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ABSTRACT This article addresses the problem of symbol detection in time-varying Massive Multiple-Input
Multiple-Output (M-MIMO) systems. While conventional detection techniques either exhibit subpar perfor-
mance or impose excessive computational burdens in such systems, learning-based methods which have
shown great potential in stationary scenarios, struggle to adapt to non-stationary conditions. To address
these challenges, we introduce innovative extensions to the Learned Conjugate Gradient Network (LcgNet)
M-MIMO detector. Firstly, we expound Preconditioned LcgNet (PrLcgNet), which incorporates a precondi-
tioner during training to enhance the uplink M-MIMO detector’s filter matrix. This modification enables the
detector to achieve faster convergence with fewer layers compared to the original approach. Secondly, we
introduce an adaptation of PrLcgNet referred to as Dynamic Conjugate Gradient Network (DyCoGNet),
specifically designed for time-varying environments. DyCoGNet leverages self-supervised learning with
Forward Error Correction (FEC), enabling autonomous adaptation without the need for explicit labeled data.
It also employs meta-learning, facilitating rapid adaptation to unforeseen channel conditions. Our simulation
results demonstrate that in stationary scenarios, PrLcgNet achieves faster convergence than LCgNet, which
can be leveraged to reduce system complexity or improve Symbol Error Rate (SER) performance. Further-
more, in non-stationary scenarios, DyCoGNet exhibits rapid and efficient adaptation, achieving significant
SER performance gains compared to baseline cases without meta-learning and a recent benchmark using
self-supervised learning.

INDEX TERMS Massive MIMO (M-MIMO), symbol detection, conjugate gradient, model-based learning,
non-stationary channels, online adaptation, meta-learning.

I. INTRODUCTION
With the ever-growing demand for higher data rates and more
reliable wireless communication systems, Massive Multiple-
Input Multiple-Output (MIMO) technology has emerged as a
promising solution to address the challenges of future wireless
networks [2]. This paradigm leverages an extensive array of
antennas at the base station to simultaneously serve multiple
users, thereby significantly enhancing spectral efficiency and
interference mitigation [3]. However, the task of detecting
data symbols at the receiver in M-MIMO systems remains
highly computationally demanding, particularly when dealing

with very large numbers of antennas and users. Conventional
algorithms, which exhibit satisfactory performance in small-
scale MIMO systems as referenced in [4], [5], [6], prove to
be computationally prohibitive for M-MIMO setups. Conse-
quently, there is a critical necessity to develop low-complexity
detectors capable of delivering good performance in such sys-
tems.

Recent innovations in deep learning have shown remark-
able potential in addressing the complexity of M-MIMO
detection algorithms [7]. Relying on Deep Neural Net-
works (DNNs), these learning approaches can be broadly
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categorized into two types: i) data-based and ii) model-based.
Data-based approaches aim to find optimal parameters for a
DNN detector by minimizing a cost function over a train-
ing data set. For instance, in [8], a Convolutional Neural
Network-based Likelihood Ascent Search (CNNLAS) de-
tection algorithm is introduced that integrates a graphical
detection model and exhibits robustness against channel esti-
mation errors compared to alternative methods. A more recent
approach, outlined in [9], employs a data-driven DNN archi-
tecture incorporating reservoir computing and a multi-head
self-attention mechanism specifically tailored for dynamic
wireless scenarios. Furthermore in [10], a data-driven imple-
mentation of the Soft Interference Cancellation (SIC) symbol
detection algorithm, named DeepSIC is introduced. DeepSIC
leverages the generalization capabilities of DNNs to detect
transmitted symbols across both linear and nonlinear chan-
nels. In spite of the performance benefits offered by these
data-driven DNN approaches, they face several drawbacks,
including relatively large training data set requirements and
lengthy training times. Moreover, their black-box nature poses
challenges in understanding and improving the performance
of the trained networks.

In contrast, model-based networks leverage domain knowl-
edge, enabling the reduction of training data and facilitat-
ing comprehension of their operation [11]. In the field of
wireless communications, an effective framework for model-
based learning is provided by algorithm unfolding, commonly
known as deep unfolding [12]. This technique unfolds the
iterations of an inference algorithm by introducing additional
trainable parameters to enhance model capacity, and sub-
sequently utilizing gradient-based methods to optimize the
network’s performance [13]. Recently, deep unfolding has
emerged as a popular approach to learning-based M-MIMO
symbol detection. In [14], a symbol detector named Det-
Net is introduced that unfolds the iterations of a projected
gradient descent algorithm, demonstrating performance akin
to a baseline semi-definite relaxation detector but with sig-
nificantly reduced runtime. However, DetNet’s reliance on
very large parameter space (e.g., over 2 million parameters
for a 64 × 32 MIMO system) results in substantial storage
and computational costs. In [15], a model-based detector
named OAMPNet is introduced which unfolds the Orthogonal
Approximate Message Passing (OAMP) algorithm, show-
casing improved performance compared to the base OAMP
algorithm. However, OAMPNet’s computational complexity
increases significantly in the case of M-MIMO detection due
to the need to perform large matrix inversion in each layer.
To reduce the complexity of model-based detector, a so-called
Learned Conjugate Gradient Network (LcgNet) is proposed
in [16]. LcgNet unfolds the Conjugate Gradient (CG) descent
MIMO detector into a layer-wise neural network that can learn
universal step size values. Although LcgNet outperforms the
CG detector on which it is based, it still requires a substantial
number of model parameters, leading to extended training
time and increased detection complexity. In [1], an exten-
sion of LcgNet termed Preconditioned Learned Conjugate

Gradient Network (PrLcgNet) is proposed, whereby a pre-
conditioning scheme is employed to achieve similar or better
performance with fewer layers.

While learning-based methods for M-MIMO detection have
shown great promise in stationary scenarios, they encounter
substantial challenges in non-stationary environments. These
methods typically involve training model parameters on ded-
icated pilot blocks and subsequently applying the trained
model to detect data blocks. This demands a model with ample
capacity, i.e., capable of generalizing across diverse channel
conditions and characterized by a large number of param-
eters. An alternative strategy involves adapting the detector
to time-varying channel conditions, as exemplified by [17],
where a model-based detector known as MMNet is intro-
duced. MMNet’s architecture draws inspiration from iterative
soft-thresholding algorithms and employs a novel training
algorithm that exploits temporal and spectral correlations
present in slowly-varying MIMO channels to expedite model
retraining. However, application of MMNet in rapidly-varying
channels poses major challenges due to loss of temporal cor-
relation.

Recent advancements in the area of symbol detection, as
evidenced by [18], [19], propose innovative strategies like
Forward Error Correction (FEC) and error detection mecha-
nisms to generate training samples for model adaptation. This
circumvents the need for transmitting pilots solely for model
retraining, thus reducing training overhead and enhancing the
feasibility of real-time applications. However, the methods
in [18], [19] are not conceived for MIMO detection, but in-
stead to enhance Viterbi and BCJR algorithms, respectively,
in SISO systems with memory. Studies such as [20], [21],
[22], advocate for the adoption of meta-learning to facilitate
the optimization of model parameter initialization, streamlin-
ing the process of rapid online adaptation. In particular, [22]
introduces a meta-learning scheme utilizing pilots from pre-
vious transmissions of IoT devices to train a demodulator for
adaptation to new channel conditions. Nevertheless, extension
of these schemes to M-MIMO detection under time-varying
channel conditions remains largely uncharted.

In this paper, drawing inspiration from these recent de-
velopments in online model-based learning, we introduce a
novel M-MIMO symbol detector named Dynamic Conjugate
Gradient Network (DyCoGNet), specially designed to en-
hance detection efficiency in time-varying environments. In
contrast to earlier approaches such as MMNET, DyCoGNet
builds upon PrLcgNet by integrating a novel combination
of deep unfolding, FEC-aided self-supervised learning, and
meta-learning strategies. Specifically, DyCoGNet unfolds the
preconditioned conjugate gradient algorithm by incorporat-
ing learnable parameters, facilitating efficient adaptation to
rapid channel variations in M-MIMO systems. Furthermore,
DyCoGNet adopts a self-supervised training mechanism uti-
lizing FEC to generate additional training data for online
model adaptation during the data detection phase. Finally,
DyCoGNet employs meta-learning to enhance its adaptabil-
ity to time-varying channels, by allowing to learn optimal
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parameter initialization with minimal retraining. The main
contributions of our work are summarized as follows:
� We expound and refine PrLcgNet, an extension of

LcgNet featuring a preconditioning technique optimiz-
ing the receiver’s filter matrix spectrum. This approach
effectively minimizes the eigenvalue spread, enhanc-
ing the convergence behavior of the iterative algorithm,
which in turn can be leveraged to improve Symbol Error
Rate (SER) performance or reduce computational com-
plexity.

� We examine the challenges posed by time-varying chan-
nels in the design of M-MIMO detectors, and develop
a FEC-aided self-supervised learning approach to facili-
tate detector adaptation. This approach, which exploits
reliable detection of transmitted symbols, allows the
detector to dynamically adjust model parameters esti-
mated from pilot blocks, during subsequent detection of
data blocks, effectively handling outdated information
through pilot-free online re-training.

� We investigate the use of meta-learning as a means to
expedite the adaptation process through proper initializa-
tion of the model parameters. Specifically, this technique
is incorporated in our approach to learn optimal param-
eters for model initialization, thereby enhancing adapt-
ability with minimal retraining as the channel evolves.

� We develop a new model-based M-MIMO detector
called DyCoGNet, as an extension of PrLcgNet, tailored
for wireless environments with time-varying channels.
DyCoGNet relies on the integration of CG deep un-
folding, FEC-aided online self-supervised adaptation,
and meta-learning to ensure computationally efficient
adaptation of model parameters in time-varying environ-
ments. We emphasize that DyCoGNet operates without
the reliance on perfect channel knowledge, setting it
apart from other model-based approaches.

� A detailed complexity analysis of PrLcgNet and
DyCoGNet is presented, including comparisons to
benchmark approaches. It is seen that both PrLcgNet
and DyCoGNet can lead to substantial reduction in com-
putational complexity compared to these approaches in
practical applications.

� We conduct extensive simulations to assess the newly
proposed detectors under both stationary (spatially cor-
related Rayleigh fading MIMO channels) and non-
stationary (Gauss-Markov and 3GPP TDL-A [23]
MIMO channels) conditions. We appraise the efficacy
of the preconditioning used in PrLcgNet, showcasing
its ability to expedite convergence and reduce SER
when compared to LcgNet in stationary environments.
We also assess DyCoGNet in non-stationary scenarios
with high-user mobility, where it demonstrates signifi-
cant advantages in terms of SER performance over other
baseline detectors.

The rest of this paper is structured as follows. Section II
introduces the system model for M-MIMO symbol detec-
tion and reviews the CG algorithm. Section III presents a

systematic derivation of the PrLcgNet detection network,
along with a discussion of training and computational com-
plexity. Section IV introduces DyCoGNet as an extension
of PrLcgNet, by integrating the FEC-aided self-learning and
meta-learning techniques alongside CG deep unfolding; a
complexity analysis of DyCoGNet is also provided. Section
V presents the results of numerical simulations over stationary
and time-varying channels. Finally, Section VI concludes the
work.

Notations - Boldface uppercase letters denote matrices,
boldface lowercase letters denote column vectors, and low-
ercase letters denote scalars. Operators �(·) and �(·) take the
real and imaginary parts of their arguments, respectively. The
notations A−1, AH , and AT respectively stand for the inverse,
conjugate transpose, and transpose of matrix A The 2-norm
of vector x is denoted by ‖x‖ and the Frobenius norm of
matrix A by ‖A‖F . The complex and real vector spaces of
size m × n are denoted by C

m×n and R
m×n, respectively. The

symbol � denotes the Hadamard product, and In represents
an identity matrix of size n. For random vectors, CN (0, R)
and N (0, R) respectively denote the complex circular and real
Gaussian distributions with zero mean and correlation matrix
R, respectively, while E[·] represents the expectation operator.

II. M-MIMO SYSTEM MODEL AND CG ALGORITHM
In this section, we lay the foundations of our approach
by introducing the M-MIMO system model, exposing the
challenges of large vector symbol detection, and providing
essential background on the CG iterative detector.

A. M-MIMO SYSTEM MODEL FOR SYMBOL DETECTION
We consider a narrowband multiuser M-MIMO communi-
cation channel with Nt single antenna transmitters and a
receiving base station equiped with Nr antennas. The forward
(uplink) baseband signal model for this system is given by:

y = Hs + n (1)

where y ∈ C
Nr is the received signal vector, H ∈ C

Nr×Nt is the
channel matrix, s ∈ SNt is the vector of transmitted symbols,
S ⊂ C is a finite symbol constellation, and n ∈ C

Nr is an
additive white Gaussian noise vector with element variance
σ 2

n , i.e., n ∼ CN (0, σ 2
n INr ). We assume that the constellation

symbols in S are normalized to yield unit variance and let
γ � E[‖Hs‖2] denote the total received signal power.

The goal of MIMO symbol detection is to recover the un-
known transmitted vector s from the received signal vector y
in (1). The Bayes-optimal detector is the Maximum A Posteri-
ori (MAP) detector which outputs as estimate, the symbol that
maximizes the posterior probability p(s|y), i.e.:

ŝMAP = arg max
s∈SNt

p(s|y). (2)

Assuming a uniform input prior distribution and knowledge
of the channel matrix H at the receiver,1 the MAP estimate

1Several efficient schemes are available for the estimation of the channel
matrix H in MIMO systems, see e.g., [24].
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reduces to a Maximum Likelihood (ML) estimate given by:

ŝML = arg max
s∈SNt

p(y|s)

= arg max
s∈SNt

pn(y − Hs, ) (3)

where pn(·) is the noise probability density function. For
white Gaussian noise, the ML estimation reduces to a con-
strained discrete Euclidean distance minimization problem:

ŝML = arg min
s∈SNt

‖y − Hs‖2 . (4)

However, this optimal ML detection is NP-hard due to the
finite constellation constraint, making it intractable for M-
MIMO applications with large dimensionality.

In past years, several sub-optimal detectors have been pro-
posed to address this challenge [6]. In M-MIMO systems,
simple linear detection algorithms, such as the Zero-Forcing
(ZF) and Linear Minimum Mean Square Error (LMMSE)
detectors, can achieve good performance, particularly due to
the channel hardening phenomenon [25]. The main approach
employed by linear detectors is to filter the received signal y to
obtain a soft estimate ŝ of the transmitted symbol vector, and
then map the elements of ŝ to S using the minimum distance
criterion. Specifically, in the case of the LMMSE detector, the
filtering operation can be expressed as follows:

ŝ = (
HH H + σ 2

n INr

)−1
HH y. (5)

However, the matrix inverse in (5) can incur excessive compu-
tational complexity for large-dimensional matrices prevalent
in M-MIMO scenarios.

B. CONJUGATE GRADIENT DESCENT ALGORITHM
The CG detector is an iterative algorithm that approaches the
performance of the LMMSE detector without the need for
complex matrix inversion. To facilitate the description of the
CG algorithm and the learning-based algorithms discussed in
subsequent sections, we reformulate the detection problem in
terms of real-valued quantities, defined as [26]:

yr =
[
�(y)

�(y)

]
∈ R

2Nr , sr =
[
�(s)

�(s)

]
∈ R

2Nt , (6)

nr =
[
�(n)

�(n)

]
∈ R

2Nr , (7)

Hr =
[
�(H) −�(H)

�(H) �(H)

]
∈ R

2Nr×2Nt . (8)

In terms of these variabes, the M-MIMO system model in (1)
can be equivalently expressed as:

yr = Hrsr + nr, (9)

while the LMMSE soft receiver output in (5) becomes:

ŝr =
(

HT
r Hr + σ 2

n

2
I
)−1

HT
r yr = A−1b, (10)

where matrix A � HT
r Hr + σ 2

n
2 I is symmetric positive definite

and vector b � HT
r yr .

The LMMSE detector in (10) can be reformulated as the
solution to a standard quadratic optimization problem, i.e.:

K(sr; A, b) � 1

2
sT

r Asr − bT sr . (11)

ŝr = arg min
sr

K(sr; A, b). (12)

The CG algorithm is a highly efficient optimization technique
that effectively explores the curvature of the objective function
in (11). By aligning the search directions with the eigenvectors
of the Hessian matrix A, the algorithm efficiently corrects the
unaccounted component of the previous search direction in
the iterative solution computation process [27]. This property
makes it a powerful tool for solving quadratic optimization
problems. Specifically, the CG algorithm generates a set of
L ≤ 2Nt search directions di ∈ R

2Nt , i ∈ {0, . . . , L − 1}, that
are A-orthogonal to each other, i.e., dT

i Ad j = 0, ∀i �= j. At
each iteration, the algorithm updates the current estimate of
the desired solution ŝr and calculates a new conjugate direc-
tion using a residual vector (or steepest descent direction)
denoted as ri. The algorithm starts by initializing ŝr to a
suitable value, sr,0, which can be chosen as 0 in the absence of
prior knowledge. The first conjugate direction d0 and residual
vector r0 are then initialized as follows:

d0 = r0 � b − Asr,0 (13)

The update equations at the i-th iteration (i = 0, 1, . . . , L − 1)
are given by:

αi = rT
i ri

dT
i Adi

, (14)

sr,i+1 = sr,i + αidi, (15)

ri+1 = ri − αiAdi, (16)

βi = rT
i+1ri+1

rT
i ri

, (17)

di+1 = ri+1 + βidi. (18)

The CG algorithm possesses the desirable property of guaran-
teed convergence, ensuring that the optimal solution to (12) is
found within a maximum of 2Nt iterations [27].

III. PRLCGNET DETECTION NETWORK DEVELOPMENT
We begin this section by providing an overview of LcgNet in
its original form and motivating the need for improvements.
Subsequently, we present the step-by-step integration of a
novel preconditioner to create PrLcgNet. We also elaborate on
the training process, explaining how the network’s parameters
are optimized. Finally, we conduct a comprehensive complex-
ity analysis to compare the computational requirements of
PrLcgNet with LcgNet.
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FIGURE 1. LcgNet i-th layer.

A. LCGNET
The CG detector’s complexity results from the multiple
matrix-vector multiplications and divisions needed to calcu-
late the scalar step-sizes αi and βi in (14)–(18). To reduce
detection complexity, the deep learning network proposed
in [16], termed LcgNet, offers an efficient alternative. In
LcgNet, the step-sizes are learned offline over a training set of
transmitted and received symbols, making them parameters
of the network and hence eliminating the need for their ex-
plicit calculations during detection. The LcgNet architecture
is based on the flow graph illustrated in Fig. 1, where each
CG algorithm iteration corresponds to a layer in LcgNet.

Two variants of LcgNet exist: LcgNetS and LcgNetV. In
LcgNetS, the learnable parameters of the network at layer i
are scalars, represented by θ(i) = {αi, βi}, while in LcgNetV,
these parameters are extended to vectors of size 2Nt , i.e.,
θ(i) = {αi,βi}. LcgNetV demonstrates superior performance
compared to LcgNetS across various channel models and
SNR levels [16]. Consequently, our analysis exclusively fo-
cuses on the performance enhancement of LcgNetV. The
computations performed by the ith layer of LcgNetV are de-
scribed by the following equations:

sr,i+1 = sr,i + αi � di (19)

ri+1 = ri − αi � (Adi ) (20)

di+1 = ri+1 + βi � di (21)

These recursions are employed for signal detection as well as
for training the model using backpropagation.

Although LcgNetV outperforms the CG detector on which
it is based, it still requires a large number of model parameters,
leading to extended training time and detection complexity.

B. THE PROPOSED PRLCGNET
Preconditioning is a powerful technique employed to enhance
the condition number of a matrix, leading to more efficient and
stable iterative solutions in a variety of problems [28]. Con-
sider a symmetric, positive semi-definite matrix M that serves
as an approximation to another matrix A, with the advantage

of being easier to invert. The solution to the linear equation
Asr = b can be obtained indirectly and more efficiently by
solving the preconditioned equation:(

M−1A
)

sr = M−1b. (22)

If κ (M−1A) � κ (A), where κ (·) denotes the condition num-
ber of its matrix argument, then iterative methods like the
CG algorithm can rapidly find the solution to (22) compared
to the original problem. However, directly applying the CG
algorithm to obtain the solution to the preconditioned equation
in (22) is not straightforward as M−1A is not necessarily
symmetric positive semi-definite. To address this problem,
the Cholesky decomposition of the preconditioning matrix,
M = EET , is used to transform Asr = b into the following
symmetric positive semi-definite form:(

E−1AE−T )
s̄r = E−1b. (23)

where s̄r � ET sr . The transformed matrix E−1AE−T has the
same eigenvalues as M−1A, but since it is symmetric, the CG
algorithm can be readily applied to find the solution to (23). In
practice, the Cholesky decomposition M = EET needs not be
explicitly computed (see [29], Chap. 12). In effect, the update
equations to solve problem (23) iteratively can be expressed
in terms of the untransformed variable sr . Specifically, at the
i-th iteration (i = 0, . . . , L − 1), we have:

αi = rT
i M−1ri

dT
i Adi

, (24)

sr,i+1 = sr,i + αidi, (25)

ri+1 = ri − αiAdi, (26)

βi = rT
i+1M−1ri+1

rT
i M−1ri

, (27)

di+1 = M−1ri+1 + βidi, (28)

where sr,0 = 0, r0 = b − Asr,0, and d0 = M−1r0.

We now introduce PrLcgNet. This network leverages the
unfolding of the preconditioned CG algorithm by incorporat-
ing the learning of augmented step-sizes in a manner similar to
LcgNetV, but with the integration of the preconditioner matrix
M in the updating of the search direction di at each layer. The
PrLcgNet algorithm for M-MIMO detection is shown in Algo-
rithm 1. It uses as main inputs the matrix A and vector b from
(10), along with a pre-computed inverse preconditioner matrix
M−1, and outputs the desired estimate sr of the transmitted
symbol vector.

We note that implementing PrLcgNet as described neces-
sitates the computation of the matrix multiplication M−1ri+1

at each layer or iteration. This matrix multiplication can po-
tentially result in substantial computational costs, contingent
on the choice of the preconditioner M. The simplest pre-
conditioner involves a diagonal matrix with diagonal entries
identical to those of A i.e., M−1 = D−1 where D = diag(A).
This approach is known as diagonal preconditioning or
Jacobi preconditioning. More sophisticated preconditioners
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Algorithm 1: PrLcgNet M-MIMO Detector.

have been proposed in the literature, including the Gauss-
Seidel, and Symmetric Successive Over-Relaxation (SSOR)
methods, among others. [30], [31], [32].

PrLcgNet, by integrating a preconditioner within its net-
work, can substantially enhance algorithm convergence. The
preconditioner improves the network’s ability to learn op-
timal parameters, resulting in lower residual error during
training and decreased online detection complexity. Notably,
PrLcgNet achieves comparable performance to LcgNet with
fewer layers, as will be shown in Section V.

C. TRAINING
During this phase, the network is provided with training data
consisting of inputs and labels, and its parameters are ad-
justed to provide the bet fit between the model outputs and
the labels. Consider a dataset of M training samples, D =
{y(m)

r , s(m)
r }M

m=1, where y(m)
r denotes the received signal vec-

tor corresponding to transmitted symbol vector s(m)
r . Let θ �

{θ(1), . . . , θ(L)} denote the complete set of learnable parame-
ters of the PrLcgNet detector, where L is the number of layers;
let �( · ; θ) : CNr → SNt represent the receiver mapping dic-
tated by these parameters; and let ŝ(m)

r (θ) � �(y(m)
r ; θ) denote

the output of PrLcgNet in response to y(m)
r . During the training

process, the received signal vectors y(m)
r serve as input to the

network, while the symbol vectors s(m)
r are used as labels. The

optimal parameters of the network are obtained by minimizing
a loss function, defined as the mean square error between the
network outputs and the labels:

L(θ) = 1

M

M∑
m=1

∥∥ŝ(m)
r (θ) − s(m)

r

∥∥2
. (29)

Following a similar approach to [16], the training dataset D
is generated by randomly selecting transmit symbols from the
symbol constellation to form the vectors s(m). Subsequently,
channel matrices H(m) and additive noise vectors n(m) are
obtained by sampling appropriate statistical distributions, and
the received signal vectors y(m) are obtained by applying the
noisy M-MIMO channel model (1). Subsequently, backprop-
agation based on gradient descent is employed to obtain the

optimal network parameters minimizing (28), as further dis-
cussed in Section V.

D. COMPLEXITY ANALYSIS OF PRLCGNET
Table 1 presents a comparison of the complexity between
the CG detector and the trained PrLcgNet and LcgNet. The
numbes of layers/iterations for the CG detector, LcgNet,
and PrLcgNet are denoted as L0, L1, and L2, respectively.
Firstly, for an equal number of layers/iterations,(L0 = L1 =
L2) the CG detector exhibits a higher complexity due to the
matrix-vector multiplication entering the computation of αi.
In contrast, both LcgNet and PrLcgNet are designed in a man-
ner that obviates this requirement, since αi and βi are already
learned parameters integrated into the network architecture.
We note that our work predominantly utilizes Jacobi pre-
conditioning. Consequently, when we compare LcgNet and
PrLcgNet under the same number of layers/iterations, they ex-
hibit equivalent complexities. As shown in Section V, opting
for L2 < L1 offers a good performance-complexity trade-off,
since PrLcgNet can still achieve similar or better performance
as LcgNet in terms of average training Normalized Mean
Square Error (NMSE) and SER. The implication is a notable
reduction in detection complexity making PrLcgNet an effi-
cient alternative while maintaining competitive performance.

IV. DYCOGNET: EXTENDING PRLCGNET TO DYNAMIC
WIRELESS ENVIRONMENTS
In this section, we introduce DyCoGNet, an extension of
the PrLcgNet detector specifically designed to overcome
the challenges posed by non-stationary radio environments.
Distinctively, DyCoGNet leverages the principles of FEC-
aided self-supervised learning alongside the integration of
meta-learning, to achieve rapid and effective adaptation of
model parameters. We first present the time-varying M-
MIMO block-fading channel model of interest, laying the
foundation for understanding the challenges of learning-based
symbol detection in such environments. Next, we delve into
online training using self-supervised learning and explain how
it can be leveraged to achieve autonomous adaptation using
training data generated from the FEC process. We then un-
wraps the inner workings of meta-learning and conceive a
novel approach for enabling rapid adjustment of the network
model by learning optimal parameter initializations. Lastly,
we summarize the resulting DyCoGNet algorithm and present
an analysis of its computational complexity.

A. BLOCK-FADING CHANNEL MODEL AND PROBLEM
FORMULATION
We now extend the system model (1) and consider a more
general time-varying block-fading M-MIMO channel. The
channel’s input-output relation within a normalized coherence
interval of integer duration T , referred to as a block,2 can be

2Formally, we define T � �TC/TS�, where TC and TS respectively denote
the coherence time and symbol duration (in seconds), and �·� denotes the
floor function.
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TABLE 1. Complexity of the CG Based Detectors

FIGURE 2. Allocation of pilot and data blocks over consecutive coherence
intervals for block-fading channel model.

compactly written in matrix notation as follows [33]:

Y j = H jS j + N j (30)

where j ∈ N+ is the block index, Y j = [y j1, . . . , y jT ] ∈
C

Nr×T contains the signal vectors received at the Nr BS an-
tennas, H j ∈ C

Nr×Nt is the channel propagation matrix, S j =
[s j1, . . . , s jT ] ∈ SNt ×T contains the symbol vectors transmit-
ted from the Nt user antennas, and N j ∈ C

Nr×T is an additive
noise term.

The system model presented in (30) describes a channel
with block-wise variations, i.e., changes between succes-
sive values of the block index j, which can be attributed
to the dynamical nature of typical wireless communication
environments. For the purpose of applying learning-based
methods to symbol detection over time-varying channels, we
proceed as in [34] and consider the scenario illustrated in
Fig. 2, where a total of Tp pilot blocks and Td data blocks
are transmitted sequentially. The blocks indexed j ∈ Tp �
{1, . . . , Tp} represent pilot signals known at the receiver and
employed for training the DNN-based symbol detector, while
blocks indexed j ∈ Td � {Tp + 1, . . . , Tp + Td } represent un-
known data blocks. The data blocks are encoded using FEC,
enabling the receiver to detect and correct errors in the decod-
ing phase.

Learning-based symbol detectors such as PrLcgNet typi-
cally assume that the training and testing data are obtained
based on channel realizations randomly drawn from a fixed,
consistent distribution. Nevertheless, owing to the dynamic
nature of radio channel distributions, deploying this type
of detector in real-world scenarios encounters several chal-
lenges. Indeed, to ensure model generality, the training must

encompass a wide range of channel distributions, necessitat-
ing in turn a large number of model parameters to effectively
capture this variability. Furthermore, the performance of the
trained detector may degrade significantly in the face of radio
conditions not previously encountered or well represented by
the training data. Our primary objective, therefore, is to con-
ceive an “adaptive” training algorithm that allows PrLcgNet to
accurately recover the transmitted data blocks {S j} j∈Td from
the received signal blocks {Y j} j∈Td over a time-varying M-
MIMO channel, by expanding the available joint knowledge
of the transmitted and received pilot blocks, i.e., {S j, Y j} j∈Tp .

Specifically, we would like to design an improved training
mechanism whereby the learnable parameters of PrLcgNet are
optimally adjusted on-line to achieve a low estimation error
for each data block, taking into account underlying changes in
the M-MIMO channel. As in Section III-C, let θ = {αl ,βl}L

l=1
denote the learnable parameters of the PrLcgNet detector
and let �( · ; θ) represent the corresponding receiver map-
ping. Also let ŝ ji(θ) � �(y ji; θ) denote the detector output
corresponding to received signal vector y ji and let Ŝ j (θ) =
[ŝ j1(θ), . . . , ŝ jT (θ)]. Ideally, the optimal parameters θ j for the
j-th block would be obtained as:

θ j = arg min
θ

1

T

∥∥Ŝ j (θ) − S j
∥∥2

F , j ∈ Td . (31)

However, the transmitted symbol blocks S j are a priori un-
known at the receiver and it is therefore not possible to carry
out the above optimization. Adapting PrLcgNet parameters to
maintain low SER in the face of changing channels therefore
poses a significant challenge.

B. SELF-SUPERVISED LEARNING FOR AUTONOMOUS
ADAPTATION
Inspired by the approach in [18], we leverage FEC to im-
plement self-supervised learning. In this approach, error
correction is employed at the receiver to generate additional
training data during the detection phase, following the initial
training phase. The use of pilot-free online training enables
the receiver to dynamically adjust its model parameters and
track channel variations, thereby handling outdated informa-
tion.

The operation of our proposed self-supervised learning ap-
proach relies on the following block dependent loss function:

L j (θ) � 1

T
‖Ŝ j (θ) − S̄ j‖2

F , j ∈ Tp ∪ Td (32)
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where S̄ j represents the label matrix at the j-th block. This
loss function applies during both the training phase using
pilot blocks and the detection phase using data blocks, with
different choices of label matrix as will be explained shortly.
We let θ j denote the model parameter values optimizing the
above loss function, i.e.:

θ j = arg minθL j (θ) (33)

An approximate solution to (33) can be obtained via gradient-
based optimization with a designated learning rate denoted as
μ > 0, yielding the iterative update equation:

θ
(t )
j = θ

(t−1)
j − μ∇θL j

(
θ

(t−1)
j

)
. (34)

Here t = 1, . . . , Iθ represents the iteration index, while the
total number of iterations is designated as Iθ .

During pilot transmission (i.e., for j ∈ Tp), we set S̄ j = S j

to adjust the detector parameters. This is possible since S j is
known at the receiver during the training phase. The (near)
optimal parameter values θ j obtained after Iθ iterations of the
gradient-based update (34), will be used as initial condition
for the next block’s iterations.

During data transmission (i.e., for j ∈ Td ), the PrLcgNet
receiver utilizes the currently received signal block Y j and the
model parameters from the previous block θ j−1 to obtain an
estimate of transmitted symbol vectors for the current block,
denoted as Ŝ j (θ j−1). This estimate is then passed through a
FEC decoder to recover the original uncoded message bits
from the transmitter side, represented by W j . We assume that
the decoder provides a confidence score about the accuracy
of its error detection and correction operation.3 Depending on
this confidence level (i.e., whether or not it exceeds a preset
threshold), one of two possibilities arises:
� If the receiver is confident in the decoded message W j ,

the later is re-encoded to form the transmitted data block
S j . This re-encoded data is then used along with the
received signal block Y j as the training data to update
the model parameters in the current block. That is, we
set S̄ j = S j as the label matrix in (32) and then carry on
the optimization of L j (θ) as per (33)–(34).

� If the receiver is not confident, the model parameters
remain unchanged in the current block, i.e., θ j = θ j−1

Performing gradient steps as outlined in (34) requires an
initial value η j � θ

(0)
j , a hyperparameter intrinsically tied to

the training process. Until now, and as posited in [18], it has
been assumed that η j = θ j−1, based on the assumption of
a relatively smooth variation of the channel across blocks,
implying that a detector trained on data from the ( j − 1)-th
block is reasonably effective in detecting data from the j-th
block. However, this presumption falls short when grappling
with rapidly changing channels, where substantial shifts in the
channel’s characteristics can occur from one block to the next.

3For instance, in the case of Reed-Solomon codes employed in this work,
such a measure of the confidence is provided by the normalized Hamming
distance between the re-encoded bits and those obtained from the hard deci-
sion output of the detector, following a similar approach as in [18], [34].

Herein, we use meta-learning [35] to tackle this issue in the
determination of η j , as explained below.

C. META-LEARNING FOR FAST ADAPTATION
Inspired by the framework proposed in [34], we introduce
a meta-learning strategy aimed at accelerating the adapta-
tion process of the detector under rapidly varying channel
conditions. Our approach utilizes long-term channel variation
trends, represented by pairs (Y j, S̄ j ) dynamically stored in a
fixed-size heap-based buffer, to derive optimal initializations
η j , enabling quicker adaptation. Specifically, the content of
the buffer at the j-th frame, denoted by B j , is updated on a
first-in-first-out basis as follows:
� If j ∈ Tp, or if j ∈ Td and the detection is successful, the

pair (Y j, S̄ j ) is inserted as a new element of the buffer,
as represented by B j = B j−1 � (Y j, S̄ j ).

� If j ∈ Td but the detection is not successful, the content
of the buffer is not modified, i.e., B j = B j−1.

Following the principles of support and query tasks as out-
lined in [35], meta-learning involves the selection of a subset
of training data from B j , consisting of all pairs (Yk, S̄k ),
such that (Yk−1, S̄k−1) also belongs to B j . For convenience,
we let 	 j = {k | (Yk−1, S̄k−1) and (Yk, S̄k ) ∈ B j} denote the
corresponding set of indices. In this setup, the support task
involves estimating a transmitted symbol block Sk−1 for every
k ∈ 	 j , while the query task focuses on the estimation of the
subsequent block Sk .

To explain how meta-learning can generate an initial value
η j = θ

(0)
j for (34), let us temporarily denote the learnable

model parameters4 by η. In the support task, the symbol es-
timate from the PrLcgNet output Ŝk−1(η) is used to compute
the loss Lk−1(η) using (32). A single gradient descent step
yields:

χk (η) � η − δ∇ηLk−1(η), (35)

where δ > 0 denotes the step-size. These updated model pa-
rameters are then used for obtaining Ŝk (χk (η)) in the query
task. This process is repeated for all block indices k ∈ 	 j .
The primary objective is to minimize the meta-learning loss
function which is defined as follows:

L̃ j (η) �
∑
k∈	 j

Lk (χk (η)). (36)

Finally, η j is obtained as the model parameters optimizing the
above loss function, i.e.:

η j = arg min
η

L̃ j (η). (37)

Similar to Section IV-B, the solution to (37) is approximated
through gradient-based optimization with a specified learning

4Both θ and η represent possible values of the model parameters, defined
over the search space R

4Nt L . We use the two variables to better differ-
entiate between the search processes used for symbol detection and for
meta-learning.
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FIGURE 3. Meta-training process to obtain initialization hyperparameter η j .

rate ν > 0, leading to the iterative update:

η
(t )
j = η

(t−1)
j − ν∇ηL̃

(
η

(t−1)
j

)
(38)

where t = 1, . . . , Iη indicates the iteration index, and Iη is
the total number of iterations. The meta-learning optimiza-
tion process for hyperparameter η j is illustrated in Fig. 3
where for convenience, we set 	 j = {k1, k2, . . . , kB} and drop
the reliance on the iteration index t for the gradient based
optimization (38). This meta-learning hyperparameter opti-
mization is performed at the receiver after every F received
signal blocks. A smaller F results in more frequent updates,
thereby enhancing the accuracy of the parameters. However,
this comes at the expense of increased computational com-
plexity.

The amalgamation of self-supervised online learning and
meta-learning with the PrLcgNet detector, initially crafted
for stationary environments, culminates in the creation of
DyCoGNet. DyCoGNet fundamentally extends PrLcgNet’s
capabilities to accommodate evolving channel conditions. The
mechanics of this adaptive process are concisely encapsulated
in Algorithm 2.

D. COMPLEXITY ANALYSIS OF DYCOGNET
As discussed in Section III-D, the detection process com-
plexity of DyCoGNet, which incorporates PrLcgNet as its
base detector, is O(LN2

t ). It is crucial, however, to also con-
sider the additional complexity introduced by the adaptive
mechanisms of DyCoGNet. This assessment must include the
computational overhead associated with pilot training, self-
supervised online learning, and meta-learning. Within this
adaptive framework, both pilot training and self-supervised
online learning involve Iθ iterations per block. The computa-
tional burden for each iteration of gradient descent depends on

the forward and backward passes through the network and the
block size. Specifically, for a block size of T , the complexity
per gradient descent iteration is approximately O(LN2

t T ).
Moreover, DyCoGNet conducts optimization of its initializa-
tion hyperparameters over Iη learning iterations, scheduled
periodically every F blocks. As a result, meta-learning ef-
fectively averages Iη/F iterations per block. Although this
approach does increase the computational load by adding
an average of Iη/F gradient computations per block, it po-
tentially reduces the total number of required gradient steps
compared to a purely online training regimen. This reduction
is primarily attributed to the enhanced convergence speed of
online training driven by meta-learning techniques.

V. NUMERICAL RESULTS
In this section, we present the numerical results of our pro-
posed M-MIMO detectors, PrLcgNet for stationary settings
and its extension DyCoGNet, for non-stationary settings. We
begin by outlining the proposed detectors parameters and de-
tailing channel parameters for both scenarios. For stationary
scenarios, we explore PrLcgNet’s convergence behavior and
analyze its SER performance in comparison with established
baseline detectors. For non-stationary M-MIMO scenarios,
we evaluate the SER performance of DyCoGNet, bench-
marking it against baseline detectors. Finally, we assess the
robustness of DyCoGNet in scenarios with imperfect Channel
State Information (CSI) at the receiver

A. EXPERIMENTAL SETUP
In our investigation, we consider a narrow-band M-MIMO
system with Nt = 32 transmit antennas and Nr = 64 receive
antennas, utilizing a 4-QAM modulation scheme. In station-
ary settings, perfect CSI knowledge is assumed at the receiver.
In non-stationary settings, perfect CSI is assumed during the
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Algorithm 2: DyCoGNet Adaptation on Block.

pilot transmission phase only; the receiver then uses the chan-
nel estimate obtained from the last pilot block during the data
detection phase. That is, we do not assume real-time access to
the actual channel matrices in the detection phase.

In stationary settings, we explore two primary models for
the channel matrix H. The first model employs uncorrelated
Rayleigh fading, i.e., the entries of H are generated as in-
dependent and identically distributed (IID) random variables.
The second model utilizes spatially correlated Rayleigh fading
which is simulated using the widely recognized Kronecker
product formulation [36]:

H = R
1
2
r UR

1
2
t . (39)

Here, the entries of matrix U ∈ C
Nr×Nt are IID Rayleigh

variables, while Rr ∈ C
Nr×Nr and Rt ∈ C

Nt ×Nt represent the
spatial correlation matrices at the receiver and transmitter,
respectively. The entries of these matrices are obtained from

the following exponential model [37]:

ri j =
{

pj−i, if i ≤ j
r ji, if i > j

(40)

where ρ is the correlation coefficient and |ρ| < 1. In this
work, ρ is set to be 0.5.

For the dynamic time-varying setting, we explore two
different scenarios. Firstly, the Gauss-Markov block fading
channel model [38] is utilized where the channel vector hk ( j)
from user k to the base station in block j is governed by:

hk ( j) = αhk ( j − 1) +
√

1 − α2R1/2
k nk ( j), k = 1, . . . , Nt

(41)
Here, the parameter α = J0(2π fd TC ), where J0(·) signifies
the zeroth order Bessel function of the first kind, plays a key
role in determining the channel’s temporal correlation coeffi-
cient. Specifically, fd corresponds to the maximum Doppler
frequency, while TC signifies the coherence time. Further-
more, Rk denotes the spatial correlation matrix for user k, and
nk ( j) ∼ CN (0, INr ) is the channel additive noise. Secondly,
our exploration extends to examining channels generated ac-
cording to the TDL-A MIMO channel model from the 3GPP
TR 38.901 standard [23].

For all experiments performed in the time-varying setting,
we set the number of gradient descent iterations as Iθ = Iη =
100, the learning rates μ = ν = δ = 10−3, the heap-based
buffer size is set to 5, and the meta-learning interval is set
to F = 5. Following [34], online self-supervised training is
only used when the normalized Hamming distance between
the re-encoded bits and those obtained from the hard decision
output of the detector is less than a threshold of 0.02.

We assess detector performance using two key metrics:
the SER and the average NMSE, the latter being expressed
mathematically as:

NMSE = E{‖ŝ − s‖2}
E{‖s‖2} . (42)

These metrics are evaluated for different values of system
parameters as a function of the M-MIMO transmission SNR,
defined as:

SNR = E{‖Hs‖2}
E{‖n‖2} = γ

σ 2
n Nr

. (43)

B. STATIONARY CHANNEL RESULTS
We begin by comparing the convergence behavior of LcgNet
and PrLcgNet offering insights into their effectiveness.
Specifically, in Fig. 4, we plot the average NMSE of these
detectors over the training dataset as the number of layers
increases, and this for different SNR levels. For reference
we also show the average NMSE of the CG and LMMSE
detectors5 At an SNR of 30 dB in Fig. 4(a), PrLcgNet achieves
an average NMSE of −31dB with only 7 layers, while LcgNet

5For the CG detector, the number of layers corresponds to the iteration
number while for LMMSE, there is no iteration or layer involved and, ac-
cordingly, the error level is constant.

VOLUME 5, 2024 801



OLUTAYO AND CHAMPAGNE: DYNAMIC CONJUGATE GRADIENT UNFOLDING FOR SYMBOL DETECTION IN TIME-VARYING MASSIVE MIMO

FIGURE 4. Average NMSE vs. layers at different SNRs.

FIGURE 5. CDF of the eigenvalue spread of the filter matrix and
preconditioned filter matrix (SNR = 30 dB).

requires 13 layers to achieve similar results. Similarly, at
20 dB Fig. 4(b), PrLcgNet demonstrates an average NMSE
of −23dB with 7 layers, whereas LcgNet requires 15 layers
for comparable performance. Lower SNR levels of 10 dB
and 5 dB presented in Fig. 4(c) and (d), further establish
PrLcgNet’s superiority, as it attains lower average NMSE
values with fewer layers. In Fig. 5, we present the Cumulative
Distribution Function (CDF) of the eigenvalue distribution for
both the original filter matrix A used in LcgNet and the pre-
conditioned filter matrix M−1A used in PrLcgNet. It is evident
that the eigenvalues of the preconditioned matrix are more
clustered compared to those of the original filter matrix. This
is consistent with the observation of improved convergence
behavior in PrLcgNet compared to LcgNet.

Next, we assess the SER performance of PrLcgNet, com-
paring it with several other detectors for reference. The
detectors under evaluation include:

� PrLcgNet: 10-layer PrLcgNet model.
� LcgNet: 10-layer LcgNet model.
� CG: 10-iteration CG algorithm.
� LMMSE: LMMSE detector as described in (5).
� DetNet I: 10-layer DetNet [14] model with similar per-

layer detection complexity as PrLcgNet.
� DetNet II: 10-layer DetNet model with the per-layer

complexity outlined in [14].
� OAMPNET: 1-layer OAMPNet model [15].
We present the resulting SER curves in Fig. 6, covering

a range of SNR levels. Notably, PrLcgNet consistently per-
forms on par with the LMMSE detector while requiring lower
computational complexity. We also note that both LcgNet and
PrLcgNet outperform a 10-iteration CG detector which shares
a similar order of complexity.

Comparing PrLcgNet with DetNet, the results show that
at equal per-layer detection complexity, PrLcgNet (and all
the other considered detectors) significantly outperforms the
DetNet-I detector, which employs a considerably larger pa-
rameter count of 62,890, in contrast to PrLcgNet’s 640
parameters. Enhancing DetNet to its original detection com-
plexity, i.e., DetNet II, does result in a performance boost,
albeit at a cost of increased complexity, approximately four-
fold that of PrLcgNet, alongside a substantial parameter count
of 986,890. At low to moderate SNR, DetNet II exhibits
superior performance in both uncorrelated and correlated sce-
narios; however, with increasing SNR levels, its performance
levels off and the situation reverses. Regarding OAMPNet,
which employs fewer parameters than the other detectors (2
per layer), its performance depends on the level of spatial
correlation: in the case of uncorrelated fading as shown in
Fig. 6(a), it is surpassed by all other detectors (except Det-
Net I), while in correlated scenarios in Fig. 6(b), it achieves
the best performance. However, this advantage comes at the
cost of a significant increase in complexity. Specifically, the
required matrix inversion per layer in OAMPNet incurs a
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FIGURE 6. SER vs. SNR for various detectors under different stationary channel conditions.

FIGURE 7. SER vs. SNR for Gauss-Markov block fading scenario.

computational cost of O(N3
r ), which becomes prohibitive for

M-MIMO systems where Nr is typically very large.

C. NON-STATIONARY CHANNEL RESULTS
Next, we assess the SER performance of DyCoGNet in
non-staationary channel scenarios, comparing it with other de-
tectors for reference. The detectors under evaluation include:
� LMMSE: LMMSE detector as described in (5).
� PrLcgNet: 10-layer PrLcgNet model trained exclusively

on pilot data before initiating data detection.
� PrLcgNet+: 10-layer PrLcgNet model which integrates

online self-supervised learning.
� LcgNet: 10-layer LcgNet model trained exclusively on

pilot data before initiating data detection.
� LcgNet+: 10-layer LcgNet model that incorporates on-

line self-supervised learning.
� DyCoGNet: 10-layer PrLcgNet model, combining both

online self-supervised learning and meta-learning.

� MMNet: 10-layer MMNet model [17] trained exclu-
sively on pilot data before initiating data detection.

1) GAUSS-MARKOV BLOCK FADING CHANNEL
We configure the simulations with Tp = 16 pilot blocks and
Td = 50 data blocks, with a block length of T = 209 symbols.
In effect, this corresponds to uses 330 message bits encoded
through a Reed-Solomon (RS) [19,15] encoder for each of
the Nt antennas. Two user speeds, 30 km/h and 60 km/h, are
considered, along with a center frequency of 5 GHz.

Fig. 7(a) and (b) provide comparisons of average SER
performance under time-varying channel conditions over 10
trial runs for user speeds 30 km/h and 60 km/h respec-
tively. At lower speed in Fig. 7(a), it is observed that
DyCoGNet exhibits superior performance. The advantage
of meta-learning is evident as DyCoGNet surpasses PrL-
cgNet+, which lacks this component. PrLcgNet+ shows an
advantage over LcgNet+, underscoring the effectiveness of its
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FIGURE 8. SER vs. SNR for TDL-A channel scenario for different maximum Doppler spreads.

preconditioning approach. Both models perform better than
their counterparts that train only on pilot signals, empha-
sizing the benefits of online self-supervised learning. The
LMMSE detector, while slightly superior to both PrLcgNet
and LcgNet, shows a diminishing performance advantage as
SNR increases. MMNet, despite its large parameter count
(41,600 compared to DyCoGNet’s 640), is the least perform-
ing detector due to its lack of adaptation to changing channel
conditions in the data transmission phase, as it relies solely
on information from outdated pilot signals. At a higher speed
in Fig. 7(b), all detectors experience a significant drop in
SER performance due to more substantial channel variation.
Nonetheless, similar performance trends persist as detectors
incorporating self-supervised online learning still maintain su-
perior performance compared to those that do not, effectively
handling outdated channel information through pilot free on-
line re-training.

2) M-MIMO TDL-A CHANNEL
For this scenario, we set Tp = 15 pilot blocks and Td = 45
data blocks, with each block comprising T = 114 symbols
equivalent to 180 message bits encoded via a RS [19,15]
encoder for each antenna. The delay spread is set to 30 ns,
and we explore two distinct mobility scenarios: a low-mobility
scenario corresponding to a maximum Doppler spread fD =
10 Hz and a high-mobility scenario with fD = 20 Hz.

In Fig. 8(a), where fD = 10 Hz, DyCoGNet consistently
outperforms all other detectors. Significant performance im-
provements are evident for both LcgNet+ and PrLcgNet+
when compared to their base detectors without self-supervised
online adaptation. MMNet shows the poorest performance
among all compared detectors for reasons explained above.

Moving to the high-mobility scenario characterized by
fD = 20 Hz, the overall performance trend remains largely
consistent, with DyCoGNet outperforming all other detec-
tors. However, there is a significant degradation in the overall

performance of detectors due to the rapid obsolescence of
channel information. Interestingly, we observe an error floor,
reminiscent of the effects observed in differential phase shift
keying systems in high Doppler scenarios [39, Chapter 6].
We also note that in these and several other experiments with
different rates of channel variations, characterized by different
fD values, conventional methods such as LMMSE were not
observed to outperform the online learning-based methods at
any point.

Table 2 provides a detailed comparison of computational
complexities for all detectors, considering training, testing,
and (where applicable) online-adaptation (where applicable),
in terms of key system parameters. From the table, it can be
observed that the DyCoGNet detector incurs an additional
cost of Iη/F iterations per block in its online adaptation
phase due to the meta-learning component. However, due
to obtaining good initializations for the training phase via
meta-learning, the overall number of training iterations can
potentially be reduced. Another point to note is that the MM-
Net has a training and testing complexity that is quadratic in
Nr which can be prohibitive in M-MIMO systems where Nr is
typically very large.

Table 3 provides a comparison of the average training and
testing runtimes for the detectors under consideration. No-
tably, MMNet incurs the largest training and testing times
due to its relatively large parameter count. DyCoGNet has a
per-iteration training time that is larger than that of PrLcgNet+
and LcgNet+ due to the meta-learning component, however
this gap can be reduced by reducing the frequency of meta-
learning albeit at the cost of reduced SER performance. The
simulations were conducted using an Intel Xeon Processor
running at 2.20 GHz and 12 GB RAM.

D. IMPERFECT CSI
Finally, we assess the robustness of DyCoGNet under con-
ditions of imperfect CSI. In typical wireless communication
systems, the receiver generally operates with imperfect CSI
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TABLE 2. Detector Complexity in Non-Stationary Scenarios per Block

TABLE 3. Average Training and Testing Runtimes of Detectors per Block of
100 Symbols

FIGURE 9. SER vs. SNRH for Gauss-Markov block fading scenario with
imperfect CSI.

and must rely on estimated channel matrices, which inherently
include errors. To simulate the effects of imperfect CSI on
detector performance, we hence introduce an additive error
term to the true M-MIMO channel matrix, mathematically
represented as:

H̃ = H + E (44)

where H̃ denotes the noisy estimate of the actual channel
matrix H, and E ∼ CN (0, σ 2

e I) represents the estimation er-
ror. We quantify the quality of channel estimation using the
following M-MIMO channel estimation SNR:

SNRH = E
[‖H‖2

F

]
E

[‖E‖2
F

] . (45)

The SER performance of the various detectors under study
as a function of SNRH is illustrated in Fig. 9. Here, the Gauss-
Markov fading scenario is assumed with the same parameter
settings as in Fig. 7(a) and the transmission SNR (43) set
to 12 dB. As can be seen from Fig. 9, there is a general
degradation in the SER performance of all detectors as the size
of the estimation errors increases, corresponding to a decrease
in the SNRH metric. Nevertheless, DyCoGNet consistently
outperforms the other benchmark detectors over a wide range
of SNRH.

VI. CONCLUSION
In this study, we addressed the challenge of symbol detec-
tion in time-varying M-MIMO systems. While learning-based
methods have shown promise in stationary scenarios, their
adaptation to non-stationary conditions has remained a signif-
icant challenge due to the need for parameter adaptation. To
overcome this challenge, we introduced a series of innovations
building upon the foundation of the LcgNet M-MIMO detec-
tor. First we introduced PrLcgNet, an enhancement of LcgNet
achieved by incorporating a preconditioner in the LcgNet ar-
chitecture. This addition not only improved convergence but
also reduced complexity, all while maintaining performance
superiority over LcgNet, as confirmed through extensive
simulations. Subsequently, we introduced DyCoGNet, an ex-
tension of PrLcgNet purpose-built for time-varying M-MIMO
scenarios. DyCoGNet uses FEC-aided self-supervised learn-
ing for autonomous adaptation. Furthermore, it leverages
meta-learning to enable swift adaption to time-varying chan-
nel conditions. Our simulations demonstrated that PrLcgNet
achieved faster convergence and comparable performance to
LcgNet in stationary scenarios and DyCoGNet, its extension
for dynamic contexts, significantly improved SER perfor-
mance compared to baseline methods without meta-learning
and online self-supervised learning.
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