
Received 14 March 2024; revised 3 June 2024; accepted 4 June 2024. Date of publication 14 June 2024;
date of current version 3 October 2024. The review of this article was arranged by Associate Editor G. Finocchio.

Digital Object Identifier 10.1109/OJNANO.2024.3414955

Pseudo-Random Number Generators for
Stochastic Computing (SC): Design

and Analysis
PILIN JUNSANGSRI 1 (Member, IEEE) AND FABRIZIO LOMBARDI 2 (Life Fellow, IEEE)

1School of Engineering, Wentworth Institute of Technology, Boston, MA 02115 USA
2Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115 USA

CORRESPONDING AUTHOR: PILIN JUNSANGSRI (email: junsangsrip@wit.edu).

ABSTRACT In most nanoscale stochastic computing designs, the Stochastic Number Generator (SNG)
circuit is complex and occupies a significant area because each copy of a stochastic variable requires its
own dedicated (and independent) stochastic number generator. This article introduces a novel approach for
pseudo-random number generators (RNGs) to be used in SNGs. The proposed RNG design leverages the
inherent randomness between each bit of data to generate larger sets of random numbers by concatenating
the modules of the customized linear feedback shift registers. To efficiently generate random data, a plane of
RNGs (comprising of multiple modules) is introduced. A sliding window approach is employed for reading
data in both the horizontal and vertical directions; therefore, the sets of random numbers are generated by
doubling the datasets and inverting the duplicated datasets. Flip-Flops are utilized to isolate the datasets and
diminish correlation among them. This paper explores variations in parameters to evaluate their impact on the
performance of the proposed design. A comparative analysis between the proposed design and existing SNG
designs from technical literature is presented. The results show that the proposed nanoscale RNG design
offers many advantages such as small area per RNG, low power operation, generated large datasets and
higher accuracy.

INDEX TERMS Pseudo–random number generator (RNG), stochastic computing (SC), stochastic number
generator (SNG).

I. INTRODUCTION
Stochastic computing (SC) is a computational technique that
executes logic operations through the utilization of random
bitstreams, making it particularly effective at nanoscales. In
contrast to binary numbers, stochastic computing encodes
data based on the probability of encountering 1’s in bitstreams
[1]. SC presents several advantages over traditional binary
computation, including reduced hardware complexity, toler-
ance to errors, and low-power implementations of complex
arithmetic functions, so very suitable for nanoscale environ-
ments. For instance, implementing a multiplier function in
SC requires only a single AND gate, while a scaled adder
function can be achieved using a multiplexer circuit. SC has
been used in various applications such as image process-
ing [2], digital filter [3], [4], and neural networks [5], [6],
[7], [8].

FIGURE 1. A SC multiplier circuit and a SC adder circuit.

Fig. 1 illustrates a schematic diagram of SC circuits,
that can be categorized into two main components: the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/VOLUME 5, 2024 57

https://orcid.org/0000-0003-1234-5631
https://orcid.org/0000-0003-3152-3245
mailto:junsangsrip@wit.edu

JUNSANGSRI AND LOMBARDI: PSEUDO-RANDOM NUMBER GENERATORS FOR STOCHASTIC COMPUTING (SC): DESIGN AND ANALYSIS

stochastic number generators (SNGs) and the stochastic com-
puting (arithmetic) section. The SNG generates a stochastic
bitstream for each input/variable. During each clock cycle, a
new n-bit random number (R) is compared to an n-bit binary
number (B). If the random number (R) is less than or equal
to the binary number, the output is set to 1; otherwise, it is
0. The sequence of output signal is referred to as a stochas-
tic bitstream; its value can be determined by calculating the
probability of encountering 1’s in the bitstream. For instance,
a number x represented as 0.375 or 3/8 can be encoded by the
sequence 0, 1, 0, 0, 1, 1, 0, 0, ..., where the frequency of 1’s
is equivalent to 3/8. This encoded number is referred to as a
stochastic number [9].

Once the stochastic bitstreams for all variables are gener-
ated, they are then fed to the stochastic arithmetic parts. In
this example, SC circuits of a multiplier and an adder are
considered. For the multiplier circuit, let the length of the
stochastic stream be 8 bits. Bitstream A produces the sequence
1, 0, 0, 0, 0, 1, 0, 0, with a value of 1/4 or 0.25. Bitstream B
generates the sequence 0, 0, 1, 0, 1, 1, 0, 1, with a value of 1/2

or 0.5. When these bitstreams are input into the AND gate, the
resulting sequence is 0, 0, 0, 0, 0, 1, 0, 0, with a value of 1/8 or
0.125. This value is equivalent to the product of bitstream A
and bitstream B (0.5 × 0.25 = 0.125).

The stochastic adder is implemented by using only a two-
input multiplexer (MUX) in which the probability of the
selecting signal is set at 0.5 [5], [10]. The output of a SC adder
is determined by the following expression.

pY = pC + pD

2
(1)

where pC and pD are the stochastic values of bitstreams C and
D respectively; pY is the stochastic value of the bitstream Y
as output of the adder circuit (multiplexer); however, in (1),
the value of the output of the adder circuit is reduced by half,
so the output signal needs to be renormalized prior to the next
step of the entire process [10].

As for the accuracy of a SC circuit, the individual bits in
a bitstream sequence are random, therefore a long length is
needed to increase the accuracy because the average of the
sequence converges to the desired stochastic value [9].

In addition to the length of a stochastic bitstream, the
correlation of stochastic bitstreams is another crucial factor in-
fluencing the accuracy of a stochastic circuit. Two correlation
metrics are usually considered in an SC circuit: autocor-
relation and cross-correlation. Autocorrelation assesses the
independence of bits within a single stochastic number, indi-
cating how effectively isolation can decorrelate the stochastic
number from copies of itself. Cross-correlation gauges the
level of independence between different stochastic numbers
[11]. Correlation values fall within the range of −1 to 1,
where 0 means no correlation or the maximum degree of
independence [11], and ±1 indicates maximum correlation.
A correlation close to 1 suggests that an increase in a variable

significantly influences an increase in another variable. Con-
versely, negative correlation signifies an inverse relationship
between the two variables.

To mitigate the correlation between bitstreams and en-
hance the accuracy of an SC circuit [11], it is important to
assign a dedicated and independent stochastic number genera-
tor (SNG) to each copy of a stochastic variable (or input). This
approach ensures that the generation of stochastic numbers for
different variables remains independent. However, hardware
implementations for SNGs are typically complex; it has been
reported that, in several stochastic designs, the SNGs occupy
more than 80% of the total area of the stochastic circuit [12],
[13].

This paper is an extension of a previous manuscript [14]
proposing nanoscale pseudo-Random Number Generators
(PRNGs) that can be used in Stochastic Number Generators
(SNGs). Due to the challenge in implementing a true random
number generator in which a physical noise source (such
as voltage, and temperature) is then converted to a digital
value, a deterministic “pseudo-random” circuit, that produces
random-like number sequences, is often used as the random
number source [11]. The proposed pseudo-RNGs, referred to
as RNGs for simplicity, are constructed from multiple mod-
ules of a customized linear feedback shift register (LFSR);
each module comprises a set of LFSRs in which data from
each bit of the LFSR is transmitted to the other LFSRs. In
the proposed design, a plane of RNGs array is accessed using
a sliding window approach in both the horizontal and vertical
directions. Due to low correlation observed when reading data
in both the forward and reverse directions [1], the generated
random data are effectively duplicated and read in the reverse.
Next, an isolation method is employed to reduce correlation
between datasets. For isolation, flip-flops (or isolators) are
inserted in a circuit to reduce the correlation between each
bit of data [15].

In this paper, the parameters of the proposed design are
initially varied to study the impact on the generated random
data; then, the proposed design is compared with other RNGs
found in technical literature. The results of this paper show
that the proposed design offers many advantages over other
designs. When evaluating RNG planes of equal size, the pro-
posed design stands out by generating datasets significantly
larger than its counterparts. Each generated dataset has a very
large size with low correlation, leading to accurate results.
Furthermore, in terms of hardware, the circuit of the proposed
design per dataset is small and consumes less power compared
to other designs.

II. PROPOSED NANOSCALE DESIGN
This paper introduces a nanoscale design for pseudo-random
number generator (RNGs) for SC. Rather than focusing on
improving a single RNG, the proposed design exploits the ad-
vantage of randomness between each bit of data in the LFSRs
to generate larger sets of random numbers. The architecture
of the proposed RNG design comprises multiple modules
of customized LFSRs. Each module consists of a group of

58 VOLUME 5, 2024

FIGURE 2. Circuit diagram for the proposed sample module; a module
consists of 3 rows and each row has 4-bit data.

FIGURE 3. A row of proposed RNGs in which p modules are connected.
Each module is made from three 4-bits customized LFSR.

LFSRs in which data is shifted between them. To illustrate
the principles of the proposed design, an example is provided
using a module consisting of three 4-bits customized LFSRs.

Fig. 2 depicts the circuit diagram of the proposed sample
module, constructed with three 4-bit custom Linear Feedback
Shift Register (LFSRs). The proposed module has three input
signals (In0, In1, and In2), one input clock signal, three output
signals (Out0, Out1, Out2), and a total of twelve output data
bits. Each bit of data is stored and processed by twelve D-FF,
with four D-FFs allocated per row and three rows in a module.

In each module, every row generates 4 bits of random data,
and each bit is shifted to the next bit in the other rows. This
deliberate shifting of each bit between the Random Number
Generators (RNGs) effectively diminishes the autocorrelation
among the generated random numbers. To further reduce cor-
relation between data in the current and the next modules,
three XOR gates are employed—one per row. The output
signals of these XOR gates serve as input data for the sub-
sequent module. For output, data in the proposed design is
concurrently read, and these signals are processed to generate
random numbers.

Fig. 3 depicts the connection of the proposed RNGs mod-
ules in a row of the RNG plane. The modules are connected
in series. Output signals from each module serve as input data
for the next module, except for the last one, where its output
is looped back to the first module.

A multiplexer selects the input for the first column modules
from either the last module’s data or the seed input. Prior to
utilizing the proposed Linear Feedback Shift Register (LFSR)
plane, seed data is fed to the initial random numbers in which
this data could be pre-selected or originating from a physi-
cal noise source (such as voltage, or temperature) as a true
random number generator. Like the LFSR, the condition that
must be avoided when selecting the seed data, is when every

FIGURE 4. Sliding window to improve the utilization of the proposed RNG
plane by considering only the horizontal direction.

bit of data in a row of the RNG plane is 0 (i.e., zero XOR zero
is equal to zero); If every data in a row of the RNG is zero, the
proposed RNG plane always generates a zero number. Once
seeded, the modules’ data is read in parallel, processed, and
generates random numbers in normal operation.

N-bit random numbers are formed by concatenating adja-
cent n-bit data. At each clock cycle, the output data from the
proposed modules is read. Due to low correlation between
each bit, random numbers are generated using a sliding win-
dow approach, reading data from both horizontal and vertical
directions. Fig. 4 illustrates the use of the sliding window to
enhance the efficiency of the proposed RNG plane, focusing
on the horizontal direction. The random numbers are obtained
by concatenating data for a specific read bit, note that there
are 8 bits in this case.

Next, permutation is used to increase the number of gen-
erated random variables from the existing random numbers.
Leveraging the low cross-correlation observed when reading
data (random numbers) in both forward and reverse directions,
additional sets of random numbers are generated by reading
the data in the inverse direction. For the proposed LFSR plane
with n rows and m columns, the number of datasets to generate
k-bit random numbers is given by.

N = (horizontal + vert ical) × 2

N = [n × (m − k + 1) + m × (n − k + 1)] × 2

N = 4mn + 2 (m + n) (1 − k) (2)

where N represents the number of generated k-bit random
number datasets using the proposed design, the term “hori-
zontal” denotes the number of datasets that a RNG plane could
generate from n rows and m columns when considering only
the horizontal direction. The term “vertical” represents the
number of datasets that an RNG plane size n × m (n rows and
m columns) could generate when considering only the vertical
direction.

The sliding window method increases the number of gen-
erated random number datasets in an RNG plane; however,
a drawback of this method is the potential for high cross-
correlation between specific pairs of datasets, especially when
two datasets share the most significant bit (MSB). To miti-
gate this, an isolation method is employed. In this approach,
flip-flops (FFs) are inserted to delay the data in each dataset.
When a pair of datasets with high cross-correlation is delayed
at different times, the cross-correlation between these datasets
is reduced.

VOLUME 5, 2024 59

JUNSANGSRI AND LOMBARDI: PSEUDO-RANDOM NUMBER GENERATORS FOR STOCHASTIC COMPUTING (SC): DESIGN AND ANALYSIS

FIGURE 5. Organization of the proposed RNG plane.

In the proposed design, the number of flip flops for isolating
data in each dataset is pre-determined and fixed. To determine
the number of flip-flops needed to introduce the delay to each
dataset, a process involves adding a flip-flop to the datasets
with the highest cross-correlation until the cross-correlation
between all datasets fall below a specified threshold. Once the
datasets are delayed by this specific duration using flip-flops,
the random numbers are derived by reading the data in each
dataset.

Fig. 5 illustrates the organization of the proposed RNG
plane. After the data in the RNG plane is read by using a
sliding window, the datasets undergo the isolation method to
introduce delays to each dataset at different times. The data
from each dataset after the isolation method serves as the
random number dataset.

III. SIMULATION AND DISCUSSION
In this section, the simulation results of the proposed scheme
are discussed. The default parameters of the proposed module
are configured as follows: each module comprises 3 rows of
customized LFSRs, with each row generating 4 bits of random
data. The XOR inputs for the last module in each row are
positioned at bits 1 and 3 of its module, whereas the XOR
inputs of other modules are selected from bits 2 and 3 of their
modules.

In this simulation, an RNG plane is constructed with 16
proposed modules, there are 4 modules per row and 4 rows
in total. The total bit of this RNG plane is 192 bits of data,
with 16 bits per row and 12 rows in the plane, as illustrated in
Fig. 6. The simulation focuses on 8-bit random numbers, gen-
erated by concatenating data from multiple modules aligned
in the same direction. The simulation is implemented us-
ing Python, and the Genus Synthesis Solution tool at 32 nm
CMOS technology to evaluate the delay, power dissipation,
and area of the RNG circuits in the nanoscales.

By using the proposed method, 376 datasets are generated
from 192 bits of data, with each dataset having a length
exceeding 120 million random and with no repetition. The
average autocorrelation and cross correlation of every dataset

FIGURE 6. The simulated proposed RNG plane.

TABLE 1. Delay, Power Dissipation, and Area of the Plane of the Proposed
RNG Array With 16 Proposed Modules in Fig. 6

are 2.766 × 10−6 and 4.67 × 10−4 respectively – indicating
very small values.

When assessing delay, power dissipation, and area, the fol-
lowing configuration is considered:
� A single module composed of three 4-bit RNGs (Fig. 2).
� An RNG plane comprised of 16 proposed modules: with

4 modules per row and 4 rows in an RNG plane (Fig. 6).
� For the isolation module, few FFs are added to each

dataset until the cross correlation between datasets falls
below 0.1. To achieve this goal, a total of 376 FFs are
needed and the highest number of FFs to delay a dataset
is 35, i.e., after the first 35 clock cycles, the proposed
design operates normally.

Table 1 presents a summary of the delay, power dissipation,
and area of the plane of the proposed RNG array.

A. PROPOSED CUSTOMIZED LFSR MODULE
This section investigates the impact of parameters on the pro-
posed LFSR module, with respect to the size of the generated
random numbers. To explicitly show the effect of each param-
eter, this section considers only one row of the RNG plane;
therefore, each row of the RNG plane consists of two inter-
connect proposed modules where the outputs of the second
module are fed back to the input of the first module. Each
module consists of 3 rows of LFSRs, with each row generating
4 bits of random data. For the last module in each row, XOR
inputs are positioned at bits 1 and 3, while for other modules,
the XOR inputs are selected at bits 2 and 3. In this section,

60 VOLUME 5, 2024

FIGURE 7. Size of generated 8-bit random numbers in each dataset. Each
module is simulated 120,000,000 times.

TABLE 2. Length of Generated 8-bit Random Numbers From Each RNG;
Each RNG is Made From Two Consecutive Proposed Modules

the output generates a set of 8-bit random numbers, with data
being read only from the first row (row 0) of the RNG plane.

1) NUMBER OF ROWS (RNGS) IN EACH MODULE
When varying the number of rows in each LFSR module,
the size of each dataset is changed. Fig. 7 shows the size of
the generated random numbers in each dataset when varying
the number of rows in each module of the proposed design.
Like a linear feedback shift register, the increase in the num-
ber of rows in a module does not always generate a large
set of random numbers. The results in Fig. 7 show that the
size of the generated random numbers in a dataset by using
the proposed design is low when the number of rows (RNGs)
in each module is a power of 2 or an even number. For exam-
ple, when there are 32 rows of RNGs per module, the size of
the generated 8-bit random numbers in a dataset is only 6943.
However, when the number of rows in each module is odd
or a prime number (for example such as 5, 7, 9), the number
of generated 8-bit random numbers per dataset is increased
to more than 120,000,000. For ease of presentation and as an
example, in this paper, each module consists of only 3 RNGs
(rows).

2) NUMBER OF BITS IN EACH ROW OF THE PROPOSED
MODULE
The number of bits in each row of the proposed module also
impacts the size of the generated random numbers in each
dataset. As shown in Table 2, by increasing the number of bits
in each module, the size of the generated random numbers
in a dataset increases too. For example, when each row in
a module consists of 6 bits of data and only 2 modules are
connected in series, the proposed RNG design generates more
than 120 million random numbers in a dataset (by reading data
only from bits 0 to 7 in the first row).

TABLE 3. Length of Generated 8-bit Random Numbers Per Dataset When
Varing the Number of Modules in Each Row

TABLE 4. Number of Generated 8-bit Random Number in a Datasets When
Reading Data in Row 1 From Bit 0 to Bit 7; Each Row Consists of Four
Modules in Series

3) NUMBER OF MODULES IN EACH ROW
Next, the number of modules connected in series in each row
of the RNG plane is considered. In this simulation, a default
module (4 bits per row and 3 rows of RNG as shown in Fig. 2)
is considered. By varying the number of modules in each row,
the size of the first 8-bit random number dataset is found by
reading data horizontally (so only from bits 0 to 7 of a RNG
plane).

In Table 3, an increase of the number of proposed modules
in each row does not guarantee an increase in the size of the
generated random numbers in a dataset; however, the size of
the generated random number dataset is very large when the
total bit in each row is a power of 2; so since each module has
4 bits of data per row, when 2, 4, and 8 modules are connected,
the total numbers of bits in each row of the RNG plane are 8,
16, and 32 respectively, i.e., the number of generated 8-bit
random numbers in a dataset is therefore large.

4) POSITION OF INPUTS FOR THE XOR GATE
Next, the impact of the position of the input for the XOR
gates on the size of the generated random number dataset
is considered. The positions of the XOR inputs are given
as an index of each module (where the first index starts at
zero). Each simulation is performed 10,000,000 times; in this
simulation, each row of the RNG plane consists of 4 modules
in series.

The results in Table 4 show that there are several cases
in which the proposed RNG plane generates more than 10
million 8-bit random numbers per dataset; hereafter in this
paper, the positions of the XOR inputs for the first module

VOLUME 5, 2024 61

JUNSANGSRI AND LOMBARDI: PSEUDO-RANDOM NUMBER GENERATORS FOR STOCHASTIC COMPUTING (SC): DESIGN AND ANALYSIS

FIGURE 8. Scatter plot of autocorrelation of each 8-bits random number
dataset by using the proposed method when reading data in both
directions; horizontal and vertical, using sliding windows and permuting
its output.

are selected at bits 1 and 3 from the last module, while the
XOR inputs of the other modules are selected from bits 2 and
3 of its previous module.

B. PLANE OF THE PROPOSED RNGS
Previously, each random number is generated by reading only
the first 8 bits in each row of the RNG plane; a method is
proposed next to improve the utilization of the proposed RNG
plane by using a so-called sliding window. As presented in
Figs. 4 and 5, data in an RNG plane can be reused to generate
more datasets of random numbers by reading in both direc-
tions (horizontal and vertical) using the sliding window and
permuting the data by reading it in the reverse direction.

For simulation, the RNG plane of Fig. 6 consists of 16
proposed modules; each row consists of 4 proposed modules
connected horizontally. An RNG plane with 4 rows is used as
an example. This RNG plane has 192 bits of data in total; so,
16 bits per row and there are 12 rows in an RNG plane. By
reading data in both directions with the sliding window and
permuting by reversing it, 376 sets of 8-bit random numbers
are generated from the proposed RNG plane. The following
features are attained.
� For the horizontal direction, 9 sets of random numbers

are generated in each row. So, 108 sets of random num-
bers are generated horizontally.

� For the vertical direction, 5 sets of random numbers are
generated per column. So, 80 sets of random numbers
are generated vertically.

The total number of generated sets is 188; moreover, when
using permutation, the number of sets of generated 8-bit ran-
dom numbers is doubled, i.e., 376 sets; this number can also
be found by using (2).

The proposed RNG plane is simulated 100,000 times to
generate 376 datasets of 8-bit random numbers (each set has
100,000 random numbers). The size of the generated (8-bit)
random numbers for each dataset and the correlation (between
a dataset and other datasets in the same RNG plane) are
assessed next.

For the size of the dataset, every set of generated
random numbers (376 sets) generates more than 100,000
random numbers at a very low autocorrelation; the average

FIGURE 9. Scatter plot of cross-correlation of pairs of 8-bits random
number datasets by using the proposed method when reading data in
both directions; horizontal and vertical, using sliding windows and
permuting its output.

TABLE 5. Cross-Correlation Between Sets of Generated 8-bit Random
Numbers

autocorrelation of every generated set is only −2.766 × 10−6.
For cross-correlation, there are 376 sets of generated 8-bit
random numbers, therefore 70,500 pairs of cross-correlation
must be considered.

Figs. 8 and 9 show the scatter plot of the autocorrelation
of the datasets and the cross-correlation between pairs of
datasets generated by using the proposed methods. As shown
in Figs. 8 and 9, the autocorrelations of the datasets are close;
the cross-correlation between the pair of generated datasets
can be categorized into multiple sub-categories. In this paper,
cross-correlations between each pair are separated as shown
in Table 5.

In Table 5, 95.02% of the cross-correlations are extremely
low (less than 0.05); the average cross correlation is only
0.0017, so well suitable for stochastic computing.

Next, the relationship between each dataset is considered to
find pairs of datasets that have high cross-correlation. A very
high cross-correlation between datasets hereafter (i.e., a cross-
correlation greater than 0.7) occurs when both datasets share
their most significant bit (MSB) or the second most significant
bit. Fig. 10 shows a sample of datasets that have high cross-
correlation: three datasets (dataset 0, dataset1, and dataset 2)
share the MSB at row 0 column 7. Note that dataset 0 is read
from row 0 column 7 to the left, dataset 1 is read row 0 column
7 to the right, and dataset 2 is read from row 0 column 7 to the
bottom. Cross-correlation between these datasets is very high,
i.e., approximately 0.75.

62 VOLUME 5, 2024

FIGURE 10. Sample datasets in the proposed RNG plane that have very
high cross-correlation.

A high cross-correlation is approximately 0.7, it occurs
between datasets that are located next to each other and read in
the same direction; for example, in Fig. 10, cross-correlation
between dataset 3 (in which its MSB is at row 9 column 7),
and dataset 4 (in which its MSB is at row 9 column 8) and
both are read to the left, then the cross-correlation between
these two datasets is approximately 0.5, because the MSB of
dataset 3 is the second most significant bit of dataset 4, so the
value in dataset 3 impacts the value in dataset 4.

The cross-correlation between datasets is reduced when
shared bits between each set has less significance e.g., cross-
correlation between a dataset read from row 0 column 7 to
the left and a dataset read from row 0 column 4 to the right
direction, is only 0.37.

1) ISOLATION METHOD
Due to high cross-correlation between some pairs of generated
datasets, an isolation method is used to shift data in a dataset
for a clock cycle. This is accomplished by adding a flip-flop
after reading the data. This method can significantly reduce
the cross-correlation; for example, cross-correlation between
a pair of datasets with a high cross-correlation (0.75) is sig-
nificantly reduced to 0.004 when shifting data in one of the
datasets by a clock cycle.

Next, the number of FFs to isolate datasets in the proposed
RNG plane is established; in the simulation, a FF is added
to a dataset that has the highest total cross-correlation. This
simulation is run till the cross-correlation of every dataset is
less than the threshold value (set to 0.1 in this case) and the
number of FFs for each dataset are found.

Fig. 11 shows the scatter plot of the cross-correlation be-
tween datasets after using the isolation method in which their
cross-correlation threshold is set to 0.1. After using the isola-
tion method, the average cross-correlation between these pairs
of datasets is only 0.000467 and a total of 376 FFs are needed.
The largest number of FFs to be inserted in a dataset is 35
(corresponding to the delay in clock cycles) i.e., after the first
35 clock cycles, the proposed design operates in a normal
behavior. This occurs at dataset 65 in which data from row 7
column 9 is read in the left direction. 33 datasets do not need
an FF to delay a value, i.e., data can directly be read from such

FIGURE 11. Scatter plot of cross-correlation of every pair of datasets of
the proposed design with isolation; FFs are inserted before datasets.

TABLE 6. Mean Square Error in SC Multiplier When Stochastic Bitstreams
are Generated Using the Proposed Design

TABLE 7. Mean Square Error in SC Adder When Stochastic Bitstreams are
Generated Using the Proposed Design

dataset. The number of the inserted FFs tend to be high for a
dataset whose MSB is located at the middle of the RNG plane.

C. ACCURACY
Next, the generated random numbers from the proposed de-
sign are used to generate stochastic bitstreams for each input.
These bitstreams are fed into two stochastic circuits: a mul-
tiplier and adder. The value of the result is compared with
the expected value. The Mean Square Error (MSE) is used
as a metric to assess the difference between the expected
and computed results using SC. The values of each input are
selected randomly and sets of 1,000,000 random numbers are
generated using the proposed design.

Tables 6 and 7 present the Mean Square Errors (MSEs)
of the SC multiplier and adder, utilizing the proposed design
for random number generation. The error in the SC circuit
diminishes when increasing the bitstream length. However,

VOLUME 5, 2024 63

JUNSANGSRI AND LOMBARDI: PSEUDO-RANDOM NUMBER GENERATORS FOR STOCHASTIC COMPUTING (SC): DESIGN AND ANALYSIS

TABLE 8. Comparison Between the Proposed RNG Design and Other
Designs When it is Simulated for 120×106 Times

the number of bits in the generated random numbers has low
impact to the accuracy of these stochastic circuits.

IV. COMPARISON
This section presents a comparison between the proposed and
other random number generators found in technical literature
e.g., the Linear Feedback Shift Register (LFSR), SBoNG [11]
that generates low-correlated SNGs from a LFSR by using the
S-box circuit, and the permuted LFSR [1] that generates more
random numbers by permuted data from a single LFSR with
no additional circuit. A 12×16 array of RNGs that consists of
192 bits of RNGs arranged with 16 bits per row and 12 rows
in an RNG plane is considered. For the proposed design, a
RNG is made of 16 default proposed modules as shown in
Fig. 6. Various aspects are evaluated including the number
of generated random numbers, delay, power dissipation, area,
correlations, and accuracy of the stochastic circuit.

A. NUMBER OF GENERATED RANDOM NUMBER PER
DATASETS
As shown in Table 8, the proposed design generates a very
large number of RNGs per dataset, more than 120×106 data,
while other designs generate only 65,534 random data. The
SBoNG design [11] exhibits variability in the number of ran-
dom data per dataset. Specific conditions must be met for
SBoNG to generate large amounts of random data; however,
these conditions cannot always be met. For the permuted
LFSR [1], the size of generated random values in each dataset
is the same as for the LFSR; in this case, a 16-bit LFSR is
used in each row, and each 8-bit dataset generates a total of
65,634 data.

B. NUMBER OF DATASETS
For the RNG planes with a size of 12×16, the proposed
design leverages the sliding window in both the vertical and
horizontal directions, along with data reversal, to generate 376
sets of RNGs. The other designs generate a smaller number of
RNGs than the proposed design. For the permuted LFSR [1],
the number of generated datasets is limited to the number of

bits per row. This limitation occurs from the increase in cross-
correlation between datasets e.g., when datasets share their
most significant bit (MSB), its cross-correlation is increased
by 0.5. Hence, the permuted LFSR method [1] generates up
to 16 datasets per row (with 16 bits in each row). The total
generated dataset of [1] is limited to 192. For the SBoNG [11],
each row also generates 16 datasets by rotating data to the
right to increase the number of datasets. The total number of
generated datasets for SBoNG [11] is limited to 192 datasets
for 16 bits per row of data. As for the LFSR, it generates 2
datasets of 8-bit random numbers per row, and with 12 rows in
this array, the total number of datasets that the LFSR generates
is 24.

C. CORRELATION
In the simulation results presented in Table 8, the size of
the RNG dataset is constrained by either the maximum num-
ber of generated random numbers in a dataset or 100,000,
whichever is lower. As shown in Table 8, the proposed de-
sign generates datasets with very low autocorrelation. The
cross-correlation of the proposed design is higher than for
the LFSR, due to sharing bits when reading data through the
sliding windows. However, after using the isolation method,
the cross-correlation of the proposed design is significantly
reduced, and it is better than the cross-correlation of the
SBoNG method [11] and the permuted LFSR [1]. The cross-
correlations of the permuted LFSR [1] are high because n
datasets are generated from a LFSR with n bits in each row.
Sharing with the second MSB increases the cross-correlation
between datasets.

D. DELAY, AREA, AND POWER
In Table 8, the delay, power dissipation, and area are nor-
malized per the number of generated datasets. The results
show that both power dissipation and area per RNG of the
proposed design are the lowest, followed by the permuted
LFSR [1], SBoNG [11], and LFSR respectively. The main
advantage of the proposed design is its ability to reuse data in
both directions of an RNG plane to generate a larger number
of datasets. Both power dissipation and area per RNG of the
proposed design are very low.

For the LFSR, the values of the power dissipation and area
per RNG are the largest (worst) because the number of gener-
ated datasets is small. SBoNG [11] generates larger datasets
compared to LFSR however, it needs additional combinational
circuits and the LFSR. The power dissipation and area of
SBoNG [11] is high. The permuted LFSR [1] reuses data in
the LFSR; nevertheless, the size of the permuted LFSR is
limited by the number of bits in each row. Area and power
dissipation per RNG of the permuted LFSR [1] are lower than
SBoNG [11]; however, their values are still larger than the
proposed design.

The only disadvantage of the proposed design is the delay.
In addition to the initial setup of the proposed RNG plane,
which operates at the first 35 clock cycles, the delay of the pro-
posed design is high, because the complexity of the proposed

64 VOLUME 5, 2024

TABLE 9. Delay and Power Dissipation, of Stochastic Multipler and
Stocastic Adder Circuits

TABLE 10. Power Dissipation, and Area Per RNG

RNG plane is higher than the other designs with a complexity
like LFSR.

Next, delay and power dissipation of stochastic applica-
tions (e.g., the SC multiplier and the SC adder) are evaluated
when using various RNGs. Due to the simplicity of stochastic
arithmetic, e.g., a multiplier circuit can be implemented by
using an AND gate, a scaled adder circuit can be implemented
by using a multiplexer circuit, therefore power dissipation of
these circuits is lower than for stochastic number generators
(SNGs); the power dissipation of a SC multiplier circuit is
only 7.2 µW, while the power dissipation of a SC adder cir-
cuit is 9.956 µW. Hence, the power dissipations of the SC
arithmetic hardware have a smaller impact to the SC system,
because the power dissipation of the SNGs dominates.

For the delay of SC applications when using various RNG
designs, the circuits of Fig. 1 are used; in these circuits,
2 comparator circuits are needed to generate the stochastic
bitstreams; then these values are processed by to stochastic
arithmetic hardware.

Table 9 presents the simulation results; in this simulation,
the Genus synthesis tools at the 32 nm technology node are
used at the nominal supply voltage of 1.05 V. The simulation
results show that for both applications and the RNG only,
the proposed scheme has a larger delay compared to other
designs. However, the delay for the SC multiplier is 379 ps
while the delay of the SC adder circuit is 434 ps; hence, the
total delay of the SC applications dominates the delay of the
entire SC circuit. As shown in Table 9, the worst-case delay
doesn’t occur from the SNGs, changing the RNG designs has
no impact on the delay of the SC applications. Simulation also
shows that the total power is significantly reduced when using
the proposed scheme for both applications considered. As
for the power-delay product (PDP) of the stochastic number

FIGURE 12. Mean square error (MSE) vs. size of bitstream in multiplier
circuit; each bitstream is generated from 8 bits random number by
different designs.

FIGURE 13. Mean square error (MSE) vs. size of bitstream in adder circuit;
each bitstream is generated from 8 bits random number by different
designs.

generators (SNGs), its value for the proposed design is better
than for LFSR and SBoNG [11] but slightly worse than for the
permuted LFSR [1] (due to its large delay). However, when
the SNGs are used in the two considered SC applications, the
delay of the stochastic applications dominates the delay of
the SNGs; so for the SC multiplier and SC adder, the PDP of
the proposed RNG design is better than all other RNG based
designs, hence showing its validity and effectiveness for such
widely used applications.

E. ACCURACY
Next, the accuracy comparison of stochastic circuits by using
various random number generators is considered. Different
types of random number generators are used to generate
stochastic bitstreams as inputs for the SC multiplier and adder.
The results of the SC multiplier and SC adder circuits are
compared with the expected results; the Mean Square Errors
(MSE) is used to evaluate errors from different RNGs. As in a
prior section, the values of each input are selected randomly,
and its value remains the same for the length of the bitstream
times prior to updating its value.

To increase the length, the size of the random numbers
in each dataset is increased by setting the number of bits in
each row in a RNG plane to 32; by considering only the first
1,000,000 random numbers in each dataset, the results are
shown in Figs. 12 and 13.

VOLUME 5, 2024 65

JUNSANGSRI AND LOMBARDI: PSEUDO-RANDOM NUMBER GENERATORS FOR STOCHASTIC COMPUTING (SC): DESIGN AND ANALYSIS

TABLE 11. Percentage Improvement of RNG Design vs. LFSRs When
Considering a Plane of RNGs Size 12×16 bits

Figs. 12 and 13 present the mean square errors of the SC
multiplier and adder circuits when bitstreams are generated
from various RNG designs. As expected, the increase of the
bitstream size enhances accuracy i.e., a reduction in errors.
Compared to other RNG designs, the proposed RNG design
has the lowest error, showing that it is very accurate.

F. PRODUCT METRIC
To evaluate each RNG design, a product metric (DPACP) is
given in (3)

DPACP = delay × power × area × correlat ion (3)

where power is the average power dissipation per dataset, and
area is the area per dataset. Correlation is the product of the
cross-correlation and the auto correlation, i.e.,

correlat ion = cross correlat ion × autocorrelat ion

These parameters are normalized to equalize their signif-
icance such that a good RNG design has a low DPACP as
combined metric for these 4 figures of merit.

Table 10 shows the DPACP of each considered design; the
DPACP of the proposed RNG design is the lowest, followed
by LFSR, the permuted LFSR [1], and SBoNG [11] respec-
tively. The proposed design is better than these designs in
terms of power dissipation, area, and correlation; however,
its delay is higher. While both SBoNG [11] and permuted
LFSR [1] are good in terms of power dissipation and area per
RNG, the correlation is rather high, so the accuracy of these
designs is low. For the LFSR, even though it has a high-power
dissipation and area per RNG, its correlation is still low, so the
LFSR is better than SBoNG [11] and the permuted LFSR [1].

Next, the percentage differences in each metric when com-
paring various RNG designs versus LFSR, are considered. A
positive (negative) value shows an improvement (degradation)
of an RNG design compared to LFSR. As shown in Table 11,
even though the delay of the proposed RNG design is higher
than LFSR and other RNG designs by 30.19%, the proposed
RNG design is better than LFSRs and other RNG designs in
all other figures of merit. Moreover, the mean square error

(MSE) of the proposed RNG design is less (so more accurate)
than these designs for the SC adder/multiplier circuits.

V. CONCLUSION
In a Stochastic Computing (SC) design, the Stochastic Num-
ber Generator (SNG) incur in a substantially large area,
exceeding 80% of the overall circuit. This paper introduces
a novel approach to random number generators (RNGs). The
proposed RNG design leverages the inherent randomness be-
tween bits to generate larger sets of random numbers. The
proposed design enhances RNG utilization through a sliding
window and reversing technique, producing multiple RNGs
from a shared RNG plane. To mitigate the potential high
correlation from the sliding window (in which sharing of
the significant bits between datasets is required), an isolation
method is employed. Flip-Flops (FFs) are added at each RNG
until cross-correlation of every dataset reaches an acceptable
level.

In this paper, parameters in the proposed design are varied
to study the impact of each parameter in the design; the results
in this paper show that to generate large datasets of random
numbers from the proposed design, the following criteria must
be met.

– An increase in the number of rows in each module tends to
increase the random numbers in each dataset. However, to
generate a large dataset, the number of rows in each module
must not be a power of 2 or an even number.

– An increase in the number of bits in each row of the pro-
posed module increases the generated random numbers in
each dataset.

– In an RNG plane, the number of modules in each row
doesn’t directly impact the size of generated random num-
bers in a dataset. However, the total bits in each row of an
RNG plane significantly impacts the number of generated
random numbers in each dataset. Large datasets of random
numbers can be generated when the total bits in each row
of an RNG plane is a power of 2.

– The inputs of the XOR gates in each module also impact
the size of the random number in each datasets. There are
several pairs of XOR inputs that can generate large random
number datasets.

In stochastic computing (SC), both autocorrelation and
cross correlation of RNG datasets significantly impact the
accuracy; the proposed design uses a sliding window method
to increase the number of generated datasets. When increasing
the size of the RNG plane, the number of generated datasets
is also increased, however correlation between these datasets
is high, especially datasets that are generated from the data in
the middle of the RNG plane in which its most significant bits
are shared. Flip-Flops are used to isolate these datasets and
reduce their correlation.

Compared to other RNG designs found in the technical
literature, the proposed design offers the best performance
per RNG in terms of power dissipation, area and correlation
(as product of the cross-and auto-correlations); it incurs the

66 VOLUME 5, 2024

largest delay. However, when considering the product of all
these figures of merit (i.e., DPACP) as a combined metric, the
proposed design has the best performance. When using the
proposed design for SC in two stochastic circuits (multiplier
and adder), results show that the mean square error for the
SC multiplier and adder circuits when bitstreams are gener-
ated using the proposed RNG design, is the lowest, so very
accurate.

REFERENCES
[1] S. A. Salehi, “Low-cost stochastic number generators for stochas-

tic computing,” IEEE Trans. Very Large Integr. Syst., vol. 28, no. 4,
pp. 992–1001, Apr. 2020.

[2] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Compu-
tation on stochastic bit streams digital image processing case studies,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014.

[3] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact
and accurate digital filters based on stochastic computing,” IEEE Trans.
Emerg. Topics Comput., vol. 7, no. 1, pp. 31–43, Jan.–Mar. 2019.

[4] R. Wang, B. F. Cockburn, and D. G. Elliott, “Design, evaluation and
fault-tolerance analysis of stochastic FIR filters,” Microelectronics Rel.,
vol. 57, no. 2, pp. 111–127, 2016.

[5] B. D. Brown and H. C. Card, “Stochastic neural computation. I. compu-
tational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905,
Sep. 2001.

[6] N. Nedjah and L. de Macedo Mourelle, “Stochastic reconFigurable
hardware for neural networks,” in Proc. IEEE Euromicro Symp. Digit.
Syst. Des., 2003, pp. 438–442.

[7] S. E. Lyshevski, V. Shmerko, M. A. Lyshevski, and S. Yanushchke-
vich, “Neuronal processing, reconFigurable neural networks and
stochastic computing,” in Proc. IEEE 8th Conf. Nanotechnol., 2008,
pp. 717–720.

[8] S. Li, Q. Wang, X. Liu, and J. Chen, “Low-cost LSTM implemen-
tation based on stochastic computing for channel state information
prediction,” in Proc. IEEE Asia Pacific Conf. Circuits Syst., 2018,
pp. 231–234.

[9] W. J. Gross and V. C. Gaudet, Stochastic Computing: Techniques and
Applications. Berlin, Germany: Springer, 2019.

[10] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of stochas-
tic computing neural networks for machine learning applications,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2809–2824,
Jul. 2021.

[11] F. Neugebauer, I. Polian, and J. P. Hayes, “Building a better random
number generator for stochastic computing,” in Proc. IEEE Euromicro
Conf. Digit. Syst. Des., 2017, pp. 1–8.

[12] H. Ichihara et. al., “Compact and accurate stochastic circuits with shared
random number sources,” in Proc. IEEE 32nd Int. Conf. Comput. Des.,
2014, pp. 361–3660.

[13] S. Mohajer, Z. Wang, K. Bazarga, M. Riedel, D. Lilja, and S. Faraji,
“Parallel computing using stochastic circuit and deterministic shuffling
networks,” U.S. Patent 16/165713, Apr. 25, 2019.

[14] P. Junsangsri and F. Lombardi, “A pseudo-random number generator
circuit for nanoscale stochastic computing (SC),” in Proc. IEEE 23rd
Int. Conf. Nanotechnol., 2023, pp. 299–304.

[15] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in Proc. IEEE 31st Int. Conf. Comput. Des., 2013, pp. 39–46.

PILIN JUNSANGSRI (Member, IEEE) received
the B.Eng. degree in electrical engineering from
Chulalongkorn University, Bangkok, Thailand, in
2006, and the M.S. degree in electrical and com-
puter engineering, and the Ph.D. degree in com-
puter engineering from Northeastern University,
Boston, MA, USA, in 2010 and 2017, respec-
tively. She is currently an Associate Professor with
the School of Engineering, Wentworth Institute of
Technology, Boston. Her past research included
the simulation and design of the model of solar

cells, design of non-volatile memory by using Emerging Technology such
as memristor, phase change memory, programmable metallization cell, and
racetrack memory. Her research interests include VLSI design, memory de-
sign, stochastic computing, and artificial intelligence.

FABRIZIO LOMBARDI (Life Fellow, IEEE) re-
ceived the B.Sc. degree (Hons.) in electronic en-
gineering from the University of Essex,Colchester,
U.K., in 1977, the Diploma in microwave engineer-
ing, the master’s degree in microwaves and modern
optics, and the Ph.D. degree from the University of
London, London, U.K., in 1978, 1978, and 1982,
respectively. In 1977, he joined the Microwave
Research Unit, University College London. He
is currently the holder of the International Test
Conference Endowed Chair Professorship with

Northeastern University, Boston, MA, USA. His research interests include
bio-inspired and nano manufacturing computing, VLSI design, testing, and
fault/defect tolerance.

VOLUME 5, 2024 67

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

