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ABSTRACT Audio-visual emotion recognition (AVER) has been an important research area in human-
computer interaction (HCI). Traditionally, audio-visual emotional datasets and corresponding models derive
their ground truths from annotations obtained by raters after watching the audio-visual stimuli. This
conventional method, however, neglects the nuanced human perception of emotional states, which varies
when annotations are made under different emotional stimuli conditions—whether through unimodal or
multimodal stimuli. This study investigates the potential for enhanced AVER system performance by
integrating diverse levels of annotation stimuli, reflective of varying perceptual evaluations. We propose
a two-stage training method to train models with the labels elicited by audio-only, face-only, and audio-
visual stimuli. Our approach utilizes different levels of annotation stimuli according to which modality is
present within different layers of the model, effectively modeling annotation at the unimodal and multi-
modal levels to capture the full scope of emotion perception across unimodal and multimodal contexts.
We conduct the experiments and evaluate the models on the CREMA-D emotion database. The proposed
methods achieved the best performances in macro-/weighted-F1 scores. Additionally, we measure the
model calibration, performance bias, and fairness metrics considering the age, gender, and race of the
AVER systems.

INDEX TERMS multimodal learning, emotion recognition, audio-visual sentiment analysis, affective
computing, emotion analysis, multi-label classification

I. INTRODUCTION

UDIO-VISUAL Emotion Recognition (AVER) is inte-

gral to human-computer interaction (HCI). AVER is
a technology that identifies human emotions by analyzing
expressive signals within audio and visual channels [I1].
AVER relies on audiovisual data annotated by humans to
provide perceptual evaluations that describe perceived emo-
tions. Video clips comprise audio and visual components,
and it is standard to obtain from the video separate audio
and visual streams, then employ a unified ground truth label
for training the model based on the annotators’ combined
audio-visual perception [2|—[4]]. However, human perception
of emotions can vary when the modality of the emotional

stimulus changes [5]—for example, when data contains only
voice signals without corresponding visual cues, or vice
versa. Furthermore, the emotional information conveyed in
speech and facial features is different, so it is not clear
that the audio-visual label is appropriate to describe the
information individually conveyed in these modalities. This
study seeks to explore whether a combination of labels
derived from voice-only, face-only, and audio-visual stimuli
can enhance the performances of the AVER systems.

In the field of AVER, studies have adopted methods that
leverage audio-visual signals through distinct processing lay-
ers. These models typically process audio-only and visual-
only inputs in isolation, followed by their integration using
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some different fusion techniques such as feature-level [6],
[7], decision-level [8]], [9ll, or model-level integration [10],
[L1]. We hypothesize that models may exhibit improved
learning when the audio-only and visual-only layers are
trained with a combination of labels derived from audio-only
and audio-visual stimuli for acoustic layers and video-only
and audio-visual stimuli for visual layers. This hypothesis
aligns with the premise that multimodal systems should
incorporate distinct cues from heterogeneous dimensions
and shared spaces [12], acknowledging that while modality
fusion can amplify signals, it should not overlook the unique
characteristics inherent to each modality [13]].

We propose a two-stage training strategy to incorporate
audio-only, video-only and audio-visual labels. In the initial
stage, the model is trained with separate audio and visual in-
puts using labels generated from the corresponding unimodal
stimuli, along with separate unimodal layers that incorporate
audio-visual stimuli. In the second stage, we fix the weights
of the models from the first stage and introduce additional
layers to process the outputs from these models. Training
continues with labels derived from audio-visual stimuli to
enable our model to integrate information from both audio
and visual channels within our shared layers.

In this study, alongside examining the proposed method-
ology, we conduct an ablation study by training models
with either audio-only or video-only inputs, using labels
derived from audio-only, video-only, or audio-visual stimuli.
For the audio input encoding, we employ the WavLM
Large model, which has demonstrated superior performance
in emotion recognition tasks according to the SUPERB
leaderboard [14]. For the visual input encoding, we select the
Mobilenetv?2 [[15]] as the primary backbone. Our experiments
are carried out on the CREMA-D emotion dataset [16],
which is the only corpus that includes emotional annotations
based on voice-only, face-only, and audio-visual stimulus
modalities. The CREMA-D dataset also provides demo-
graphic characteristics of the speakers, such as gender, age,
and race, enabling us to assess performance bias and fairness
within AVER systems. Additionally, we examine the model’s
calibration level. The contributions and findings of this work
are listed as follows:

e A training strategy for AVER systems with a mixture of
unimodal and audio-visual-rated labels, which achieves
better recognition rates and model calibration.

e The paper extensively evaluate AVER model calibra-
tion, performance bias, and fairness across demograph-
ics

e The proposed approach has higher recognition rates,
when we evaluate the performance using a multi-
label formulation to accommodate the co-occurrence of
emotions.

Il. Related Work and Background

A. Impact of Auditory and Visual Modalities

Emotional cues can be conveyed via various modalities,
such as voice and facial expressions. The information is not
conveyed the same across modalities, since each modality
provides a unique perspective in the expression of emotions.
Therefore, it is expected that the perceived emotion will vary
depending on the available modality. Paulmann et al. [5]
revealed that humans have different emotional perceptions
depending on stimulus (e.g., audio, video). Humans have
higher recognition of decoding emotions from multi-modal
emotional stimuli than the uni-modal stimuli (e.g., voice-only
or face-only). Rigoulot et al. [[17] conducted experiments
to analyze the effects of vocal cues on facial expression.
Focusing on four basic emotions (fear, anger, happiness, and
a neutral state), the authors found that the presence of both
acoustic and visual cues offers supplementary guidance for
decoding emotional cues in facial expressions. Among the
four emotions considered in this study, this phenomenon was
notably more pronounced in the processing of fear, indicating
that acoustic channels significantly enhance the interpretation
of emotional cues in facial expressions. Yu et al. [18]] worked
on exploring different levels of modality cues by auto-
generating unimodal labels and using a multi-task approach
to train their model. The above studies indicate differences
in the perception of emotion depending on the particular
modality that is available. Using multimodal data can also
provide richer training information, which can help mitigate
challenges related to data limitations [19]]. Hence, we aim to
utilize the labels perceived by humans from unimodal and
multimodal-based stimuli for training an AVER system. We
expect that AVER systems using these labels can achieve
better performance in recognizing emotions from audio-
visual data.

B. Multi-label Emotion Recognition

Emotion perception is naturally subjective because of differ-
ent emotional experiences, cultures, and gender. It is com-
mon to see disagreement among raters when they are elicited
by the same emotional stimulus. Most previous computa-
tional studies about emotion recognition regard disagreement
as noise and define the emotion recognition task as a single-
label task. However, the emerging semantic space theory
[20] concluded that emotion perception is high-dimensional,
and blended after collecting self-reports to describe emotion
perception elicited by emotional images, face videos, audio,
music, and speech. Therefore, we summarize prior works
that formulate emotion recognition as a multi-label task,
highlighting the varied methodologies adopted to address
discrepancies in emotional annotations.

1) Facial Expression Recognition
Previous studies [21]], [22] have demonstrated that a single
facial expression can simultaneously convey multiple emo-
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tions. To accommodate this complex phenomenon, previous
study transformed traditional categorical labels into distri-
butional labels. By employing distributional label learning
techniques [23]], they trained facial expression recognition
systems to interpret these nuanced labels. This approach
allows for the representation of multiple emotions within
a single dataset entry, capturing both predominant and
minor emotions through the distributional labels. Unlike
conventional methods that rely on single labels, this distri-
butional labeling strategy effectively captures the complexity
of mixed emotions.

2) Speech Emotion Recognition

Most prior research on speech emotion recognition (SER)
treats this problem as a single-label task, often excluding
data samples lacking consensus labels. The approaches use
techniques such as plurality [24]] or majority voting [25] to
define an emotional state. However, studies [26]—[28]] have
demonstrated that utilizing distributional labels (also known
as soft labels) during the model training stage can improve
the performance of SER systems on single-label test sets.
Riera et al. [29] argued against removing any data from
the test set to accurately assess the real-world performance
of SER systems. Furthermore, Chou et al. [[30] proposed
considering all emotional ratings to compute distributional
labels based on the frequency of each emotion. Assuming
that multiple raters annotated a file, they introduce a thresh-
old to convert the distributional predictions of the system
into binary decisions.

3) Audio-Visual Emotion Recognition

In the field of AVER, the most common approach in prior
studies [31]], [32] has been to treat disagreements among
raters as noise, opting for aggregation rules to establish a
consensus emotion as the ground truth. In this work, we
adopt a broader definition of emotional states and investigate
the presence of multiple emotional states within a single
data sample. To model this complexity, we draw inspiration
from Chou et al. [30] for determining the learning target.
We then apply a thresholding method to obtain multi-hot
labels, which serve as the basis for evaluating our model’s
performance.

lll. Task Definition

Previous studies typically frame AVER as a single-label
recognition task, discarding data points lacking annotator
consensus. This strategy simplifies the test set but does not
reflect practical scenarios where predictions are required
for all samples. Notably, these discarded data points often
exhibit ambiguous cues that evoke multiple coexisting traits.
In this work, we consider all perceived annotations and
formulate the task as a multi-label recognition problem. We
calculate the proportion of the evaluations assigned to each
emotional class by the annotators, forming a distribution.
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We select all the emotional classes with proportions above
a given threshold. We use the threshold 1/C' to binarize the
distribution probabilities, which is the approach followed in
previous studies [29], [33]. C' is the number of emotional
classes. This step removes emotions that are not consistently
provided by annotators, reducing label noise. As a result,
we create a multi-hot vector which allows each sample to
contain multiple emotions.

In this work we convert the raw annotations into the train-
ing/testing labels obtained using unimodal and multimodal
labels. We consider all labels elicited by voice-only, facial-
only, and audio-visual stimuli. The labels are distributional
labels for the training stage, and are converted into binary
vectors when the values are higher than the defined threshold.
We allow the samples to have more than one emotion to
reflect the nature of emotion perception that could involve
mixed emotions from a psychology perspective [20].

IV. Methodology

This section presents our proposed two-stage training strat-
egy to consider unimodal and multimodal labels. We imple-
ment a framework based on a previous audio-visual emo-
tion recognition research, the versatile audio-visual learn-
ing (VAVL) model [11]], which presents a basic structure
that perfectly fits our explored methodology, facilitating the
implementation of a two-stage training system. In the first
stage, the model is trained on a blend of labels derived
from both multimodal and unimodal perceptions of emotion.
Subsequently, in the second stage, its shared layers are
further trained on perceived labels generated from multi-
modal stimuli. This strategy aims to recognize modality-
specific cues that are specifically found in either speech or
facial expressions, and general trends that only appear when
multimodal stimuli are available.

A. Versatile Audio-Visual Learning Model

First, we briefly describe the VAVL methods, highlighting
the reasons why this audio-visual model fits our training
strategy. VAVL employs a versatile combination of acoustic-
only and visual-only layers that independently process audio-
visual content before merging into shared layers for joint
learning. This framework fits well our two-stage approach,
allowing us to independently train the acoustic-only and
visual-only layers in the first stage. In stage 2, we integrate
these now-frozen layers with a series of shared layers to
perform audio-visual prediction using audio-visual labels.

B. Using Mixture of Emotion Perception
This section explains the two-stage training system with a
mixture of emotion-perceived labels. An overview of our
proposed approach is presented in Figure [l We provide
additional details on the framework configuration in Section
VIDI

During stage 1, we concentrate on training the unimodal
layers of our model, specifically focusing on the acoustic
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layers (depicted with green blocks in Figure [Ta) and the
visual layers (illustrated with orange blocks in Figure [Ta).
This initial stage involves separate training for the acoustic
and visual components. The acoustic layers are divided into
two equal sets: one set is trained using voice-only labels,
while the other is adjusted using labels from audio-visual
stimuli. Similarly, the visual layers are also split into two
equal sets, with one set trained on facial-only labels and
the other refined with audio-visual labels. The motivation
for splitting the layers in this manner is to harness the
distinct and complementary information captured by each
modality when exposed to both unimodal and multimodal
stimuli labels. We aim to preserve the unique characteristics
of each sensory input, ensuring that no valuable information
is disregarded. As listed in Section [V][C] we include baselines
that ablate the importance of using this strategy in our result
in Section |VI| to demonstrate the efficacy of our approach.

After completing stage 1, the pre-trained blocks from the
acoustic module (learnable weighted sum (LW-Sum) and
transformer layers) and the visual module (1D convolutional
neural network (CNN) and transformer layers) are frozen.
Then, we integrate the shared layers (illustrated with purple
blocks in Figure into the model. The second stage
involves training solely the shared layers, utilizing the audio-
visual perceived labels as the learning target. Inputs from
both the acoustic and visual layers are sequentially fed
through the shared layers, incorporating residual connections
during this process. For the final audio-visual prediction, we
employ attentive statistics pooling (AS-Pool) on all audio
and visual outputs from the shared layers and merge these
outputs to feed into the fully-connected (FC) layers for
making the audio-visual predictions

V. Experimental Settings
A. Dataset
This study employs the CREMA-D corpus [[16]] to train and
evaluate the proposed strategy. CREMA-D is an audiovisual
dataset featuring high-quality recordings from 91 actors (48
male, 43 female) of diverse racial and ethnic backgrounds,
performing sentences with specific emotional intent. The
dataset includes 7,442 clips, each evaluated by an average of
7 raters, totaling 5.26 hours of data. Sentence durations range
from 0.51 to 5.01 seconds, with a mean of 2.54 seconds.
CREMA-D’s unique labeling strategy involves perceptual
evaluations under three conditions—audio-only, video-only,
and audio-visual—making it particularly suited for our study.
To the best of the authors’ knowledge, this is the only
multi-modal emotional dataset with this labeling approach,
making it ideal for our proposed methodology. We approach
the AVER problem in CREMA-D as a six-class multi-
label classification task with speaker-independent data splits,
covering anger, disgust, fear, happiness, sadness, and neutral
states. The dataset’s demographic details allow us to conduct
a comprehensive fairness evaluation of the trained AVER
systems.

B. Evaluation Metrics

1) Emotion Recognition

In our evaluation framework, we utilize the macro-F1
score and weighted-F1 score, which are the most suitable
metrics for our task since it simultaneously assess recall
and precision rates, to provide a balanced measure of the
AVER systems’ performance. Our evaluation process adopts
a threshold-based approach [29] for scenarios involving
multi-label classifications to accurately identify the target
classes from the ground truth data. Specifically, a prediction
for a particular class is deemed correct if its proportional
representation among all predictions exceeds the threshold
of (1/C), where C'is the total number of emotional classes
under consideration, as shown in [33]. Utilizing this ap-
proach allows for a nuanced and precise calculation of F1
scores, effectively capturing the performance of our emotion
recognition systems in recognizing a wide range of emotional
states even in imbalanced scenarios.

2) Model Calibration

We assessed the calibration of AVER system predictions
using the Brier Score (BS) [34]], calculated for each emotion
and averaged. BS values range from O to 1, with lower scores
indicating better calibration. The averaged BS is given by:

N
(Pf —1T¢)? (1)

1 1

BS = 6 Z N e
e=1 i=1

where C is the number of emotion classes, e denotes an
emotion, N is the sample count for emotion e, P¢ is the
predicted probability, and T is the ground truth (0 or 1).
The Brier Score was chosen for its ability to jointly capture
accuracy and calibration, offering a continuous metric that
avoids the potential biases introduced by the binning process
required in alternatives such as the expected calibration
error (ECE). Additionally, its straightforward calculation and
adaptability to multi-label settings make it a robust choice
for assessing probabilistic quality across multiple emotion
classes.

3) Performance Bias

We define performance bias as the difference in macro-F1
scores across demographic groups (gender, age, race). The
Macro-F1 Bias is calculated as:

G G
. 1
Bias = 3 X mean Z Z [Ag — Ai',i;ﬁg )

g=1i=1

where ¢ and ¢ represent groups, GG is the total number of
groups, and A, and A; are the macro-F1 scores for groups g
and 7. Lower bias values indicate less performance disparity
across groups.
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FIGURE 1: Overview of our two-stage training method.

4) Fairness

We evaluate fairness using demographic parity difference
(DPD) and equalized odds difference (EOD) across gender,
race, and age. Lower DPD values indicate more uniform se-
lection rates across groups, while lower EOD values suggest
more equitable rates of true/false positives/negatives.

C. Baseline Models

We implement a series of experiments to validate the pro-
posed method. We investigate the impact of the diverse
levels of annotation stimuli and the integration of these
perceptual evaluations on the performances of the AVER
models. All the following models are trained with a class-
balanced objective function, originally proposed by Cui et
al. [35]], to address the imbalanced annotation distributions
and ensure the accuracy and calibration of the emotion
recognition systems. We evaluate several models, which We
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list by an index. We include the model index in the tables
to refer to the models.

1) Baselines with Unimodal or Multimodal Labels

e Models indexed from 1 to 3 only process the acoustic
inputs and are trained utilizing perceptual evaluations
elicited by audio-only, voice-only, or audio-visual (AV)
modalities, respectively. These models are employed
using one of the sets of the green acoustic layers shown
in Figure [24]

e Models indexed from 4 to 6 only process the visual
inputs and are trained utilizing perceptual evaluations
elicited by audio-only, voice-only, or audio-visual (AV)
modalities, respectively. These models are employed by
using one of the sets of the orange visual layers shown
in Figure 2]

e Models indexed from 7 to 9 incorporate both acoustic
and visual inputs and are trained utilizing perceptual
evaluations elicited by audio-only, voice-only, or audio-
visual (AV) modalities, respectively. These models fol-
low the overall structure presented in Figure where
employ the use of a single set of layers for each
modality before the shared layers and we train all layers
in one single step.

2) Two-Stage Approach

Figure [I] presents our proposed two-stage approach. In this
section, we implement alternative versions of our two-stage
models to understand the contributions of our model selec-
tion. We also index the models, including these indexes in
the result tables.

e Model indexed as 10 represents a baseline version of
our two-stage approach, which employs the exclusive
use of the perceptual evaluations elicited by the audio-
visual modality for training in both stages. This model,
indexed with the number 10, serves as the base bench-
mark for our study. It does not incorporate acoustic
layers trained with acoustic stimuli labels or visual
layers trained with visual stimuli labels. We refer to
this approach as the AV elicited method.

e Model indexed with the number 11 contrasts with
model 10 by exclusively utilizing acoustic layers trained
with acoustic stimuli labels and visual layers trained
with visual stimuli labels in the first stage. The shared
layers in the second stage are then trained using
the perceptual evaluations elicited by the audio-visual
modality. We refer to this approach as the Mixed
elicited method.

e Model indexed with the number 12 corresponds to our
final proposed methodology, which we refer to as the
Proposed method.
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3) State-Of-The-Art Baselines

Additionally, we benchmarked five AVER frameworks to
evaluate our proposed model, utilizing code from their
respective repositories or specifications from their associated
papers.

VAVL: Goncalves et al. [11]] proposed the VAVL frame-
work, which combines acoustic-only and visual-only layers
for processing, followed by shared layers for joint feature
learning.

MulT: Tsai et al. [38]] introduced the MulT method, a
cross-modal transformer originally for human language time
series. We adapted it for bimodal representations, focusing
on visual and acoustic features.

SFAV: Chumachenko et al. [36] developed the SFAV ap-
proach, which uses late and intermediate transformer fusion
techniques to handle incomplete audiovisual data.

AuxFormer: Goncalves and Busso [31] presented the
AuxFormer architecture, a model using transformer layers,
auxiliary networks, and modality dropout for robust cross-
modal representations.

TSLTM: Huang et al. [37] proposed the TSLTM
method, integrating transformers and long short-term mem-
ory (LSTM) networks to fuse audio and visual data, model-
ing long-term emotional dynamics.

D. Implementation Details

1) Acoustic and Visual Features

Within the CREMA-D corpus, we have access to raw video
and audio recordings, enabling the extraction of features
from both audio and visual modalities. Our acoustic feature
extraction leverages the pre-trained WavLM-large architec-
ture [39]], sourced from Hugging Face at “microsoft/wavim-
large.” This model comprises 24 transformer layers and
approximately 317M parameters. For feature extraction, we

TABLE 1: Overview of models performances. We use similar
structure to previous tables. The columns, Macro-F1 and
Weighted-F1, show the average macro-F1 and weighted-F1
scores, the lower, and upper bound of the confidence interval
between 2.75% and 97.5%. Bold results assert statistical
significance

Index | Audio Video | Elicited |  Macro F1 ¢ Weighted F1 1

1 Voice | 0.645 (0.638, 0.652) 0.650 (0.643, 0.656)
2 v - Face 0.654 (0.647, 0.661) 0.661 (0.655, 0.668)
3 AV 0.695 (0.688, 0.701) 0.699 (0.694, 0.705)
4 Voice | 0.568 (0.560, 0.574) 0.570 (0.564, 0.576)
5 v Face 0.632 (0.626, 0.639) 0.634 (0.627, 0.641)
6 AV 0.658 (0.652, 0.665) 0.657 (0.650, 0.663)
7 Voice | 0.674 (0.668, 0.681) 0.672 (0.666, 0.678)
8 S o/ Face 0.719 (0.712, 0.725) 0.719 (0.713, 0.725)
9 AV 0.762 (0.757, 0.768) 0.761 (0.756, 0.766)
10 AV 0.763 (0.757, 0.768) 0.758 (0.753, 0.763)
11 VN Mixed | 0.769 (0.764, 0.774) 0.764 (0.759, 0.769)
12 Proposed | 0.772 (0.766, 0.777) 0.767 (0.762, 0.772)

Emotion
Prediction

& Transformers

Emotion
Prediction

& Transformers

LW-Sum 1D CNN
Acoustic Feature Extractor Visual Feature Extractor £

(a) Audio-only baselines. (b) Visual-only baselines.

Shared Layers

Transformers
LW-Sum
e P O

Visual Feature Extractor Acoustic Feature Extractor

(c) Audio-visual baselines.

Transformers ‘
1D CNN

& - Trainable Parameters | 3% - Frozen Parameters

FIGURE 2: Figure illustrates the baseline models indexed as
1 to 9. Where models indexed 1 to 3 are audio-only, models
indexed 4 to 6 are visual-only, and models indexed 7 to 9
are audio-visual.

follow the approach used in previous studies [[14], utilizing
the frozen pre-trained WavLM model to extract features from
the output hidden states of all 24 transformer layers, as well
as from the hidden state output of the WavLM model’s 1D
CNN encoder. Consequently, each audio sequence processed
by our WavLM feature extractor yields a feature set denoted
as x, € RNax25x1.024 "where N, represents the sequence
length of the acoustic feature, 1,024 is the dimensionality of
the hidden states, and 25 corresponds to the total number of
hidden states from which features are extracted.

TABLE 2: Overview of our proposed approach and other
SOTA AVER. Results are reported with Macro-F1 and
Weighted-F1, show the and confidence interval between
2.75% and 97.5% for each result. Bold results assert sta-
tistical significance

Audio Video | Model |  Macro F1 ¢ Weighted F1 1
Ours 0.772 (0.766, 0.777 0.767 (0.762, 0.772)
VAVL [11] 0.762 (0.757, 0.768) 0.761 (0.756, 0.766)
AuxFormer [31] | 0.742 (0.737, 0.748) 0.741 (0.734, 0.747)
o/ SFAV [36] 0.731 (0.725, 0.737) 0.728 (0.723, 0.734)
TLSTM [37] | 0.710 (0.704, 0.716) 0.705 (0.699, 0.711)
MulT [38] 0.743 (0.738, 0.750) 0.741 (0.736, 0.748)
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TABLE 3: Overview of audio-visual emotion recognition performances for each emotion in F1 scores and the measure
of model calibration as the average Brier Score (BS). The mark “v” in the columns , Audio and Video, represents the
models use the modality as input. The column, “Elicited”, means the training labels collected by giving which modalities
as emotional stimulus. All results contain the average, lower and upper bound of the confidence interval between 2.75%
and 97.5% for each result (lower bound, upper bound) in F1 scores. We also use the “grey” background color and bold

font to show the best performances in the table.

Index ‘ Audio Video ‘ Elicited ‘ Anger Sadness Disgust Fear Neutral Happiness ‘ BS |
1 Voice 0.713 (0.695, 0.730) 0.603 (0.583, 0.622) 0.607 (0.588, 0.624) 0.607 (0.589, 0.623) 0.709 (0.699, 0.720) 0.631 (0.609, 0.654) | 0.158
2 v - Face 0.683 (0.665, 0.700) 0.546 (0.527, 0.566) 0.641 (0.625, 0.658) 0.572 (0.553, 0.590) 0.760 (0.750, 0.772) 0.720 (0.704, 0.739) | 0.155
3 AV 0.735 (0.718, 0.753) 0.614 (0.594, 0.632) 0.664 (0.649, 0.680) 0.668 (0.652, 0.684) 0.761 (0.751, 0.774) 0.725 (0.708, 0.742) | 0.146
4 Voice 0.507 (0.489, 0.525) 0.528 (0.510, 0.548) 0.571 (0.556, 0.588) 0.464 (0.445, 0.483) 0.646 (0.636, 0.657) 0.688 (0.666, 0.712) | 0.184
5 v Face 0.565 (0.546, 0.585) 0.551 (0.534, 0.571) 0.594 (0.577, 0.611) 0.553 (0.534, 0.570) 0.724 (0.712, 0.736) 0.807 (0.793, 0.823) | 0.160
6 AV 0.585 (0.565, 0.604) 0.578 (0.560, 0.594) 0.622 (0.607, 0.638) 0.580 (0.564, 0.597) 0.731 (0.720, 0.742) 0.854 (0.840, 0.868) | 0.157
7 Voice 0.722 (0.704, 0.738) 0.640 (0.619, 0.659) 0.627 (0.610, 0.644) 0.626 (0.609, 0.643) 0.705 (0.694, 0.715) 0.727 (0.708, 0.747) | 0.157
8 v v Face 0.718 (0.700, 0.736) 0.612 (0.594, 0.631) 0.676 (0.661, 0.691) 0.651 (0.632, 0.667) 0.793 (0.782, 0.804) 0.862 (0.848, 0.875) | 0.142
9 AV 0.784 (0.768, 0.801) 0.656 (0.636, 0.673 0.726 (0.711, 0.740) 0.718 (0.704, 0.734 0.811 (0.802, 0.821) 0.879 (0.866, 0.892) | 0.131
10 AV ‘ 0.770 (0.753, 0.786) 0.668 (0.650, 0.686) 0.717 (0.704, 0.731) 0.713 (0.698, 0.727) 0.797 (0.787, 0.807 0.911 (0.900, 0.922) | 0.135
11 v v Mixed 0.793 (0.777, 0.808 0.685 (0.667, 0.702) 0.712 (0.698, 0.726) 0.712 (0.696, 0.726) 0.805 (0.795, 0.815) 0.909 (0.897, 0.919) | 0.130
12 Proposed ‘ 0.792 (0.776, 0.808) 0.682 (0.665, 0.699) 0.722 (0.708, 0.736 0.723 (0.707, 0.736) 0.804 (0.793, 0.815) 0.909 (0.898, 0.920) | 0.129

To extract emotional visual features from facial images,
we employ a CNN-based model, specifically the pre-trained
MobileNetV2 [15] model. We fine-tuned the MobileNetV2
model for facial expression recognition on the AffectNet [40]
for 60 epochs, saving the weights of the model that achieves
the best validation accuracy score. Once the model has been
trained, we proceed to freeze the weights, enabling us to
extract facial features from images extracted from videos
within the dataset used in this study. We crop the image using
the bounding box provided by a face detection algorithm
and rotate the image to ensure that the line connecting the
two eyes is parallel to the x-axis, thereby normalizing the
image for consistent feature extraction. Finally, we feed
the normalized image through our trained MobileNetV2
model. We use the 1,280-feature vector, extracted post-
global pooling layer, as the feature representation for each
image. Consequently, the feature set for each visual sequence
extracted by our MobileNetV2 feature extractor is denoted
as x, € RNvx1.280 where N, denotes the number of frames
in the sequence, and 1,280 represents the dimensionality of
the features from the MobileNetV2 model’s global pooling
layer.

2) Model Configuration and Training Settings

Figure [Tb] illustrates the entire framework of the model.
The visual, acoustic, and shared layers are constructed using
transformer blocks, each with an encoder hidden layer of 512
dimensions and eight attention heads. The acoustic, visual,
and shared transformer layers consist of three, three, and
two layers, respectively. The transformer block follows the
standard structure of multi-head attention (MHA) layers, as
introduced in [41]. Within the transformer block, the input
is used to generate the Q, K, and V matrices. The attention
mechanism is computed simultaneously for a set of queries,
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which are aggregated into a single matrix Q. Similarly,
the keys and values are aggregated into matrices K and V,
respectively, as described in Equation

T

Attention(Q, K, V') = softmax (?/(Tk > 7% 3)

where dj is the dimensionality of the key vectors. The
scaling factor v/dy, prevents the dot product between () and
K from becoming too large, ensuring stable gradients in the
softmax function. MHA allows the model to attend to multi-
ple representation subspaces simultaneously, overcoming the
limitations of single-head attention. It is computed as:

MultiHead(Q, K, V) = Concat(heady, . . ., head), ) W©,
“4)
where each attention head is defined as:
head; = Attention(QWS2, KWX, vwY). (5)

here, WZQ € RfmoaerXdi | 7K ¢ Rebmoderxdie 7V ¢ Rmoser X v
and WO € Rhdvxdnue gre Jearnable parameter matrices.

The features input to each specific layer, as shown in Fig-
ure [T} are processed as follows: the visual feature extraction
output is denoted as x, € RNo*1:280  while the acoustic
feature extraction output is x, € RNax25x1.024 To align
these feature dimensions with the corresponding transformer
layers, we apply distinct operations to the audio and visual
inputs:

1) For the audio features, a Learnable Weighted Sum
(LW-Sum) layer is used to aggregate the 25 extracted
layers into a single feature matrix. Specifically, the
weighted sum is computed as:

25
Za =Y wi-al), (6)
=1
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where () € RNax1,024 represents the i-th extracted

layer, and w; are learnable weights constrained by
Zfil w; = 1 (enforced using a softmax layer). This
operation results in the matrix z, € RN«x1.024 for
each batch sequence.

2) For the visual features, a 1D convolutional neural
network (1D-CNN) layer is employed to adjust the
feature dimension from 1,280 to 1,024. The operation
is defined as:

z, = ReLU(Conv1D(x,)), 7

where Conv1D applies a convolution with kernel size
k, stride s, and output channels 1,024, transforming
Zy € RNoX1280 jneg 5 e RNwx1,024

By applying these operations, both audio and visual
features are aligned to RN*1.024 ensuring compatibility
with the transformer layers. At the model’s head, attention-
statistic pooling (AS-Pool) layers [42] are employed to
aggregate frame-level features into a fixed-length representa-
tion. AS-Pool layers compute a weighted mean and variance
across the input sequence, where the weights are determined
by an attention mechanism. This mechanism ensures that
the model can dynamically focus on the most informative
parts of the input sequence, adapting to varying temporal
dynamics in the data. Then, we follow with fully connected
(FC) layers, that are utilized for prediction. These pooling
layers use an attention mechanism to assign different weights
to various frames from the transformer layers’ outputs. The
model is optimized using the AdamW optimizer, configured
with a learning rate (1r) of 1 x 1075, a weight decay of
5 x 1077, and beta parameters of 0.95 and 0.999. Training
is conducted over 50 epochs with a batch size of 32. All
experiments were done in a NVIDIA A100 48Gb, and the
total of GPU hours are around 500 hours within a single
NVIDIA A100 GPU.

VI. Results and Analyses

In this section, we discuss the outcomes derived from im-
plementing our proposed methodology. We train the models
indexed from 1 to 9 to reveal the impact of perceptual
evaluation elicited by the varying modalities on the audio-
visual condition. Results in Table [T show that the models
trained with the audio-visual labels achieve the best values
in macro-F1 and weighted-F1 scores. Overall, audio-visual
label usage leads to a relative improvement of 12.08% and
5.49% compared to the voice-only and face-only labels
in the macro-F1 score, respectively. Also, the models that
can take both acoustic and visual inputs lead to better
performances than those with unimodal input, achieving a
relative improvement of 8.07% and 15.95% compared to
the acoustic-input and visual-input models in the macro-F1
score, respectively. The results are aligned with the find-
ings in Paulmann and Pell [S]], which showed that humans
perform better in processing emotional cues on audio-visual
stimuli than on unimodal stimuli.

Regarding the two-stage models, notably, the perfor-
mances of models indexed as 11 (mixed) and 12 (proposed),
which integrate the mixture of the pre-trained models trained
with the perceptual evaluation elicited by varying modalities,
surpass that of the model solely focused on audio-visual
labels (model indexed as 10). These findings indicate that
perceptual evaluations elicited by diverse stimuli modalities
contains supplementary emotional cues, augmenting the ef-
fectiveness of AVER systems.

Table [2] presents additional results, directly comparing our
proposed method against SOTA AVER baselines. We observe
that our method consistently outperforms the SOTA AVER
methods with statistical significance in all cases.

A. Model Calibration and Per-Emotion Results

Table Bl summarizes model calibration and macro-F1 scores
per emotion. Models 1-9 show improved performance with
audio-visual labels. Our proposed method (12) achieved the
best calibration and excelled in recognizing fear. Models
11 and 12, which both utilize of our proposed approach of
combining unimodal and multimodally rated labels for train-
ing, outperformed others in anger and sadness recognition,
highlighting the effectiveness of our two-stage approach with
perceptual evaluations across diverse stimuli.

B. Measure of Bias and Fairness Across Groups

Table [5] shows the performance, performance bias, and
fairness metrics for all models concerning male and female
speakers. Despite a larger proportion of male speakers in
the database, AVER systems consistently demonstrate better
emotion recognition performance for female speakers. This
performance difference can be attributed to an imbalance
in the emotion distribution between genders. Specifically,
male samples are heavily skewed toward the “Neutral”
emotion, which accounts for over 51% (2,006 out of 3,928
samples) of the male data, compared to about 39% (1,366
out of 3,510 samples) in female data. This dominance of
the “Neutral” class in male samples leads the model to
perform well on this prevalent emotion but struggle with less
represented emotions such as “Angry,” “Sad,” and “Disgust.”
Since the macro-F1 score equally weights each emotion
regardless of its frequency, the model’s difficulties with
these less frequent emotions in male data lower the overall
performance metric. In contrast, the female data exhibits a
more balanced distribution of emotions, allowing the model
to perform more consistently across all emotion classes,
resulting in higher macro-F1 scores for female speakers.
The imbalance in the male dataset may also cause the
model to overfit to the “Neutral” class, reducing its ability
to generalize across other emotions within male samples.
This effect is mitigated in the female dataset due to the
more even distribution of emotions, enhancing the model’s
overall performance on female data. Although we observe
this difference in performance accross gender, our proposed
method appears effective in minimizing this performance
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TABLE 4: Overview of recognition performances, performance bias, and fairness of the audio-visual emotion recognition
systems on race groups. We use similar structure to previous tables. The column, “Macro-F1 Bias”, means the differences

between the macro-F1 scores of different race groups.

Index ‘ Audio ‘ Video ‘ Elicited ‘ African American Asian Caucasian Unknown ‘ MacroF1 Bias ‘ DPD EOD
Voice 0.646 (0.631, 0.660) 0.632 (0.605, 0.659) 0.645 (0.636, 0.655) 0.599 (0.528, 0.662) 2.60 (5.84, 0.39) 0.052 0.098

2 v Face 0.662 (0.648, 0.675) 0.677 (0.654, 0.699) 0.648 (0.640, 0.657) 0.616 (0.542, 0.678) 3.27(5.70, 2.18) 0.154 0.348

3 AV 0.697 (0.683, 0.709) 0.711 (0.687, 0.733) 0.694 (0.686, 0.702) 0.572 (0.503, 0.631) 7.02(9.29,5.25) 0.052 0.205

4 Voice 0.536 (0.520, 0.551) 0.533 (0.507, 0.559) 0.582 (0.574, 0.590) 0.438 (0.356, 0.503) 7.27 (11.11, 4.50) 0.622 0.696

5 v Face 0.638 (0.625, 0.651) 0.641 (0.615, 0.666) 0.630 (0.622, 0.639) 0.468 (0.402, 0.523) 8.79 (11.27,7.39) 0.519 0.573

6 AV 0.662 (0.648, 0.674) 0.653 (0.626, 0.677) 0.660 (0.653, 0.668) 0.464 (0.411,0.511) 9.99 (12.44, 8.39) 0.535 0.619

7 Voice 0.676 (0.662, 0.689) 0.647 (0.620, 0.672) 0.677 (0.669, 0.685) 0.630 (0.544, 0.700) 2.80 (6.97, 1.42) 0.064 0.127

8 v v Face 0.716 (0.704, 0.727) 0.720 (0.697, 0.741) 0.721 (0.714, 0.728) 0.566 (0.515, 0.607) 7.80 (10.05, 6.72) 0.115 0.122

9 AV 0.759 (0.747,0.771) 0.780 (0.758, 0.799) 0.762 (0.756, 0.770) 0.639 (0.591, 0.679) 7.15 (8.53, 6.05) 0.035 0.121

10 AV 0.765 (0.755, 0.776) 0.752 (0.729, 0.772) 0.764 (0.758, 0.771) 0.627 (0.560, 0.685) 7.12(10.32, 4.57) 0.125 0.139
11 v v Mixed 0.771 (0.761, 0.782) 0.765 (0.745, 0.784) 0.770 (0.763, 0.776) 0.619 (0.563, 0.664) 7.71 (10.30, 6.11) 0.157 0.111
12 Proposed 0.770 (0.759, 0.780) 0.769 (0.747, 0.789) 0.774 (0.768, 0.781) 0.668 (0.604, 0.724) 5.31(8.39,3.25) 0.113 0.101

TABLE 5: Overview of recognition performances, perfor-
mance bias, and fairness of the audio-visual emotion recog-
nition systems on male and female groups. The column,
“Macro-F1 Bias”, quantifies the differences between the
macro-F1 scores of male and female speakers.

Idx | Male Female | Macro-F1 Bias | | EOD |
1 | 0634(0.624,0645)  0.653 (0.642, 0.663) | 1.86 (1.80,1.80) | 0.019
2 | 0.634(0.623,0.643)  0.672 (0.662, 0.681) | 3.81(3.84,3.83) | 0.039
3 | 0.680 (0.671,0.689)  0.708 (0.699, 0.718) | 2.80 (2.78,2.89) | 0.032
4 | 0544 (0.534,0555)  0.587 (0.578,0.598) | 4.32 (441,431) | 0031
5 | 0.617 (0.608, 0.626)  0.646 (0.636, 0.655) | 2.90 (2.88,2.90) | 0.075
6 | 0.643(0.633,0.653)  0.672 (0.663, 0.682) | 2.86(2.99,2.90) | 0.019
7 | 0662 (0.653,0.672)  0.683 (0.674, 0.692) | 2.08 (2.13,2.06) | 0.026
8 | 0.697 (0.689,0.706) 0739 (0.730, 0.747) | 4.12 (4.15,4.11) | 0.047
9 | 0747 (0.739,0.755)  0.776 (0.768, 0.784) | 2.89 (2.87,2.89) | 0.027
10 | 0750 (0.743,0.758)  0.774 (0.767, 0.781) | 237 (244,235 | 0.032
11 | 0757 (0750, 0.764) 0780 (0.773,0.788) | 235(2.34,235) | 0.011
12 | 0762 (0.754, 0.770)  0.781 (0.774, 0.788) | 1.86 (1.98,1.84) | 0.018

bias between genders. Specifically, the models indexed as
11 and 12 utilizing our proposed approach rank as the top
two in performance. Furthermore, the performance bias for
these models approaches the lowest observed values among
baseline models. Although the bias in models indexed 11
and 12 is slightly above the minimum seen in baseline
models, these models exhibit a large relative improvement
in performance — 20.19% and 19.6%, respectively — over the
model indexed as 1, which has the lowest bias. Regarding
fairness, the EOD value for model indexed as 11 is the
lowest among all models, highlighting its superiority in
ensuring equitable treatment across gender groups within
AVER systems.

Table [ presents the performance bias, results, and fairness
of all models across different racial groups. Models indexed
as 11 and 12 generally outperform others across all racial
categories, with the exception of the Asian group. The results
of performance bias and fairness in Table [] underscore
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the necessity of employing strategies specifically aimed at
reducing bias and enhancing fairness within AVER systems.

VIl. Discussion and Limitations

While we investigate the performance bias and fairness of
models across demographic groups, including gender, age,
and race, it is crucial to acknowledge that gender identity
encompasses a spectrum beyond the binary male/female [43].
For a more comprehensive analysis, a dataset with annota-
tions reflecting this broader spectrum of gender identities is
required. Moreover, our findings indicate that to effectively
reduce performance bias across racial groups, the models
require further methodologies aimed at bias mitigation. Con-
sequently, additional measures are important to enhance the
fairness of all models.

VIIl. Conclusion and Future Work

This work addresses a critical gap in traditional AVER
systems that rely on uniform annotations and overlook the
complexity of human emotional perception across different
stimuli. We implement models that consider a full spec-
trum of emotions by recognizing co-occurrence in samples
during training and evaluation. By integrating a two-stage
approach using labels from audio-only, face-only, and audio-
visual stimuli, our study better reflects how humans perceive
emotions through both unimodal and multimodal channels.
This method improves our model’s accuracy in predicting
emotional states, enhancing performance on the CREMA-D
emotion database with superior macro-/weighted-F1 scores.
We extensively evaluate model calibration, performance bias,
and fairness across demographics, essential for equitable
AVER systems. Our findings indicate that AVER systems
perform better on female speakers despite having more male
data, and our method reduces this bias. In future work, we
plan to implement additional methods during training AVER
systems to mitigate the performances bias and increase
fairness.
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