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ABSTRACT Millimeter-wave (MmWave) channel characteristics are quite different from sub-6 GHz fre-
quency bands. The major differences include higher path loss and sparser multipath components (MPCs),
resulting in more significant time-varying characteristics in mmWave channels. It is difficult to characterize
the time-varying characteristics of mmWave channels through statistical models, e.g. slope-intercept models
for path loss and lognormal models for delay spread and angular spread. Therefore, highly accurate channel
modeling and prediction are necessary for deployment of mmWave communication systems. In this paper, a
mmWave channel parameter prediction method using deep learning and environment point cloud is proposed.
The parameters predicted include path loss, root-mean-square (RMS) delay spread, angular spread and
Rician K factor. First, we introduce a novel measurement campaign for indoor mmWave channel at 60 GHz,
where a light detection and ranging (LiDAR) sensor and panoramic camera were co-located with a channel
sounder and then time-synchronized point clouds and images were captured to describe environmental
information. Furthermore, a fusion method between the point clouds and images is proposed based on
geometric relationship between the LiDAR and camera, to compress the size of the data collected. Second,
based on a classic point cloud classification model (PointNet), we propose a novel regression PointNet
model applied to channel parameter prediction. To overcome generalization problem of model under limited
measurements, an area-by-area training and testing method is proposed. Third, we evaluate the proposed
prediction model and training method, by comparing prediction results with measured ground truth. To
provide insights on what training inputs are best, we demonstrate the impacts of different combinations of
input information on prediction accuracy. Last, the deployment and implementation method of the proposed
model is recommended to the readers.

INDEX TERMS Channel measurement, channel prediction, deep learning, mmWave channel, point cloud.

I. INTRODUCTION
Millimeter-wave (mmWave) communication technology is
one of the key enablers of fifth-generation mobile networks
(5G) to enable high-rate and low-latency communications [1].
All the while, mmWave is expected to continue to play a
critical role in beyond 5G (B5G) and 6G communication sys-
tems. Namely, B5G or 6G technologies such as ultra massive

multiple-input-multiple-output (MIMO) beamforming, ultra-
dense networks and joint communications and sensing (JCAS)
have shown greater potential in the mmWave frequency
band [2], [3], [4]. In order to better enable these future
technologies, accurate mmWave channel modeling and pre-
diction in desired scenarios will be more essential. However,
the special characteristics of mmWave channels bring great
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challenges to the design and deployment of mmWave sys-
tems [5]. For example, free space, penetration and diffraction
losses increase significantly at mmWave frequencies. This en-
hances the sparsity of multipath components (MPCs) in some
scenarios [6], [7], [8]. Although beamforming with ultra mas-
sive MIMO can offer high-gain beams to compensate for the
attenuation of mmWave, these techniques necessitate beam
acquisition and tracking [9]. This further increases the require-
ment for exploiting the information of mmWave channels,
especially for the description of time-varying characteristics.
Furthermore, in the emerging JCAS technology, the MPCs
information in the sensing channel needs to be extracted and
modeled to capture the changes in the surrounding environ-
ment [10]. These put forward more stringent demands on the
accuracy of channel prediction.

Many channel modeling and prediction methods have been
developed in the literature, which can be classified into four
main categories: statistical modeling, deterministic modeling,
geometry-based stochastic modeling and machine learning-
based modeling.

i) Statistical modeling is usually based on channel mea-
surements and is fitted to the measured results using
specific equations or models. For example, [11] shows
the alpha-beta-gamma (ABG) model and close-in (CI)
model, which are widely used in the modeling and
prediction of path loss. These models are based on
the received power and distance between transceivers,
and fit the parameters in the model and provide effi-
cient predictions. However, the slope-intercept models
such as ABG and CI are limited to linear progres-
sion of path loss with the change of distance, while
in highly non-stationary scenarios, the large scale pa-
rameters might change abruptly along the distance.
For other large-scale parameters (LSPs), such as root-
mean-square (RMS) delay spread, angular spread and
Rician K factor, the lognormal distribution is usually
used [12], [13]. Among them, [13] uses two sets of
lognormal distribution parameters to fit line-of-sight
(LOS) and non-line-of-sight (NLOS) scenarios, respec-
tively. However, the fitting parameters of the model
are usually suitable for channel parameter prediction in
some specific scenarios. In the face of diverse appli-
cation scenarios for B5G and 6G communication, the
limitations of statistical channel models will be more
significant.

ii) Deterministic modeling is a physical simulation model
based on the principle of radio wave propagation,
which is mainly represented by ray tracing (RT). The
RT is based on geometric optics and is able to compute
the direction, reflections, scattering and diffraction of
MPCs [14], [15]. RT could also be combined with
empirical models to compute diffuse scattering compo-
nents [15], [16]. Channel parameters can be obtained
from simulated MPCs. Meanwhile, RT can support
the simulation of dynamic channels to explore time-
varying characteristics [17]. However, the accuracy of

RT simulation is too dependent on the geometric and
material information of the simulated environment. Al-
though some research has focused on the calibration
of RT [18], it is still difficult to generalize the cali-
brated RT to another environment. In addition, RT has
high computational complexity, especially in electri-
cally large-scale scenarios. Although some acceleration
methods have been applied in RT [19], [20], it is still
difficult to achieve real-time channel prediction.

iii) The geometry-based stochastic models assume that the
scatterers in the channel are randomly distributed on
the surface of regular geometry [21], [22], [23]. The
MPCs parameters and channel impulse response can
be derived according to the geometrical relationship.
Stochastic models are not based on measurements and
lack description of the real environment (described by
regular geometry). Therefore, it only provides a theo-
retical channel in some scenarios and cannot be used
for channel prediction.

iv) Since machine learning has good performance in solv-
ing nonlinear or unstructured problems, it is especially
suitable for predicting stochastic and time-varying
channel characteristics. In recent years, a lot of re-
search with focus on machine learning-based channel
prediction and classification has emerged. On the one
hand, some research utilizes channel data to pre-
dict channel or environment characteristics based on
machine learning, which is called “channel-based fea-
ture identification” [24]. For example, [25] identifies
LOS/NLOS conditions based on channel parameters
including RMS delay spread, Rician K factor and angu-
lar characteristics. Similarly, these channel parameters
can also be used to classify and identify scenarios such
as urban, tunnels and highways [26].
On the other hand, environmental information is ex-
ploited and extracted using machine learning-based
methods, and the extracted environmental features are
used to predict channel parameters. This work is called
“channel parameters prediction” [27]. Among them,
path loss prediction based on images or map is repre-
sented [28], [29], [30].

In this paper, we focus on channel parameter prediction
based on deep learning and environment data described by
point clouds. In the process, the prediction and evaluation
of multi-channel parameters including path loss, RMS delay
spread, angular spread and Rician K factor are presented.

A. RELATED WORK
1) LEARNING-BASED CHANNEL PARAMETERS PREDICTION
Recent existing works on learning-based channel prediction
can be divided into two categories. The first category is to
predict channel parameters using image or other features. For
example, [28], [31] uses aerial images to predict path loss.
The prediction model evolved from the classic image network
ResNet-50 [32]. However, because they are high-resolution
images, they incur large computational costs. Thus, it is also
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feasible to use compressed environmental features to predict
path loss. Among them, [33] uses a convolutional neural
network (CNN)-based autoencoder to encode 3D buildings
information, and combines features such as distance, clutter,
street width and Rx height to jointly predict path loss using
different learning methods. In addition to outdoor scenar-
ios, some learning-based models are also presented in indoor
scenarios [34]. The main function is the trained CNN-based
propagation model. The geometry of the indoor environment,
the transmitting antenna location and the receiving points are
inputted to the model as features, and received signal strength
is predicted. However, the channel parameters predicted by
this category of model usually only focus on path loss or other
single parameters. There is a lack of studies on learning-based
multi-channel parameter prediction models.

The second category is to calibrate the parameters of the
channel model using learning-based methods. The calibrated
channel model is then used to predict the channels [35], [36],
[37], [38]. Generally, the calibrated channel model can predict
more channel parameters than just path loss, such as delay
spread, angular spread and MPCs clusters. However, limited
by the scale of channel measurements, overfitting may exist in
learning-based calibrations. The model needs to be calibrated
again when applied to other scenarios. This makes it difficult
for the model to be widely deployed.

2) POINT CLOUD-BASED CHANNEL PREDICTION
Point clouds are three-dimensional data representations con-
sisting of numerous individual points in space. They are
commonly obtained through techniques like light detection
and ranging (LiDAR) scanning or photogrammetry, providing
a detailed and precise depiction of the physical world. With
the rise of applications such as autonomous driving and JCAS,
LiDAR has gradually become commonplace in vehicles, mo-
bile terminals, etc. The acquisition of point cloud data will
be more and more available in these commonly used devices.
The MPCs parameters of channels are affected by the envi-
ronment; there is a mappable relationship between the channel
parameters and the environment described by the point cloud.
Sensing and prediction of channels based on point clouds will
be realized and is promising.

Because of the precise description of the environment by
point clouds, it is common in most research to reconstruct
the simulation environment using point clouds. The channel
is then simulated using RT or other deterministic modeling
methods based on the reconstructed environment [39], [40],
[41]. Meanwhile, the point cloud-based ray tracing simula-
tors have been proposed in [42], [43]. The point cloud is
used for directly calculating the propagation mechanisms such
as reflection and transmission by using, e.g., physical op-
tics, instead of reconstructing the environment. Furthermore,
prediction of channel characteristics directly based on point
clouds has been proposed. For example, a prediction method
for the angular characteristics from a point cloud has been
proposed by the aperture field integration method in [44]. In

addition, the prediction of mmWave received signal strength
indicator (RSSI) using a point cloud and supervised learning
has been presented in [45]. Specifically, the point cloud is
converted into voxels by dividing the 3D space into uniform
cubical regions and setting the value of each voxel to be the
number of points in that voxel. Then the voxelized data is the
input to a 3D CNN and a gradient boosting regression tree.
However, the conversion from a point cloud to voxels will
increase the computational cost, and the processing of vox-
els has higher hardware requirements on the performance of
deployed devices. Therefore, efficiently utilizing point clouds
and other environmental information for channel parameter
prediction needs to be further explored.

B. OUR CONTRIBUTIONS
Going beyond the literature, our motivation is to exploit the
accessibility of the low-cost point cloud and image data for ef-
ficient data-driven channel prediction of both large and small
scales parameters, whereas model-driven approach requires
more accurate point cloud data.

In this paper, a channel parameter prediction method based
on deep learning and point clouds is proposed for LiDAR-
assisted mmWave communication scenarios. We carry out
LiDAR and panoramic camera-assisted mmWave channel
measurement at 60 GHz frequency band. The proposed pre-
diction method, a regression network model, is trained and
tested by employing the channel measurement data. The
trained network model can accurately predict path loss, RMS
delay spread, angular spread and Rician K factor. The main
contributions and novelties of this paper are summarized as
follows:
� The LiDAR and camera-assisted channel measurement

campaign has been carried out in a typical lecture-room
environment. Channel measurements are conducted at
60 GHz frequency band, and the channel sounder, Li-
DAR and panoramic camera are well synchronized. This
means that each channel snapshot is matched to point
clouds and images generated by LiDAR and panoramic
camera, respectively. In addition, based on the geometric
relationship between LiDAR and camera, a point cloud
and image fusion method is proposed to compress the
size of the raw data.

� The channel parameter prediction model based on deep
learning is presented. Based on the classic point cloud
classification model PointNet, a regression PointNet
for channel parameters prediction is proposed. Among
them, the point cloud is efficiently utilized as it is di-
rectly used as the input to the proposed model, instead of
reconstructing the environment or converting it to voxels
in literature. In this paper, path loss, RMS delay spread,
angular spread and Rician K factor are predicted by the
regression PointNet model.

� An area-by-area training and testing method is proposed
based on the measurement data. The proposed area-by-
area training and testing method avoids overfitting and
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improves the generalization performance by using dif-
ferent combinations of areas for training and testing.

� The prediction results of the proposed model are com-
pared with the measurements in terms of the predicted
channel parameters. The impact of using different com-
binations of input information (along with the point
cloud) on the prediction performance is analyzed. Fi-
nally, the utilization and deployment method of the
proposed model is recommended.

The rest of the paper is organized as follows. Section II
elaborates the measurement configuration and campaign, as
well as the proposed data fusion. Section III presents the
classic PointNet model, and the proposed regression PointNet
for channel parameters prediction. Based on the proposed
model and method in Section III, the prediction results of
channel parameters are presented and evaluated in Section IV.
Meanwhile, the deployment method of the proposed model is
also presented in Section IV. Finally, conclusive remarks are
included in Section V.

II. CHANNEL MEASUREMENTS AND DATA
SYNCHRONIZATION
In this section, we present the LiDAR-assisted channel mea-
surement campaign conducted in a typical lecture-room en-
vironment. Namely, the LiDAR and panoramic camera were
installed on the measurement equipment. The channel sounder
and measurement environment are introduced in Sections II-A
and II-B, respectively. Section II-C presents a synchronized
fusion method for the point cloud and image, aiming to com-
press the size of the raw data.

A. CHANNEL SOUNDER
In this work, a channel sounder with the center frequency of
60.5 GHz was used for the measurements. Fig. 1 shows the
channel sounder at the receiver (Rx) side. The Rx composed
of a signal digitizer, antenna array, LiDAR and panoramic
camera were placed on a mobile robot, as shown in Fig. 1(a).
The Rx antenna array consists of 16 horn antennas, as shown
in Fig. 1(b); the gain and the beamwidth of each horn antenna
is 18.1 dBi and 22.5◦ (3 dB beamwidth), respectively. As
a result, the Rx antenna array covers 360◦ in the azimuth
domain and 45◦ in the elevation domain. The LiDAR and 360◦
panoramic camera were mounted above the array antenna.
The LiDAR we use is the OS0 from Ouster [46], which is a
128-line LiDAR. It scans 128 and 2048 angles in elevation and
azimuth, respectively, and generates point clouds with a reso-
lution of 128 samples × 2048 samples. The panoramic camera
we use is the iSTAR Pular from NCTech [47]. The channel
sounder, LiDAR and panoramic camera were synchronized
in both the temporal and spatial domains through Rubidium
clocks and metallic sphere markers respectively. Therefore,
the channels, point clouds, and images measured and captured
at the same time can be effectively corresponded.

The Tx antenna array consists of eight horn antennas, and
the parameters of Tx horn antennas are the same as those of
Rx. Since there are only eight Tx antennas in the array, its

FIGURE 1. (a) The channel sounder at Rx, mounted on a robot.
(b) Multisensor structure at Rx. (c) The Tx side of the sounder.

TABLE 1. Configurations of Measurement System

field-of-view (FoV) is reduced to 180◦ in the azimuth with
respect to the Rx, while the elevation FoV is still 45◦. Antenna
measurements and calibrations in an anechoic chamber were
performed to extract MPCs parameters precisely. The parame-
ters related to the measurement configuration are summarized
in Table 1, and more detailed descriptions about the channel
sounder can be found in [48], [49].

An arbitrary waveform generator was used as the trans-
mitter (Tx). It generates a repeating 2047 b pseudorandom
(PN) codeword that has a chip rate of 2 GHz (0.5 ns chip
length). The code is upconverted to 60.5 GHz center fre-
quency and electronically switched through the 128 (16×8)
Rx-Tx antenna pairs, requiring only 262 μs for a full channel
sweep. At the Rx, the received signal is downconverted and
then directly digitized. For each antenna pair, the digitized
signal is correlated with the known code, yielding a train of
pulses, each corresponding to a distinct path. The advantage
of direct digitization is that the correlation is done in post-
processing. This means that the channel can be sampled at
Dt corresponding to a maximum measurable Doppler shift of
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FIGURE 2. (a) The measurement environment. (b) The positions of Tx and
Rx (the blue dots are Rx positions during measurement).

1.9 MHz. Thus, scenarios up to a closing speed of 34 km/h
can be handled when investigating V2V scenarios.

B. MEASUREMENT CAMPAIGN
The measurement campaign was conducted in a typical lec-
ture room, as shown in Fig. 2(a). Two tables and some chairs
were present in the room. The Tx was stationary in one
corner of the room. The Rx was mounted on a robot and
traversed a predetermined route in the lecture room. The robot
was equipped with a laser-guided navigational system, and
reported the Rx positions in the environment through a si-
multaneous localization and mapping (SLAM) algorithm. The
coordinates of the Tx and the route traversed by the Rx are
shown in Fig. 2(b). The maximum velocity of the robot was
0.2 m/s (much smaller than 34 km/h), and the interval between
each Rx position was about 10 cm. At this roughly every
10 cm, a burst of eight small-scale measurements (snapshots)
was collected while the robot was in motion, specifically
eight measurements were collected in rapid succession (every
24.9 ms), which is equivalent to sampling at about a wave-
length (0.5 cm) for a nominal robot speed of 0.2 m/s. Over
the total burst, the robot moved a total of about 4 cm. The
heights of the Tx and Rx antenna arrays were 2 m and 1.48 m,
respectively. This height is consistent with the location of
conventional base stations and smart devices in indoor envi-
ronments. Therefore, it is possible to regard the Tx and Rx as
a base station and a mobile user, respectively. At Tx and each
Rx position, electronic switches were used to switch each pair
of Tx and Rx horn antennas in sequence, and 128 channel
impulse responses (CIRs) were recorded for each snapshot.
When the robot turns, it needs to stop and turn its body at
the same position. Meanwhile, the channel sounder is still
sampling at same rate. Therefore, Rx positions are denser at
the corner of the route.

The farfield distance of the horn antennas on the Tx and
Rx arrays as defined by the Fraunhofer distance is 9 cm
(given the 15 mm aperture width of the horns and the 5 mm
wavelength at 60 GHz). The minimum Tx-Rx distance across
the two areas used in the paper is 6 m, and neither the Tx
nor the Rx were closer than 1 m to any other objects in the
room. Therefore all measurements were well in the farfield.
With calibrated radiation pattern of the Tx and Rx arrays,
the space-alternating generalized expectation-maximization
(SAGE) super-resolution algorithm [50] was used to extract

FIGURE 3. Raw images and point clouds. (a) Raw panoramic image for
one frame. (b) Raw point cloud for one frame.

propagation MPCs and their parameters for each snapshot.
In this paper, the LOS condition was maintained throughout
the measurement campaign. The power percentage of LOS
paths in all MPCs ranges from 50% to 92% at different Rx
positions. It should be noted that NLOS measurements were
not conducted in this paper. This is because LiDAR under
NLOS conditions cannot capture the entire environment due
to occlusion.

C. DATA SYNCHRONIZATION AND FUSION
As mentioned in Section II-A, LiDAR, camera and channel
sounder are time-space synchronized. Therefore, each frame
point cloud from LiDAR and image from camera correspond-
eds to the channel of each snapshot. Fig. 3 shows the raw
image and the point cloud at the same position. Since the
camera generates panoramic images, all objects in the en-
vironment can be recorded, as shown in Fig. 3(a). The raw
point cloud is shown in Fig. 3(b). The color of each point
indicates the intensity of laser reflection at that point. The
panoramic image shown in Fig. 3(a) corresponds to the depth
map in Fig. 5, where each point (i.e., color) of the depth map
is the distance in meters from the camera to the objects. The
details for obtaining the depth map in Fig. 5 from the point
cloud example in Fig. 3(b) are further discussed in the next
paragraphs in this Section II-C. From Fig. 3, it was found
that some unreasonable points appear outside the scope of the
environment. This is because the laser may penetrate objects
such as glass, and these points need to be removed.

The resolution of the raw image is 3000 pixels ×
11 000 pixels, and contains RGB values at each pixel. The res-
olution of the raw point cloud is 128 elevation angle samples
× 2048 azimuth angle samples, and contains three (X,Y, Z)
spatial coordinates information at each sample point. Point
clouds and images with such a high resolution are difficult
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FIGURE 4. Synchronization between camera and LiDAR.

FIGURE 5. The depth map from camera’s perspective.

to be used as input at the same time due to the large data size.
Therefore, fusion of point clouds and images to reduce the
data size is necessary.

Since the camera and LiDAR are mounted at different
heights, their distances to a point on the target object are
different, as shown in Fig. 4. In order to spatially synchronize
the point cloud with the image, the distance between LiDAR
and target point needs to be converted to the distance between
camera and target point, i.e. the distance of r2 in Fig. 4 need
to be calculated. According to the geometric relationship, r2

is obtained as

r2 = r1 cos θ1

cos θ2
, (1)

where r1 and θ1 represent the distance between LiDAR and
target point and elevation angle for LiDAR, respectively. θ2

denotes the elevation angle for camera, and it is calculated as

θ2 = arctan

( |�h − r1 sin θ1|
r1 cos θ1

)
, (2)

where �h denotes the difference of height between camera
and LiDAR. The depth map from camera’s perspective is
obtained after synchronizing the LiDAR and the camera, as
shown in Fig. 5. The color indicates the distance in meters
from the camera to the object as encoded in the color bar to
the right of the image. Meanwhile, each pixel in the depth
map corresponds to a point in the point cloud. Therefore, the
connection between point clouds and images is established
through depth maps. After down-sampling the image to the
resolution of the point cloud, the RGB data is assigned to each
point in the point cloud. The flowchart for the fusion of the
point clouds and images is shown in Fig. 6. The fusion result
is shown in the right figure of the flowchart. The point cloud
fused with the RGB data can distinguish more clearly the

objects in the environment compared to the raw point cloud.
Therefore, the data size is greatly compressed without losing
much information through this fusion method.

III. LEARNING-BASED NETWORK ARCHITECTURE FOR
POINT CLOUD
In this section, the simple and efficient network architecture
of PointNet [51] is introduced in Section III-A. As a clas-
sic network for processing point clouds, PointNet has good
performance especially in the classification and segmentation
of 3D point clouds. Therefore, PointNet will be adapted and
used to process the point cloud mentioned in Section II-C
and predict multiple channel parameters by decoding features.
The original PointNet network performs classification tasks,
while channel parameter prediction requires regression func-
tions. Therefore, we modify the network architecture based on
PointNet to adapt it to the regression task of channel param-
eter prediction in Section III-B. In addition, an area-by-area
training and testing method is proposed under the limited
amount of measurement data and presented in Section III-C.

A. POINTNET FOR 3D CLASSIFICATION AND
SEGMENTATION - A RECAP
Both point clouds and images are important information
sources and have specific data structures. However, point
clouds have two following unique characteristics that differ
from images. The first characteristic is permutation invari-
ance. Unlike images, where pixels are arranged in a particular
order, most point clouds are unordered. This means that the
points describing the same object will have different orders
and arrangements in point clouds. The second characteristic is
transformation invariance. Both rotating and translating points
cannot modify the global point cloud characteristics. Due to
the two above characteristics of the point cloud, conventional
machine learning architectures such as supporting vector re-
gression and random forest cannot be used to process point
clouds. Meanwhile, operations such as convolution cannot
be directly used on the raw point cloud. Therefore, most
researchers transform such point cloud data to regular 3D
voxel grids or collections of images, which can be processed
using a convolutional neural network (CNN), etc. However,
the processing complexity of the point cloud using the above
methods is high and cannot be used in certain scenarios. Point-
Net solves these problems, and makes deep learning directly
applicable to 3D point cloud tasks [51].

The original PointNet architecture is shown in the yel-
low box of the classification PointNet in Fig. 7. Most of
its modules are composed of a multilayer perceptron (MLP)
and fully connected (FC) layers. Therefore, compared to
a CNN-based image or voxel network, the structure of
PointNet is simpler and more efficient. In order to solve
the transformation invariance and permutation invariance of
point clouds, PointNet uses a general function f defined
as

f ({x1, . . . , xn}) ≈ g (h (x1) , . . . , h (xn)) , (3)
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FIGURE 6. The flowchart and result for the fusion of point cloud and image.

FIGURE 7. PointNet architecture for traditional classification with input of block point cloud (top); Modified PointNet architecture for proposed
regression with input of fused data of entire environment (bottom).

where {x1, . . . , xn} is the input point or feature vector. Func-
tion h is approximated by an MLP network to deal with the
transformation invariance of point clouds. Due to the con-
straint of loss function during the training, the MLP parameter
of h will learn the transformation that is most conducive to
the final prediction, such as transforming the point cloud to
the same direction. Function g is a symmetric function, and
can deal with the permutation invariance of point clouds. The
symmetric function is not sensitive to the order of the input,
such as addition, dot product and max pooling. Among them,
g is the max pooling function in PointNet. The input dimen-
sion of PointNet is n × 3, where n represents the number of
points. After the input is subjected to the max pooling layer,
the maximum value in each dimension will be obtained. Each
dimension’s feature is not related to its order, which ensures

the robustness to the order of point clouds. The general func-
tion f corresponds to the two T-Net structures in Fig. 7, which
are defined in [51]. Among them, the first T-Net transforms the
input n × 3 dimensional point cloud. The transformed results
are promoted to n × 64 dimensional feature vectors by an
MLP network. Then the feature vector is transformed by the
second T-Net. The transformed n × 64 dimensional feature
vector is generated as the input of the MLP network with 3
layers. Each point has 1024 dimensional features. Then the
max pooling is applied to aggregate point features, and the
global feature is obtained. A decoder composed of FC lay-
ers decodes the global features and outputs the classification
scores for k classes after the log Softmax activation function.

The focus of this paper is to predict four channel LSPs,
that is, path loss, delay spread, angular spread and Rician
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K factor. Therefore, the PointNet model needs to be adapted
from classification to regression.

B. REGRESSION POINTNET FOR CHANNEL PREDICTION
The green box at the bottom of Fig. 7 shows the proposed
architecture of regression PointNet. In this paper, regression
PointNet will be applied to predict channel LSPs. In the input
layer, the point cloud with a fixed number of points is used
as input. Meanwhile, the original point cloud data needs to
be downsampled due to limited GPU memory. The original
classification PointNet divides the point cloud of environ-
ment into 3D blocks with side lengths of 1 m, and randomly
downsamples the point cloud in blocks to 4096 points. The
downsampled point cloud blocks are then inputted into Point-
Net. However, wireless channels are associated with the entire
environment. Hence partitioning of the environment will not
be suitable for channel prediction. In addition, due to the
sparse feature of point cloud, the points far away from the
LiDAR sensor will be sparser than the nearby points. Random
downsampling will make sparse point clouds further away
from LiDAR even sparser. This will lose some of the envi-
ronment characteristics. Therefore, the farthest point sampling
(FPS) is used in this paper. The central idea of FPS is to always
sample the point farthest from the current sampling point.
In the point cloud data of this paper, FPS can preferentially
sample the sparser part of the point cloud to preserve the
characteristics of the environment as much as possible. In
this paper, 32 768 points are sampled and inputted into the re-
gression PointNet. After the downsampling of data fusion and
point cloud, the storage size of each frame of point cloud and
image was compressed from 15.7 MB to 1.46 MB. The total
data size was compressed from 16.6GB to 1.5 GB, which is a
reasonable storage size to input into the GPU for training. In
addition, other information will also be given about the point
cloud, such as Rx coordinates, the color and segmented masks
of the points. Therefore, the input layer dimension in the
regression PointNet is n × d , where n is the number of points
(n = 32768) and d is the dimension of input information. The
impact of input information on prediction will be analyzed in
Section IV-B. In the output layer, we change the log Softmax
activation function into ReLu to adapt the regression task.
The FCs decoder decodes m predicted channel parameters
and outputs them after the ReLu activation function. In terms
of network complexity, the proposed regression PointNet is
close to the conventional classification PointNet. Its space
complexity (number of parameters processed in the network)
is 3.5 e6 [51], while the scale of point cloud models based on
3D CNN, as mentioned in the Related Work in Introduction,
is usually 10 times that of PointNet. Meanwhile, PointNet is
much more scalable compared to the 3D CNN, because it’s
space and time complexity is O(N ), which is linear in the
number of input points.

C. AREA-BY-AREA TRAINING AND TESTING METHOD
The conventional deep learning tasks, such as image clas-
sification, usually randomly divide the entire dataset into a

FIGURE 8. The area-by-area division with 5 areas.

training set, a validation set, and a test set according to a
certain proportion, which is called “random shuffling”. The
datasets of such tasks are usually large and diverse. This
makes their models more generalizable. However, channel
measurement is difficult to cover a wide area due to the
high cost. Training the network with limited channel data is
likely to lead the model overfitting by randomly shuffling
the dataset. Furthermore, most of the samples in the testing
dataset can be found in the training dataset in a close position
using random shuffling datasets. Since the close positions
have similar channel parameters, this has a negative impact
on the generalization of the model. To address this issue, an
area-by-area training and testing method is proposed in this
paper. We divide the measurement area in Fig. 2(b) into 5
areas according to the route, as shown in Fig. 8. The rule of
thumb of dividing the measurement into areas is that in each
area the propagation path composition is distinctive from the
other areas. In each model training, four areas are used as the
training dataset, and the remaining 1 area is used as the testing
dataset. Based on the proposed area-by-area dataset division,
the regression PointNet model will be trained 5 times and it
will generate 5 different models using different datasets.

We implement the regression PointNet model in Py-
Torch [52]. For other hyperparameters, we keep the adaptive
moment estimation (Adam) optimizer and initial learning rate
of 0.001 with original PointNet. The learning rate is decayed
by 0.7 times every 60 epochs. In addition, the negative log-
likelihood loss function is used in the classification PointNet,
while we use the mean square error loss function for our
regression task. Meanwhile, to ensure model convergence, we
increase the number of training epochs from the original 200
to 500. The batch size is set to 10 due to limited GPU memory.
Each dimension information of points in the input layers and
labels in the output layers are normalized to between 0 and 1
using the min-max scaling as follows

z′ = z − zmin

zmax − zmin
, (4)

where z is the input information or output labels. zmin and
zmax are the minimum and maximum values in the data set
{z}, respectively. The zmin and zmax of each parameter need to
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TABLE 2. The Hyperparameters of Training Networks

be recorded in order to recover the original values from the
normalized values after prediction. The hyperparameters of
training networks are summarized in Table 2.

IV. LARGE-SCALE PARAMETERS PREDICTION
In this section, we predict channel LSPs using the proposed
regression PointNet model and training method. Root mean
square error (RMSE) is used to evaluate the prediction accu-
racy. The RMSE is defined as follows

RMSE =
√

1

M

∑M

i=1
(ŷi − yi )2, (5)

where ŷi and yi is the prediction and measurement value,
respectively. M is the number of test data. According to (5), it
is found that RMSE has the same unit as the channel param-
eter to be evaluated. Therefore, it can visually show the error
between measured and predicted channel parameters.

We first show the prediction results using the all infor-
mation of points, and compare with the classical path loss
models. Then the impact of point information on prediction
accuracy is analyzed and insights are given.

A. PREDICTION RESULTS AND EVALUATION
1) PATH LOSS
The path loss can be calculated from the path gain of MPCs
estimated from SAGE as follows

PL = −10 log10

(
N∑

i=1

Pi

)
, (6)

where Pi is the path gain of the i-th MPC, and N is the number
of MPCs. In the evaluation of path loss, two benchmarks are
used to compare with the proposed model. The first bench-
mark is the close-in (CI) freespace reference distance path loss
model [11], which is defined as follows

PLCI( f , dTR)[dB] = FSPL ( f , d0) [dB]

+ 10nPL log10

(
dTR

d0

)
+ χCI

σ , dTR ≥ d0 (7)

where f is the center frequency in GHz. dTR is the distance
between Tx and Rx in meters. d0 is the reference distance and
is set to 1 m. nPL denotes the path loss exponent (PLE), and
χCI

σ is a zero-mean Gaussian random variable with a standard
deviation σ in decibels. In the evaluation, the nPL and σ of
CI model are obtained by fitting the test datasets. The second
benchmark is the 3GPP indoor hotspot (InH) path loss model

in LOS condition [53], which is defined as follows

P LInH-LOS ( f , dTR)[dB] = 32.4

+ 17.3 log10 (dTR) + 20 log10( f ), (8)

where the meaning of the variables is consistent with the CI
model. The 3GPP InH model can directly obtain the path loss
according to the distance between transceivers without fitting
any parameters.

The RMSE between measurements and predictions using
different methods is summarized in Table 3. In this table, the
CI model serves as a reference, because it is directly fitted
to the measurement data of test datasets (thus also has the
smallest RMSE); the 3GPP InH model does not fit to the
measurement data and is a prediction method to be compared
to our proposed approach. The average value of RMSE rep-
resents the overall performance of the model on the dataset.
The proposed regression PointNet significantly outperforms
the 3GPP InH model among models that do not use prior
information on the test datasets. In some areas, the predic-
tion error of the regression PointNet model is even close to
that of the CI model. Table 3 also shows that all the models
perform the worst in area 1, including the proposed method.
Fig. 9 shows the measured and predicted path loss for dif-
ferent models. It is found that the 3GPP InH model differs
significantly from the measured path loss in both the best and
worst cases. In the best case of Fig. 9(a), the variation in the
trend of path loss is smooth in area 2, thus having the small-
est RMSE among all the models. Meanwhile, the proposed
regression PointNet model has similar values to the CI model,
and both are close to the measured path loss in Fig. 9(a). In
the worst case of Fig 9(b), the measured path loss fluctuates
significantly in area 1. It is difficult for the slope-intercept
model to capture this variation in this test area, resulting in
the largest RMSE in all tested areas. If the fitted CI model is
used as a baseline in Fig. 9(b), it is found that some measured
samples deviate significantly from the baseline. This is due to
the birth-death behavior of dominant MPCs. In addition, the
prediction of regression PointNet is as close as possible to the
measured samples that deviate significantly. This shows that
the proposed model can characterize this variation caused by
birth-death behavior to some extent.

2) RMS DELAY SPREAD
As one of the important characteristics of wireless chan-
nels, RMS delay spread is commonly used to measure
MPCs dispersion in the delay domain. It is calculated as the
second-order central moment of the power delay profile. In
this paper, we use the path gain and delay of MPCs to calculate
the RMS delay spread as follows [12]

τRMS =
√

τ 2 − τ̄ 2, (9)

with

τ 2 =
∑N

i=1 Piτ
2
i∑N

i=1 Pi
, τ̄ =

∑N
i=1 Piτi∑N
i=1 Pi

, (10)
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TABLE 3. RMSE of Fitted or Predicted Path Loss Using Different Methods

FIGURE 9. The results of path loss between measurements and
predictions using different models. (a) The best case for regression
PointNet (area 2). (b) The worst case for regression PointNet (area 1).

where Pi and τi represent the path gain and delay of the i-th
MPC, respectively. N is the number of MPCs. The RMSE of
RMS delay spread predicted by regression PointNet in all test
areas are listed in Table 4. Fig. 10 shows the prediction results
of RMS delay spread in the best and worst cases. In Fig. 10(a)
and (c), each sample represents the measured and predicted
results at a certain position. It is found that the predictions
of regression PointNet largely agree with the measured trends
in both the best and worst cases. Fig. 10(b) and (d) show the
cumulative distribution functions (CDF) of the measured and
predicted RMS delay spread. It is found that the proposed
model is close to the measured samples in CDF curves.

3) ANGULAR SPREAD
Similar to the time-delay domain, the channel has angu-
lar spread characteristics in the spatial domain. The angular

spread is defined in 3GPP 38.901 [53] as follows

AS =
√√√√−2 ln

(∣∣∣∣∣
∑N

i=1 exp( jφi ) · Pi∑N
i=1 Pi

∣∣∣∣∣
)

, (11)

where Pi is the path gain for the i-th MPC, and φi is the angle
of the i-th MPC given in radians. N is the number of MPCs.
The angle includes azimuth angle of arrival, elevation angle
of arrival, azimuth angle of departure and elevation angle of
departure. In this paper, we focus on the analysis of azimuth
angle of arrival. Therefore, the angular spread in this paper de-
faults to the azimuth spread of arrival. In addition, the unit of
angular spread is converted from radians to degrees, which is
more intuitively displayed in the prediction results and RMSE
evaluation. The RMSE between measurement and prediction
using the proposed model in all test areas are listed in Table 4.
The average RMSE of angular spread across all areas is 7.39◦.
The minimum and maximum RMSE of angular spread corre-
sponds to area 2 and area 1, respectively. Fig. 11 shows the
prediction results and corresponding CDFs of angular spread
in the best and worst cases. In the best case, it is found from
Fig. 11(a) that the predicted trends of the proposed model are
consistent with the measurements. Meanwhile, the proposed
model can also cope with the rapid change of angular spread
caused by the birth and death of MPCs. This is also confirmed
in Fig. 11(b). The CDF curves of measurement and prediction
almost coincide for most samples. In addition, it is found
from Fig. 11(a) and (b) that some samples have large and
rapid changes in some continuous index. This is because some
unreasonable measurement samples are filtered out in the data
sets, which make the channel parameter values discontinuous.

4) RICIAN K FACTOR
Rician K factor is used to describe the power relationship
between the dominant MPCs and other MPCs. In this paper,
the LOS condition is always maintained throughout the mea-
surement campaign. Therefore, the Rician K factor is defined
as follows

KF = 10 log10

(
PLOS∑N

i=1 Pi − PLOS

)
, (12)

where PLOS is the path gain of LOS path. N is the number of
MPCs, and Pi is the path gain of the i-th MPC. The prediction
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TABLE 4. RMSE of Predicted LSPs Using Regression PointNet

FIGURE 10. The results of RMS delay spread between measurements and predictions. Among them, one index in the horizontal axis in Fig. (a) and Fig. (c)
represents the measurement and corresponding prediction results at one position. (a) The best case for regression PointNet (area 5). (b) The CDFs of
measurement and prediction for the best case. (c) The worst case for regression PointNet (area 1). (d) The CDFs of measurement and prediction for the
worst case.

FIGURE 11. The results of angular spread between measurements and predictions. Among them, one index in the horizontal axis in Fig. (a) and Fig. (c)
represents the measurement and corresponding prediction results at one position. (a) The best case for regression PointNet (area 2). (b) The CDFs of
measurement and prediction for the best case. (c) The worst case for regression PointNet (area 1). (d) The CDFs of measurement and prediction for the
worst case.

RMSE of Rician K factor in all test areas are list in Table 4. It
is found that most of the test areas can achieve a small RMSE
except for area 3. Similarly, Fig. 12 shows the prediction
results and corresponding CDFs of the Rician K factor in the
best and worst cases. In the best case of Fig. 12(a) and (b),
it is found that most of the predicted samples are good matches
to the measured samples. Meanwhile, the proposed model
can still predict well for some rapidly changing samples and
extreme values in the best case of Fig. 12(a). In the worst
case, there is a relatively large RMSE in area 3 due to the
decrease in the prediction performance of the proposed model
for extreme values samples. But the predicted value is still
within a reasonable range in Fig. 12(c). Thus the proposed
regression PointNet model is reliable.

B. IMPACT OF INPUT INFORMATION
In Section III-B, we mentioned that the proposed regression
PointNet can modify and select the dimensionality of the
input information. Therefore, the impact of input information
on prediction accuracy will be evaluated in this section. In
this paper, the input information that can be used are point
cloud (X,Y, Z), Rx position (XRx,YRx, ZRx), the color of point
(R, G, B) and segmented masks. Among them, the segmented
mask is the category of objects using semantic segmentation
for the image, as shown in Fig. 13(b). The segmented masks
are fused into the point cloud using the same method as the
image, which is described in Fig. 6 and Section II-C. Thus,
a total of 10 dimensional channels (d = 10) can be used as
input. Among them, the point cloud is considered as the basis
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FIGURE 12. Results of Rician K factor between measurements and predictions. Among them, one index in the horizontal axis in Fig. (a) and Fig. (c)
represents the measurement and corresponding prediction results at one position. (a) The best case for regression PointNet (area 1). (b) The CDFs of
measurement and prediction for the best case. (c) The worst case for regression PointNet (area 3). (d) The CDFs of measurement and prediction for the
worst case.

FIGURE 13. (a) Raw panoramic image. (b) Segmented masks from image.

FIGURE 14. The mean RMSE using different input information on the LSP
prediction. (a) Path loss. (b) RMS delay spread. (c) Angular spread.
(d) Rician K factor.

since it describes the geometric characteristics of the environ-
ment. We will add other information to the point cloud and
evaluate their impact on prediction accuracy.

Fig. 14 shows the impact of using different input informa-
tion on the prediction of different LSPs. On the X-axis, the
Point, Rx, RGB and Mask denote point cloud, Rx position, the

color of the point and segmented mask of the points, respec-
tively. The Y-axis is the mean RMSE among the 5 test areas. It
is found that the Rx position and the color of the point improve
predictions for all LSPs. Among them, the improvement of the
path loss prediction by Rx position is significantly greater than
that of the other three LSPs. This is because the addition of
the Rx position enriches the distance information in the input,
which is more important for the prediction of path loss. Please
note that path loss and other LSPs can still be predicted with-
out Rx positions. This is due to the fact that the point cloud
scanned by the LiDAR contains the feature of Rx position.
For example, the object above the Rx cannot be scanned due
to the limited FOV of LiDAR, and it creates a void without
points. This is shown at the Rx position in Fig. 3(b). The
feature of Rx position can be learned by the network to a
certain extent. However, the LOS path contributes most of the
received power under LOS conditions, which depends more
on the Rx position and the distance between the transceivers.
Therefore, accurate Rx positions can reduce the learning cost
of the model, and improve the prediction performance of path
loss.

In addition, color information also improves path loss pre-
diction. Point clouds can construct geometric information of
objects, but cannot distinguish objects. Objects can be classi-
fied and segmented through color information, and associated
with the material electromagnetic parameters of the object.
For example, the door or window embedded in the wall shown
in Fig. 13(a) is difficult to distinguish only through the ge-
ometric information provided by the point cloud. But they
can be classified and distinguished by the difference in color.
Object properties can be related to material parameters, which
is beneficial for the prediction of power, especially for non-
dominant MPCs. Therefore, compared with Rx position, the
addition of color information has a more significant improve-
ment in RMS delay spread, angle spread and Rician K factor.
This is because these three LSPs evaluate the impact of non-
dominant MPCs on channel characteristics. Therefore, color
information improves their predictions more significantly. In
addition, the segmented mask can be regarded as the extrac-
tion and compression for color information. It more precisely
describes the object category for each point in the point cloud.
Thus, the segmented mask can replace the color of point
to a certain extent. For example, for the prediction of RMS
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TABLE 5. RMSE of Predicted LSPs Using Different Parameter Models and
Mean Model in Area 5

delay spread in Fig. 14(b), the fourth bar (Point+Rx+RGB)
and fifth bar (Point+Rx+Mask) have similar mean RMSE.
Compared to using the raw color, this means that using only
the segmented mask can achieve similar performance on the
prediction of some channel parameters. In addition, it is found
from the sixth bar (Point+Rx+RGB+Mask) in Fig. 14, using
all information exhibits the best prediction performance for all
LSPs. On the one hand, more input information has a greater
improvement on the prediction of LSPs. On the other hand, the
addition of segmented mask reduces the learning cost of the
network in the classification for objects. This is also beneficial
for the prediction of LSPs.

C. MODEL DEPLOYMENT TRAINED AREA-BY-AREA
In conventional deep learning tasks, usually one set of model
parameters is trained and finally deployed. In this paper,
however, the regression PointNet model will be trained five
times using different training and testing datasets, and five
sets of model parameters will be generated, as mentioned in
Section III-C. There are two deployment methods that can be
used for the proposed model. The first method is to select a
single model to deploy in all models. For example, the model
that has the best performance can be selected, i.e. the model
with the smallest mean RMSE in the test area. The second
method is that the mean of all model predictions is considered
the final prediction results, which is called the “mean model”.
To compare the two deployment methods, we use area 5 in
Fig. 8 as the comparison area predicted by the model to be
deployed. The remaining four areas are trained using the area-
by-area training method, and four sets of model parameters
are generated, e.g. model 1 (trained by datasets in area 2, 3,
4 and to predict area 5), model 2 (trained by datasets in area
1, 3, 4 and to predict area 5). Table 5 lists the RMSE in area
5 predicted by the four models with different parameters and
the mean model. Data in bold font indicate the smallest RMSE
in all models. It is found that the single model has different
performance on prediction for different LSPs. Therefore, it is
difficult to select an optimal model that predicts all LSPs well.
In addition, the mean model has the smallest RMSE in path
loss prediction. Meanwhile, the RMSE of the mean model
on other LSPs is also close to the best single model. This
means that the mean model has a more balanced performance
in the prediction of all LSPs. Therefore, it would be more
appropriate to use the mean model when deploying.

V. CONCLUSION
In this paper, a novel LiDAR-assisted mmWave channel
measurement campaign at 60 GHz was conducted in a typi-
cal lecture room. The data generated from channel sounder,
LiDAR and panoramic camera were synchronized in time-
spatial domain. Based on geometric relationship between
LiDAR and camera, a novel data fusion method for point
cloud and image has been proposed, and size of input data
has been compressed. Then by adapting PointNet model, a
regression PointNet model applied for channel parameters
prediction has been proposed. Meanwhile, an area-by-area
training and testing method has been proposed under the lim-
ited amount of measurement data. This protects the proposed
model from overfitting and improve generalization perfor-
mance by using different combinations of areas for training
and testing. Based on the proposed model and the fused point
cloud, the prediction performance of channel parameters in
test areas have been evaluated. The mean RMSE of path loss,
RMS delay spread, angular spread and Rician K factor are
1.56 dB, 0.90 ns, 7.39◦ and 2.67 dB, respectively.

In addition, the impact of different combinations of input
information on prediction accuracy has been analyzed. The
additional Rx position, color and segmented mask, in addition
to point cloud data, improve prediction performance. This
is because of more information being fed to learning net-
work and thus reducing learning cost of the network. Finally,
we compared different deployment methods for the proposed
model and concluded that so far using the mean prediction of
all models has the best performance.
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