) to achieve precise current mirroring.
Assuming all four transistors (Mn5, Mn6, Mn8, and Mn9)

are operating in the sub-threshold region and based on
the translinear principle, the MP’s output current can be
expressed as:

Iout = IbIbias
Imul

. (4)

In this case Ib and Ibias represent the inputs of the MP circuit
and Imul is a constant normalizing current. The inclusion of
transistor Mn7 is crucial for proper biasing of the translinear
loop. Detailed dimensions of the transistors in the multiplier
circuit are provided in Table 3.

Based on eq. (4), the output current Iout increases linearly
with the increase of currents Ib and Ibias and decreases
uniformly with the increase of current Imul. The behavior
of the circuit is also corroborated by the simulation results.
The output current of the MP circuit as a function of Ibias
and parameterized on Imull for Ib = 5nA is depicted in
Fig. 12. The output current of the MP circuit as a function
of Ibias and parameterized on Ib for Imul = 10nA is shown in
Fig. 13. The output current of the MP circuit as a function

FIGURE 12. The output current of the MP circuit as a function of Ibias and
parameterized on Imull for Ib = 5nA.

FIGURE 13. The output current of the MP circuit as a function of Ibias and
parameterized on Ib for Imul = 10nA.

FIGURE 14. The output current of the MP circuit as a function of Imul and
parameterized on Ib for Ibias = 5nA.

of Imul and parameterized on Ib for Ibias = 5nA is depicted
in Fig. 14. An interesting observation is that when Ib is set
to a high current value (more than 2nA) and Ibias is set to a
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FIGURE 15. The conventional Lazzaro NMOS-based argmax operator (WTA)
structure involves Ncla neurons.

low current value (for example 500pA), the output current
equals the low current value. More specifically, if one value
is Ib = 5nA (high) and the other value is Ibias = 500pA
(low), then the circuit approximates an “AND Logic Gate”
and the output is equal to 500pA (low) and not equal to
2.5nA (median). Based on this behavior, the implementation
of a hardware approximation of the Decision tree classifier
becomes straightforward. Specifically, even if there are data
that do not belong to the class that is studied, this will
be verified by all the features of the classifier. In the case
of two correlated features, the following occurs: one may
output high and the other may output low. Therefore, their
multiplication must result in a low value, since the data do
not belong to the class. If the function was different, the
output would occur at some intermediate value and thus the
classifier could assume that the data belong to the class.

3) WINNER-TAKES-ALL CIRCUIT

The Winner-Takes-All (WTA) circuit is designed to process a
set of Ncla input signals, responding exclusively to the largest
input while suppressing the responses from the remaining
Ncla − 1 inputs. Essentially, the WTA circuit embodies
the argmax function. Over time, various implementations
of WTA circuits have emerged, including voltage-mode
designs [53], current-mode configurations [59] and even an
ultra-low supply voltage version operating at just 0.3V [60].
It’s worth noting that all current-mode WTA circuit archi-
tectures are derived from the original design introduced by
Lazzaro [53].

The circuit configurations of the NMOS WTA circuit
for Ncla inputs is illustrated in Fig. 15. The PMOS WTA
circuit is the symmetric one and it can easily designed. In
the simplest NMOS version, a straightforward 2-input WTA
circuit (Ncla = 2) is constructed using four NMOS transistors
with identical W and L parameters, operating in the sub-
threshold region and biased by a constant current, denoted
as Ibias. The dimensions of these transistors are specified as
(W/L) = 400nm

1600nm . When the input currents are equal, i.e.,
Iin1 = Iin2, the output currents become Ion1 = Ion2 = 0.5Ibias.
For this specific work, we have not observed equal input
currents during classification procedure. As a results, we

FIGURE 16. In this configuration, Ibias = 5nA, Iin1 is a parametric current equal to Iin
and Iin2 = 6nA. The output current for both neurons as function of the input current Iin1.

FIGURE 17. The AFB block which consists of two correlated features which are
represented by two SFCs and a MP circuit.

have not multiple winners. For this reason, modifications to
the WTA or alternative approaches such as cascaded WTA
are not necessary. Since both Mn1 for class 1 (Mn1cl1) and
Mn1 for class 2 (Mn1cl2) have the same VGS voltage, when
Iin1 > Iin2, it follows that VDMn1cl1 = VGMn2cl1 > VGMn1cl2 =
VDMn2cl2 (same symbols for Mn2 transistor). Assuming that
both output transistors Mn2cl1 (Mn2 class 1) and Mn2cl2
(Mn2 class 2) operate in deep sub-threshold and have the
same source voltage, a slight disparity in their gate voltages
leads to a disproportionately larger difference in the output
currents. In this scenario, Ion1 = Ibias and Ion2 = 0.
Consequently, for input currents that differ significantly, only
the output current corresponding to the highest input current
will register a non-zero value. The behavior of the WTA
circuit is depicted in Fig. 16. Here, Ibias = 5nA, Iin1 is a
parametric current equal to Iin and Iin2 = 6nA.
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FIGURE 18. The high level architecture of a Decision tree classification model implemented with 5 AFBs, 5 CMs for each class and a WTA circuit. This architecture is called
SCA.

B. PROPOSED ANALOG CLASSIFIER ARCHITECTURES
In this subsection the proposed classifier’s high level
architectures are discussed. Since it is an application specific
task, the proposed architectures consists of Ncla = 2
classes and Nd = 10 input dimensions. Although all of
these architectures are application-specific, we can readily
create a generalized version to accommodate more or fewer
classes and input features. The implemented architectures
are hardware-friendly approximations of the Decision tree
classification model.

1) SIGMOID CORRELATED ARCHITECTURE

Initially, prior to implementing the architecture, a test was
conducted to assess the correlation between each pair of
selected features. Once the correlated features (pairs) are
identified, the hardware architecture is then designed. The
training process is conducted in the software, after which
the parameter values are stored in analog memories [58].
Afterwards, the hardware checks for each feature whether the
input data belong to a class or not. If the input data belong
to the class, the output of each feature should be high. There
are cases where the output is high for a feature, but these
input data do not belong to the class (random case). If each
correlated feature has a low output, then the final output will
be low for that class, considering those two features. This
process is executed for all five pairs of correlated features
for both classes.
Initially, each feature in this work is represented by a

sigmoid function. In the previous subsection the behavior of
the proposed SFC is analysed. A MP circuit is employed
to implement the correlation between the features. This

implementation is based on the following principle: if
the output of one feature is high and the output of the
correlated one is low, then the final output is low. The
circuit implementation that models the behavior of the two
correlated features is illustrated by the architecture shown
in Fig. 17. For simplicity this realization is called AFB
block. This is a generalized schematic which combines the
two activation function circuits, which are related to feature
i and the correlated one i + 1 (for i = 1, 3, 5, 7, 9) and
the correlated circuit (MP). Each SFC receives an input
voltage Vini or Vini+1, along with parameter voltages and
currents obtained from the training procedure and produces
a high or low output current referred as Iouti or Iouti+1. Then,
the two output currents are correlated through the MP and
the correlated output current for the two features Ioutmj is
extracted (j = 1, 2, 3, 4, 5).

The high-level structure of the sigmoid correlated archi-
tecture encompasses 2 classes and 10 features. Each block
associated with a class is composed of 5 AFBs, each
yielding an output current denoted as IoutAFBj = Ioutmj
(j = 1, 2, 3, 4, 5). Additionally, there are 5 cascode current
mirrors (CMs) in place to mitigate potential distortions. The
summation of the CMs’ currents generates the class current,
which can be either Iclass1 or Iclass2. In the final stage, the
WTA circuit is employed to compare the two class currents
and determine the final decision.

2) SIGMOID DECISION ARCHITECTURE

In this architecture (Sigmoid decision) there is no require-
ment for correlated features. Given that each feature operates
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FIGURE 19. The SDC block which consists of two SFCs which represent the same
feature and an argmax operator (WTA) circuit which compares both SFCs’ outputs.

independently, we can straightforwardly assess the probabil-
ities of each feature for each class, allowing us to identify
the highest probability. If an input datum is related to a
specific feature and belongs to this class, then the output
current is high, else it is low. The circuit implementation that
models this behavior is depicted in Fig. 19. For simplicity
this realization is called SDC block. This is a generalized
schematic that integrates the two SFCs, which are related to
feature i (for i = 1, 2, .., 9, 10) and more specifically i1 (class
1) and i2 (class 2) along with the current comparator circuit
(WTA). Each of these circuits receives the input data. If it
belongs to the class, the output current Isigi of the respective
SFC is high; otherwise, it is low. There are cases in which
both currents have high value. To address this, the WTA
circuit compares the two currents (Isigi) and determines the
final high and low currents for each specific feature i.
The high-level structure of the sigmoid decision architec-

ture again encompasses 2 classes and 10 features. Each block
associated with a class is comprised of 10 SDCs’ output
currents, each one referred as Iouti,j (for i = 1, 2, .., 9, 10 and
j = 1, 2). Additionally, there are 20 cascode CMs in place
to reduce potential distortions, with each one corresponding
to a WTA’s output. The summation of the CMs’ currents
generates the class current, which can be either Iclass1 or
Iclass2. In the final stage, the WTA circuit is employed
to compare the two class currents and determine the final
decision.

3) SIGMOID THRESHOLD ARCHITECTURE

In this architecture (Sigmoid threshold) the same test was
also carried out to evaluate the correlation between each
pair of selected features. The training phase takes place
in the software, where parameter values are subsequently
stored in analog memories [58]. Following this, the hardware
investigates each feature to determine if the input data
correspond to a specific class. In case the input data align
with the class, the output for each feature is expected to

register as high. Same as the other architectures, there are
cases where the output is high for a feature, but this input
data do not belong to the class. In such cases, if the correlated
feature exhibits a low output, the final output for that class
will also be low, accounting for these two features. This
meticulous process is iterated for all five pairs of correlated
features for both classes.
In the current architecture, a distinct design path is pursued

to address situations where a feature produces a high output
as a result of a random event. More specifically, the output
current of an SFC can assume an intermediate value, which
is not considered low. This may provide an additional “vote”
for the class to which the input data do not belong. The
solution to this case is the addition of an extra WTA in the
output of each SFC. As a result the two correlated features
(i and i + 1 for i = 1, 3, 5, 7, 9) consist of two SFC, two
WTA circuits and a MP circuit. This building block diagram
is illustrated in Fig. 21 and for simplicity this block is called
STC. Each SFC receives an input voltage Vini or Vini+1,
along with parameter voltages and currents obtained from the
training procedure and produces an output current referred
as Isigi or Isigi+1. Then, each of the currents is compared
with a threshold current (Ithi or Ithi+1) via a WTA circuit
and provide a “checked” high or low current Ifei or Ifei+1.
Then, the two output currents are correlated through the MP
and the output current of the correlated features Ioutmj is
extracted (j = 1, 2, 3, 4, 5).

The high-level structure of the sigmoid threshold archi-
tecture is shown in Fig. 22. This architecture consists of 5
STCs, 5 current mirrors, one WTA circuit and a threshold
current. In this case only the probability of one class is
calculated (if the input data belong or not to this class). All
the 5 Ioutmj output currents are summed through 5 CMs (to
reduce potential distortions). Then the current related to the
specific class Iclass is compared with a specific threshold
current (Ithc). This procedure determines the final winner. If
Iclass > Ithc, then class 1 emerges as the winner; otherwise,
it is class 2.

VI. OFFLINE TRAINING AND ARCHITECTURE
TUNABILITY
The analog hardware architectures of Decision tree classifi-
cation model outlined above rely on the integration of the
SFC to serve as a distance metric for prototypes in each
class (as detailed in previous Section). This setup allows
for the electronically adjustable parameters, Vr and Vc, to
be leveraged in creating a post-layout classification chip.
Also, the related current can be tuned in all SFC, MP and
WTA blocks in order to provide higher tolerance at the
cost of power consumption (for more complex tasks). This
adaptability enables easy customization to suit the specific
requirements of the targeted application. Additionally, the
system’s tunability is able to address a diverse array of
classification challenges, regardless of factors such as input
dimensions (Nd) and the number of classes (Ncla).
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FIGURE 20. The high level architecture of a Decision tree classification model implemented with 10 SDCs, 20 CMs and a WTA circuit. This architecture is called SDA.

FIGURE 21. The STC block which consists of two correlated features which are
represented by two SFCs, two WTAs (compare the SFC with a threshold current) and a
MP circuit.

To initiate the process, we developed a software-based
implementation of the Decision tree procedure to gather
essential parameters for the circuit. To ensure consistency,
all datasets used for validating the classifier were normalized
to fall within the operational range of the implemented SFC,
specifically within the range of [−250, 50]mV, as detailed
in previous Section. Also, regarding the range of the Vc
is set to [−300, 300]mV. This provides an extra degree
of freedom in the implementation, because the parameter
voltage Vc is able to tune the variance of the curve. As a
result, a map between the values of the Vc and the related
variance is implemented. Following this, the software-based
classifier underwent a tailored training process using a
specific methodology. This method enabled the extraction of
input dimensions for each class, which directly correspond
to the voltage parameters (Vr and Vc) of the hardware
counterpart.

FIGURE 22. The high level architecture of a Decision tree classification model
implemented with 5 STCs, 5 CMs and a WTA circuit. A threshold current is used in
order to provide the appropriate decision boundary. This architecture is called STA.

To obtain the values of Ibias, a deliberate choice was
made due to the absence of a direct method within the
Decision tree algorithm to ascertain them through the training
process. It was decided to assign it an arbitrary value
that remained constant across both classes. The selection
of the Ibias is related to a trade-off between accuracy
and power-consumption. This deliberate decision serves to
pinpoint any notable decrease in accuracy in the hardware
implementation to the extraction of software-based Vr, Vc
values, simplifying the development process and minimizing
unnecessary complexity. This step is executed once for
each distinct application and the resulting parameters are
subsequently exported and stored in an analog memory [58].
Training a decision tree classification algorithm involves

several steps [43], [44], [45]. In the following a high-level

VOLUME 5, 2024 235



ALIMISIS et al.: RADAR-BASED SYSTEM FOR DETECTION OF HUMAN FALL

overview of the process is analysed step by step. 1) First,
the collection of a labeled dataset is necessary. 2) Then,
the dataset is divided into two subsets: a training set and
a testing set. The training set is used to train the model,
while the testing set is used to evaluate its performance. 3)
The decision of the relevant features (attributes) is necessary
for the classification task. There are features which may
not contribute much to the decision-making process. 4) The
decision tree algorithm recursively splits the data based on
the selected features to create a tree-like structure. 5) Choose
a splitting criterion. Common ones include Gini impurity
and entropy (both are used for comparison and provide same
results). These measure the impurity or disorder in a set of
examples. 6) Starting from the root node, the best feature
should be chosen to split the data. This is done by evaluating
the splitting criterion for each possible split. 7) Stopping
criteria are defined to determine when to stop growing the
tree. This could be based on the depth of the tree, the number
of examples in a node, or other factors. 8) After the tree
is fully grown, pruning techniques are applied to reduce its
size and complexity. This can help prevent overfitting. 9)
The trained tree is used to make predictions on new data.
Starting at the root node and following the branches based
on the feature values until a leaf node is reached, which
corresponds to a class label. 10) The testing set is used to
assess the performance of the trained model.
In this work, each feature is independent from the others,

except from the correlated ones. As a result, if a generalized
implementation is provided, it can easily tune the number of
input dimensions and classes. In the case of a generalized
implementation with Ncla classes, it is possible to deactivate
Ncla − 2 classes either by biasing them (each feature) with
zero Ibias currents or by providing Vin values far away from
Vr (for example, setting Vin = VDD and Vr = VSS). Also, in
the case of an implementation with Nd features, it is possible
to deactivate Nd−1 input features either by biasing each SFC
with zero Ibias currents or by providing Vin values far away
from Vr (for example, setting Vin = VDD and Vr = VSS).
Also, we can easily deactivate the whole classifier by using
the previous technique for all classes and input dimensions.

VII. SIMULATION RESULTS
In this Section, to demonstrate the proposed architecture’s
proper operation, the classifier is tested on the collected
dataset (fall-detection method). The related dataset and fall-
detection methodology is analysed in Section II. The data
are separated into a training and a test set (70 − 30%
training-test split). The design process was executed using
the Cadence IC suite within a TSMC 90 nm CMOS process.
The simulation results were obtained on the layout for
each specific architecture. These layouts, which are depicted
in Figs. 23, 24, 25, incorporating the three decision tree
classifiers, is meticulously crafted with a primary focus on
achieving area efficiency. All layouts are implemented based
on the common-centroid technique and additional dummy

FIGURE 23. Layout of the proposed classifier architecture (SCA). The total area is
equal to 0.351mm2.

FIGURE 24. Layout of the proposed classifier architecture (SDA). The total area is
equal to 0.413mm2.

FIGURE 25. Layout of the proposed classifier architecture (STA). The total area is
equal to 0.198mm2.

transistors are added to mitigate mismatches and address
manufacturing considerations.
In order to demonstrate the effectiveness of the proposed

classification pipeline, we meticulously carry out a com-
prehensive training and validation process. This process is
iterated 20 times for this specific dataset (for each architec-
ture) to establish a robust classification accuracy, mitigating
the impact of random variables inherent in software-based
train-test divisions. In every iteration a direct comparison
between the analog and software implementations is con-
ducted, employing identical training and validation datasets.
Furthermore, a sensitivity analysis of the circuit is executed
through Monte Carlo simulations, encompassing N = 100
data points.
The behavior of the proposed analog classifiers is con-

firmed via the simulation results. In Table 4 the classification
accuracy for the three classifiers is summarized. For
the sigmoid correlated architecture, here called SCA, the
hardware-based implementation of the proposed classifier
exhibits a marginally lower accuracy of approximately
0.2% compared to an identical software-based counterpart.
Furthermore, their respective results demonstrate similar
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TABLE 4. Accuracy results on the dataset (over 20 iterations).

FIGURE 26. Classification results of the proposed SCA (yellow) and the equivalent
software model (green) on the dataset over 20 iterations.

deviations across various train-test iterations. For a com-
prehensive comparative analysis, the results are depicted in
Fig. 26, which provides detailed histograms depicting the
exact classification accuracy. In the case of the sigmoid
decision architecture (referred to as SDA), the hardware-
based implementation of the suggested classifier shows a
slightly lower accuracy, approximately 1.6%, compared to
its software-based equivalent. Additionally, both implemen-
tations display similar deviations in their results across
different train-test iterations. For a thorough comparative
assessment, the results are presented in Fig. 27, which
includes detailed histograms illustrating the precise clas-
sification accuracy. In the case of the sigmoid threshold
architecture, referred to as STA, the hardware-driven imple-
mentation of the suggested classifier shows a slight drop
in accuracy, approximately 1.3% lower than its software-
based counterpart. Moreover, both implementations yield
comparable deviations in their results across different train-
test iterations. For a comprehensive comparative analysis,
the results are illustrated in Fig. 28, which includes detailed
histograms showcasing the precise classification accuracy.
The sensitivity behavior of each classifier circuit is

verified via the Monte Carlo analysis. In this evaluation,
the training data of one of the 20 candidates from the
preceding test was employed as input. The outcomes are
visualized through the Monte Carlo histogram presented in
Figs. 29, 30, 31 for each classifier respectively. The mean
value stands at μM = 98.079%, μM = 98.761%, μM =
98.431% demonstrating close proximity to the mean value
of the previous test, respectively. Additionally, the standard
deviation is impressively low, recorded at σM = 0.54%,

FIGURE 27. Classification results of the proposed SDA (yellow) and the equivalent
software model (green) on the dataset over 20 iterations.

FIGURE 28. Classification results of the proposed STA (yellow) and the equivalent
software model (green) on the dataset over 20 iterations.

FIGURE 29. Post-layout Monte-Carlo simulation results of the proposed SCA on the
dataset.

σM = 0.59%, σM = 0.61%, respectively. The previous values
confirm that all three classifiers have high.
Apart from Monte-Carlo analysis, the proposed classifiers

undergo testing to account for Process-Voltage-Temperature
(PVT) variations. The selected corners encompass TT, SS,
FF, SF, FS (T: Typical, S: Slow, F: Fast). Additionally,
the power supply rails fluctuate within the range VDD =
−VSS = 0.25V to VDD = −VSS = 0.35V . Regarding
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FIGURE 30. Post-layout Monte-Carlo simulation results of the proposed SDA on the
dataset.

FIGURE 31. Post-layout Monte-Carlo simulation results of the proposed STA on the
dataset.

temperature, the assessed spectrum spans from −25oC to
125oC. All three implementation exhibit resilience across
corners, maintaining a minimum classification accuracy of
94.53%, 93.12%, and 93.46% for the SCA, SDA, and STA
architectures, respectively, under the worst-case scenario.
The most challenging corner scenario emerges with SS,

−25oC, VDD = −VSS = 0.25V , coupled with reduced
software-based accuracy (worst case). Specifically, in sub-
threshold, devices should be biased with VGS voltages almost
equal to Vth (which increases with decreasing temperature
due to the increase in carrier mobility) and in the slow corner,
the doping concentration may be lower, leading to a higher
Vth [54], [55], [61], [62]. As a results higher VGS voltages
are necessary. Also, in this region VDS ≥ 4VT where VT =
kT/q (temperature-dependent). For a minimum temperature
of −25o Celsius, the value of VT is 20.67mV. In this case,
we may encounter a mismatch during mirroring due to the
Early effect. We can address this issue by using cascode
CMs and transistors with longer channel lengths (L).

VIII. COMPARISON STUDY AND DISCUSSION
In the related literature, it is notable that most analog
classifiers are typically tailored to specific applications. This
specificity poses a challenge when attempting to conduct an

unbiased comparison among diverse implementations. As a
result, there is an opportunity to customize the design of
related classifiers to suit the same application, enabling a
comprehensive performance evaluation across various ML
models and approaches. All the summarized classifiers are
implemented in a TSMC 90 nm CMOS process technology,
with power supply rails selected based on the operating region
and a trade-off between higher accuracy and lower power
consumption. All are implemented for the same dataset.
All classifiers were trained using the required software,

which relied on the mathematical models described in each
implementation. Subsequently, they were all designed using
the TSMC 90nm CMOS process. At this stage, they under-
went schematic-level verification (except our work, which
is verified in layout-level too), and necessary enhancements
were implemented to optimize classification accuracy and
speed while prioritizing minimal power consumption. We
followed the necessary design process described in each
work. In cases where the architecture operate in saturation,
we applied the corresponding techniques specific to that
operating region. The aforementioned process aimed to
ensure a fair comparison, given that the implementations
were carried out using different technologies and for distinct
classification tasks.
Specifically, Table 5 offers a comprehensive overview of

our research in comparison to related classifiers, including
a SVM [52], [63], a cascaded-connected Bayes [64], a
Gaussian mixture model (GMM) [65], a Radial Basis
Function (RBF) [66], a RBF-Neural Network (NN) [67],
a Multilayer Perceptron (MLP) [68], a K-means [69], a
Support Vector Regression (SVR) [70], a Self-Organized
Map (SOM) [71], a Long Short-Term Memory (LSTM) [72],
a Fuzzy [73], a Threshold [74] and a cascaded-connected
Centroid classifier [75], within the context of fall detection
method. For further insights into analog and mixed signal
classifiers, please consult [76], where these classifiers are
summarized and elucidated.
All the implementations of ML models referenced in

Table 5 are based on approximations of equivalent mathe-
matical models. When it comes to architectural complexity,
there are various approaches, some with low complexity
and others with high complexity. The level of complexity is
also tied to the specific ML model being implemented and
the nature of the approximation. Furthermore, in contrast
to cascaded implementations, each feature in this work
is independent of the uncorrelated features. This leads to
a higher classification accuracy. Additionally, in a more
generic architecture, these implementations can handle a
higher number of input dimensions compared to the cascaded
approach. This provides a notable advantage by eliminating
the need for Principal Component Analysis (PCA) [77].

Among the architectures examined in this study,
namely, SCA, SDA, and STA, the SCA emerges as
the top performer in achieving classification accuracy.
This superiority is attributed to the quality of the
SCA architecture’s approximation compared to the other
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TABLE 5. Analog classifiers’ comparison on the dataset.

approaches. Additionally, this implementation surpasses all
the other classifiers listed in Table 5 in terms of mean
accuracy, with the exception of the LSTM algorithm,
which excels in balancing model complexity and hardware-
approximation efficiency. It’s important to highlight that this
heightened performance is attained with the least energy per
classification in comparison to alternative approaches. While
the Threshold classifier achieves the lowest power consump-
tion, it does so at the expense of accuracy and processing
speed, owing to its model’s simplicity. To conclude, this work
provides a trade-off between power-consumption, energy per
classification and classification accuracy. It is important to
highlight that, in this kind of biomedical applications, rapid
processing speed is not a vital specification (sacrifice speed
for power consumption).

IX. CONCLUSION
A Radar-based system for detection of human fall was
introduced. The implemented fall-detection method was
tested utilizing a low cost CW Radar system with ultimate
purpose to operate in real-time scenarios. Low-power and

fully analog integrated architectures of the decision tree
classification model were also introduced in order to classify
the received data. The main building block of each classifier
consists of a double-differential pair SFC, an analog MP
and a WTA circuit. In order to evaluate the effectiveness
of our approach, we conducted an extensive evaluation,
pitting them against the established analog classifiers on
the measured data. The model training and comparison
against software-based classifier were executed within the
Python programming environment. For the hardware design
and subsequent post-layout simulation result processing, we
made use of the Cadence IC Suite, employing a TSMC
90 nm CMOS process technology. Classification outputs
demonstrate the effectiveness of the proposed architectures
and validate the design methodology.
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[49] B. Panić, J. Klemenc, and M. Nagode, “Gaussian mixture model based
classification revisited: Application to the bearing fault classification,”
J. Mech. Eng./Strojniški Vestnik, vol. 66, no. 4, pp. 215–226, 2020.

[50] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection
and feature extraction techniques in machine learning,” in Proc. Sci.
Inf. Conf., 2014, pp. 372–378.

[51] E. Seevinck and R. J. Wiegerink, “Generalized translinear circuit
principle,” IEEE J. Solid-State Circuits, vol. 26, no. 8, pp. 1098–1102,
Aug. 1991.

[52] V. Alimisis, G. Gennis, M. Gourdouparis, C. Dimas, and
P. P. Sotiriadis, “A low-power analog integrated implementation of
the support vector machine algorithm with on-chip learning tested on
a bearing fault application,” Sensors, vol. 23, no. 8, p. 3978, 2023.

[53] J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead,
“Winner-take-all networks of O(N) complexity,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 1, 1988, pp. 704–711.

[54] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-Threshold
Design for Ultra Low-Power Systems, vol. 95. New York, NY, USA:
Springer, 2006.

[55] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, and R. Douglas, Analog
VLSI: Circuits and Principles. Cambridge, MA, USA: MIT Press,
2002.

[56] V. Alimisis, C. Dimas, G. Pappas, and P. P. Sotiriadis, “Analog
realization of fractional-order skin-electrode model for tetrapolar bio-
impedance measurements,” Technologies, vol. 8, no. 4, p. 61, 2020.

[57] I. Dimeas, I. Petras, and C. Psychalinos, “New analog implementation
technique for fractional-order controller: A DC motor control,” AEU-
Int. J. Electron. Commun., vol. 78, pp. 192–200, 2017.

[58] M. Hock, A. Hartel, J. Schemmel, and K. Meier, “An analog dynamic
memory array for neuromorphic hardware,” in Proc. Eur. Conf. Circuit
Theory Design (ECCTD), 2013, pp. 1–4.

[59] G. Indiveri, “A current-mode hysteretic winner-take-all network, with
excitatory and inhibitory coupling,” Analog Integr. Circuits Signal
Process., vol. 28, no. 3, pp. 279–291, 2001.

[60] M. Akbari, T.-I. Chou, and K.-T. Tang, “An adjustable 0.3 V current
winner-take-all circuit for analogue neural networks,” Electron. Lett.,
vol. 57, no. 18, pp. 685–687, 2021.

[61] A. Tajalli and Y. Leblebici, Extreme Low-Power Mixed Signal IC
Design: Subthreshold Source-Coupled Circuits. New York, NY, USA:
Springer, 2010.

[62] C. Mead, “Analog VLSI and neutral systems,” NASA STI/Recon Tech.
Rep. A, vol. 90, Jan. 1989, Art. no. 16574.

[63] K. Kang and T. Shibata, “An on-chip-trainable Gaussian-Kernel analog
support vector machine,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 7, pp. 1513–1524, Jul. 2010.

[64] V. Alimisis, G. Gennis, C. Dimas, and P. P. Sotiriadis, “An analog
Bayesian classifier implementation, for thyroid disease detection,
based on a low-power, current-mode gaussian function circuit,” in
Proc. Int. Conf. Microelectron. (ICM), 2021, pp. 153–156.

[65] V. Alimisis, G. Gennis, K. Touloupas, C. Dimas, M. Gourdouparis, and
P. P. Sotiriadis, “Gaussian mixture model classifier analog integrated
low-power implementation with applications in fault management
detection,” Microelectron. J., vol. 126, Aug. 2022, Art. no. 105510.

[66] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog
programmable multidimensional radial basis function based classi-
fier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 10,
pp. 2148–2158, 2007.

[67] A. Reda, L. Qi, Y. Li, and G. Wang, “A generic Nano-watt power fully
tunable 1-D Gaussian kernel circuit for artificial neural network,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 9, pp. 1529–1533,
Sep. 2020.

[68] K. Lee, J. Park, and H.-J. Yoo, “A low-power, mixed-mode neural
network classifier for robust scene classification,” J. Semicond.
Technol. Sci., vol. 19, no. 1, pp. 129–136, 2019.

[69] R. Zhang and T. Shibata, “An analog on-line-learning K-means
processor employing fully parallel self-converging circuitry,” Analog
Integr. Circuits Signal Process., vol. 75, pp. 267–277, May 2013.

[70] R. Zhang, N. Uetake, T. Nakada, and Y. Nakashima, “Design of
programmable analog calculation unit by implementing support vector
regression for approximate computing,” IEEE Micro, vol. 38, no. 6,
pp. 73–82, Nov./Dec. 2018.

[71] F. Li, C.-H. Chang, and L. Siek, “A compact current mode neuron
circuit with gaussian taper learning capability,” in Proc. IEEE Int.
Symp. circuits Syst., 2009, pp. 2129–2132.

[72] Z. Zhao, A. Srivastava, L. Peng, and Q. Chen, “Long short-term
memory network design for analog computing,” ACM J. Emerg.
Technol. Comput. Syst., vol. 15, no. 1, pp. 1–27, 2019.

[73] E. Georgakilas, V. Alimisis, G. Gennis, C. Aletraris, C. Dimas,
and P. P. Sotiriadis, “An ultra-low power fully-programmable analog
general purpose type-2 fuzzy inference system,” AEU-Int. J. Electron.
Commun., vol. 170, Oct. 2023, Art. no. 154824.

[74] V. Alimisis, G. Gennis, E. Tsouvalas, C. Dimas, and P. P. Sotiriadis,
“An analog, low-power threshold classifier tested on a bank note
authentication dataset,” in Proc. Int. Conf. Microelectron. (ICM), 2022,
pp. 66–69.

[75] V. Alimisis, V. Mouzakis, G. Gennis, E. Tsouvalas, and P. P. Sotiriadis,
“An analog nearest class with multiple Centroids classifier implemen-
tation, for depth of anesthesia monitoring,” in Proc. Int. Conf. Smart
Syst. Power Manage. (IC2SPM), 2022, pp. 176–181.

[76] V. Alimisis, M. Gourdouparis, G. Gennis, C. Dimas, and
P. P. Sotiriadis, “Analog Gaussian function circuit: Architectures,
operating principles and applications,” Electronics, vol. 10, no. 20,
p. 2530, 2021.

[77] T. Davies and T. Fearn, “Back to basics: The principles of principal
component analysis,” Spectrosc. Eur., vol. 16, no. 6, p. 20, 2004.

VASSILIS ALIMISIS (Student Member, IEEE)
received the B.Sc. degree in physics (top 1%) and
the M.Sc. degree in electronics and communica-
tions from the University of Patras, Greece, in
2017 and 2019, respectively. He is currently pur-
suing the Ph.D. degree with the National Technical
University of Athens (NTUA), Greece, under the
supervision of Prof. P. P. Sotiriadis. His Ph.D.
thesis and research are supported and financed
by the E.L.K.E. NTUA Scholarships. He is a
Teaching Assistant in undergraduate and graduate

courses and supervises Diploma Thesis. He has authored and coauthored
several conference papers and journal articles. His main research interests
include analog microelectronic circuits, low-power electronics, biomedical
circuits and systems, analog computing, and integrated circuit architectures
with applications in artificial intelligence and machine learning. He has
received the Best Paper Award at the IEEE International Conference on
Microelectronics 2020, the Best Paper Award at the IEEE International
Conference on Microelectronics 2021, the Best Paper Award (3rd Place)
at the IEEE International Conference on Microelectronics 2023, the
Best Paper Award at the IEEE Symposium on Integrated Circuits and
Systems Design (SBCCI) 2021, and the Best Paper Award at the 1st
International Conference on Frontiers of Artificial Intelligence, Ethics, and
Multidisciplinary Applications in 2023. He regularly reviews for many
IEEE TRANSACTIONS and conferences and serves on proposal review
panels.

VOLUME 5, 2024 241



ALIMISIS et al.: RADAR-BASED SYSTEM FOR DETECTION OF HUMAN FALL

DIMITRIOS G. ARNAOUTOGLOU (Graduate
Student Member, IEEE) was born in Thessaloniki,
Greece, in September 1998. He received the
B.S. degree from the Democritus University
of Thrace, Xanthi, Greece, in 2021, where
he is currently pursuing the Ph.D. degree in
electrical engineering. His research interests
include multiferroics devices, microwave systems
for space applications, and biomedical microwaves
applications.

EMMANOUIL ANASTASIOS SERLIS (Student
Member, IEEE) received the Diploma degree
in electrical and computer engineering from the
National Technical University of Athens, Greece,
in 2023, where he is currently pursuing the
Ph.D. degree under the supervision of Prof. P. P.
Sotiriadis. He has coauthored several conference
papers and journal articles. His main research
interests include analog microelectronic circuits,
ultralow-power electronics, analog computing, and
integrated circuit architectures with applications

in artificial intelligence, machine learning, and deep neural networks.

ARGYRO KAMPERI (Student Member, IEEE) is
currently pursuing the Diploma degree with
the Department of Electrical and Computer
Engineering, National Technical University of
Athens, Greece, under the supervision of Prof.
P. P. Sotiriadis. She has coauthored several con-
ference papers and journal articles. Her main
research interests include analog microelectronic
circuits, ultralow-power electronics, analog com-
puting, and low-power analog integrated filters.
She has received the Best Paper Award at the 1st

International Conference on Frontiers of Artificial Intelligence, Ethics, and
Multidisciplinary Applications in 2023.

KONSTANTINOS METAXAS (Student Member,
IEEE) is currently pursuing the Diploma degree
with the Department of Electrical and Computer
Engineering, National Technical University of
Athens, Greece, under the supervision of Prof. P.
P. Sotiriadis. He has coauthored several conference
papers and journal articles. His main research
interests include analog microelectronic circuits,
ultralow-power electronics, analog computing,
nonlinear dynamical systems, and synchronization.
He has received awards and honors for his
academic achievements during his studies.

GEORGE A. KYRIACOU (Senior Member, IEEE)
was born in Famagusta, Cyprus, in March 1959.
He received the Electrical Engineering Diploma
and Ph.D. degrees (Hons.) from the Democritus
University of Thrace, Xanthi, Greece, in 1984 and
1988, respectively.

Since January 1990, he has been with
the Department of Electrical and Computer
Engineering, Democritus University of Thrace,
where he is currently a Professor and the Director
of the Microwaves Laboratory and was the

Director of the Graduate Studies from 2005 to 2010. He has authored more
than 250 journal articles and conference papers and supervised 8 Ph.D. and
15 M.Sc. theses and more than 110 Diploma theses. His main research
interests include microwave engineering, open waveguides and antennas
in anisotropic media, software defined and cognitive radio, computational
electromagnetics, and biomedical engineering. He has been serving as an
Associate Editor for IET Microwaves, Antennas and Propagation since
2015. He is a member of the Technical Chamber of Greece and the European
Microwave Association.

PAUL P. SOTIRIADIS (Fellow, IEEE) received the
Diploma degree in electrical and computer engi-
neering from the National Technical University
of Athens (NTUA), Greece, in 1994, the M.S.
degree in electrical engineering from Stanford
University, USA, in 1996, and the Ph.D. degree in
electrical engineering and computer science from
the Massachusetts Institute of Technology, USA,
in 2002.

He is a Professor of Electrical and Computer
Engineering with NTUA, the Director of the

Electronics Laboratory, NTUA, and a Governing Board Member of the
Hellenic (National) Space Center of Greece. He runs a team of 25
researchers. In 2002, he joined the faculty of the Electrical and Computer
Engineering Department, Johns Hopkins University and in 2012, he joined
the faculty of the Electrical and Computer Engineering Department, NTUA.
He has authored and coauthored more than 200 research publications,
most of them in IEEE journals and conferences, holds one patent,
and has contributed several chapters to technical books. His research
interests include the design, optimization, and mathematical modeling of
analog, mixed-signal, and RF integrated and discrete circuits, sensor and
instrumentation architectures with emphasis in biomedical instrumentation,
advanced RF frequency synthesis, and, the application of machine learning
and general AI in the operation as well as the design of electronic circuits.

Prof. Sotiriadis has received several awards, including the prestigious
Guillemin-Cauer Award from the IEEE Circuits and Systems Society in
2012, the Best Paper Award at the 1st International Conference on Frontiers
of Artificial Intelligence, Ethics, and Multidisciplinary Applications in 2023,
the Best Paper Award (3rd Place) at the IEEE International Conference
on Microelectronics 2023, the Best Paper Award at the IEEE International
Conference on Microelectronics 2021, the Best Paper Award at the IEEE
Symposium on Integrated Circuits and Systems Design (SBCCI) 2021, the
Best Paper Award at the IEEE International Conference on Microelectronics
2020, the Best Paper Award at the IEEE International Conference on
Modern Circuits and Systems Technologies 2019, the Best Paper Award
at the IEEE International Frequency Control Symposium 2012, the Best
Paper Award at the IEEE International Symposium on Circuits and Systems
2007, and the IEEE Circuits and Systems Society Outstanding Technical
Committee Recognition 2022. He has also been in the list of the top 2%
most influential researchers in the world in 2020, 2022, and 2023. He is an
Associate Editor of the IEEE SENSORS JOURNAL and IEEEOPEN JOURNAL

OF CIRCUITS AND SYSTEMS, has served as an Associate Editor for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART I: REGULAR

PAPERS from 2016 to 2020 and the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—PART II: EXPRESS BRIEFS from 2005 to 2010, and has
been a member of technical committees of many conferences. He regularly
reviews for many IEEE TRANSACTIONS and conferences and serves on
proposal review panels.

242 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


