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Abstract Deep neural networks have demonstrated considerable effectiveness in recognizing complex communications signals 
through their applications in the tasks of automatic modulation recognition. However, the resilience of these networks is 
undermined by the introduction of carefully designed adversarial examples that compromise the reliability of the decision 
processes. In order to address this issue, an Attention-Guided Automatic Modulation Recognition (AG-AMR) method is proposed 
in this paper. The method introduces an optimized attention mechanism within the Transformer framework, where signal features 
are extracted and filtered based on the weights of the attention module during the training process, which makes the model to focus 
on key features for the task. Furthermore, by removing features of low importance where adversarial perturbations may appear, the 
proposed method mitigates the negative impacts of adversarial perturbations on modulation classification, thereby it improves both 
accuracy and robustness. Experimental results on benchmark datasets show that AG-AMR obtains a high level of accuracy on 
modulation recognition and exhibits significant robustness. Furthermore, when working together with adversarial training, it is 
shown that AG-AMR effectively resists several existing adversarial attacks, which thus further validates its effectiveness on 
defending against adversarial sample attacks. 
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I. INTRODUCTION0F

1 
The rapid advancement of wireless communication 

technologies has led to the widespread application of 
automatic modulation recognition (AMR) in areas such as 
cognitive radio [1] and electronic countermeasures [2]. 
However, the emergence of increasingly diverse modulation 
types and signal variants in modern communication systems 
has posed challenges to the high performance of AMR 
systems. Traditional AMR methods are generally divided 
into two main categories: likelihood-based methods [3] and 
feature-based ones [4]. Likelihood-based methods perform 
recognition by computing the maximum likelihood over all 
modulation categories given the input signals, which 
typically requires ideal channel conditions and incurs high 
computational cost. Feature-based methods involve manual 
construction of feature representations, which can achieve 
suboptimal recognition results with lower complexity but 
often rely on extensive manual experience in feature 
extraction. In contrast, AMR methods based on machine 
learning automatically extract features from signals, 
reducing the dependence on manual expertise and achieving 
better recognition performance at relatively low costs. In 
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recent years, AMR methods based on deep learning have 
been extensively explored [5-9]. Due to their superior 
performance and effectiveness, deep learning methods have 
increasingly become the dominant technology in wireless 
signal recognition tasks. 

However, deep neural networks have been shown to be 
vulnerable to adversarial attacks, where deep learning 
models produce incorrect decisions when small 
perturbations are applied to the input data [10, 11]. A great 
deal of work has been dedicated to studying adversarial 
attacks on modulation recognition tasks in wireless signals. 
In these studies, fine-tuned perturbations are added to the 
original signals as additive noises, causing the model to 
misclassify the inputs. To address the challenges posed by 
adversarial attacks, various defense strategies based on 
detection [12, 13] and mitigation [14, 15] have been 
proposed. Detection-based methods primarily use statistical 
techniques to identify and prevent adversarial examples. 
Mitigation-based methods are essentially adversarial 
training, which retrain deep learning models on the data 
augmented with adversarial examples to improve the 
models’ resilience to adversarial attacks. In general, these 
methods are important for defending against adversarial 
attacks, ensuring the stability and reliability of deep 
learning-based AMR models in practical applications. 

Compared to the detection methods, adversarial training 
can correctly classify adversarial examples into their true 
categories, rather than detecting and discarding them. 
However, adversarial training methods rely on a large 
number of examples during the training phase, which 
inevitably increases computational complexity when 
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generating these examples and retraining the model. 
Additionally, retraining with adversarial examples has a 
potential impact on the model’s performance on clean data, 
potentially reducing accuracy. More importantly, in complex 
models like Transformers, the large number of parameters 
can lead to overfitting as the adversarial training progresses. 
Therefore, there is a need for new algorithms that effectively 
balance accuracy, robustness, and computational efficiency 
in the presence of adversarial attacks. 

In order to address the challenges above, an 
Attention-Guided Automatic Modulation Recognition 
(AG-AMR) method is proposed in this paper. This method 
integrates an optimized attention mechanism within the 
Transformer model, which extracts and filters signal features 
based on attention weights during training. With the 
attention mechanisms, the model achieves high recognition 
accuracy, reduces complexity, and improves robustness 
compared to traditional approaches. Furthermore, by 
integrating the proposed method with adversarial training, 
the model’s resistance to adversarial perturbations is further 
enhanced, which effectively mitigates their negative impacts 
on classification performance. Consequently, the AG-AMR 
method makes a balance in accuracy, robustness, and 
computational efficiency for automatic modulation 
recognition under adversarial conditions. The main 
contributions of this paper can be summarized as follows. 

1) An AG-AMR method based on an optimized attention 
mechanism is proposed. By weighting features with the 
attention module, the method enables the network 
structure to focus on critical information, thereby 
improves the recognition accuracy, reduces the model 
complexity, and enhances the adversarial robustness. 

2) Extensive validation and comparative experiments are 
conducted on the benchmark datasets RML2016.10a 
and RML2018.01a. The results demonstrate that the 
AG-AMR method outperforms other typical 
modulation recognition methods in terms of both 
robustness and stability when processing adversarial 
examples.  

3) Robust recognition in adversarial environments is 
achieved. By integrating adversarial training 
techniques with the model during training, the model’s 
ability to resist adversarial perturbations is further 
enhanced, which ensures high stability and accuracy in 
the presence of adversarial examples.  

The remaining sections of this paper are organized as 
follows: Section II provides a comprehensive overview of 
automatic modulation recognition and its adversarial 
defenses, as well as efficient training within Transformers. 
Section III presents the prior knowledge relevant to this 
study, including the AMR model, adversarial perturbations, 
and an introduction to adversarial training. Section IV 
describes the AG-AMR method and its underlying principles 
in details. Section V describes the experimental setup and 
results to validate the effectiveness of the AG-AMR. Finally, 
Section VI concludes the paper with a summary and outlines 
future research directions. 

II. RELATED WORKS 
In this section, existing deep learning-based modulation 

recognition methods are introduced firstly, followed by a 
discussion of existing adversarial defense techniques for 
deep learning-based AMR models. Finally, related works on 
efficient training methods are explored within the 
Transformer framework as a potential idea to make a balance 
between the accuracy and the robustness of the models. 

A. Automatic Modulation Recognition 
With the rapid advancement of wireless communication 

technologies, modulation recognition is becoming an 
important task of signal sensing to handle complex and 
diverse inputs. Deep learning, with its powerful abilities on 
pattern recognition, has become an effective solution 
compared to traditional methods. O’Shea et al. apply CNN 
networks into modulation recognition tasks, whose results 
demonstrate that CNNs are able to effectively extract and 
classify features of modulation signals [16]. Subsequently, 
West [17] has further explored the applications of deep 
learning architectures to modulation recognition, and Karra 
et al. [18] propose hierarchical deep neural networks for 
radio modulation recognition. The temporal nature of radio 
modulation signals has also been extensively explored as a 
critical feature by many researchers. Rajendran [19] have 
used Long Short-Term Memory (LSTM) networks to 
improve accuracy, which demonstrate the advantages of 
RNN-based modulation recognition methods in capturing 
temporal information. In addition, Xu and Zhang [20, 21] 
combine the spatial feature extraction capabilities of CNNs 
with the temporal analysis strengths of RNNs to provide a 
superior hybrid model for modulation recognition. With the 
advents of attention mechanisms and Transformer models, 
Chen and Cai [8, 22] effectively address long-range 
dependencies in signals using attention mechanisms. 

The works above suggest that deep learning-based models 
exhibit excellent performance in modulation recognition 
tasks, which relies on statistical features learned from large 
datasets for decision making. However, advanced deep 
learning method have been shown vulnerable to adversarial 
attacks. 

B. Adversarial Defense in Automatic Modulation 
Recognition 
With the emerging of adversarial attacks, the secure 

design of deep learning methods for AMR must consider 
new issues, i.e., detecting and defending against adversarial 
attacks [23]. Modifications for the purpose of adversarial 
attack can significantly alter the data distribution of signals, 
which potentially affects the model’s performance on 
modulation recognition. In order to improve the models’ 
robustness, researchers have proposed various defense 
strategies. Detection-based methods have been explored by 
Zhang et al. [24], who implement the detection of adversarial 
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Fig.  1. The architecture of the AG-AMR 

 
 
examples using neural repulsion techniques complemented 
by label smoothing and Gaussian noise injection. Similarly, 
Kokalj-Filipovic et al. [13] utilize the signal-to-noise ratio as 
a critical metric to detect adversarial examples through 
softmax outputs. Xu et al. [12] develop a multi-feature 
fusion technique by extracting Local Intrinsic 
Dimensionality (LID) and Constellation Diagram (CD) 
features for adversarial example detection. Mitigation-based 
methods aim to enhance the models’ robustness against 
adversarial attacks. Chen and Tang et al. [25, 26] propose 
methods to mitigate adversarial attacks through adversarial 
distillation techniques. In addition, adversarial training, 
which introduces adversarial examples during the training 
process, is considered one of the most effective methods to 
improve robustness. Kim et al. [14] have used 
noise-enhanced training data based on random smoothing to 
improve the robustness of modulation classifiers against 
adversarial perturbations. Kokalj-Filipovic et al. [15] have 
implemented a defense method against adversarial attacks by 
pre-training the target classifier using autoencoders. 

Despite these efforts, existing defense strategies in AMR 
either increase computational cost or have negative impacts 
on the performance of recognition. Therefore, there is a need 
for an ideal defense method that effectively makes a balance 
between adversarial robustness and efficiency without 
compromising accuracy. 

C. Efficient Training in Transformers 
Transformer has shown great success in pattern 

recognition, but there are few related works on modulation 
recognition, where computational complexity would further 
make its adversarial training more complex. To improve this 
efficiency of Transformer models, extensive research has 
discussed the potential of efficient training by appropriately 

discarding image patches during the training or testing 
process. Tang et al. [27] introduce the patch slimming 
method, which reduces computational complexity by 
reducing the number of input image patches, thereby 
increasing the processing speed and computational 
efficiency of the model without significantly compromising 
the performance. Rao et al. [28] use a dynamic token 
sparsification approach to adjust the number of tokens based 
on each token’s contribution to the final prediction, thereby 
optimizing resource allocation. This allows the model to 
maintain high accuracy while significantly reducing the 
computational load. These methods demonstrate that 
strategically discarding non-essential information can 
effectively improve training efficiency and mitigate the 
negative impacts of adversarial perturbations, which is in 
line with the motivation of adversarial defense. 

In this paper, the AG-AMR method is designed to 
effectively optimize the Transformer model’s attention 
mechanism, to reduce the computational complexity and to 
enable the integration with adversarial training, which 
achieves enhanced resilience to adversarial attacks while 
maintaining high accuracy. 

III. PRIOR KNOWLEDGE 
In this section, the model of the automatic modulation 

recognition system is introduced firstly. Then, an overview 
of the concepts of adversarial perturbations and adversarial 
training are provided in the context of modulation 
recognition tasks. 

A. Model of Automatic Modulation Recognition 
In general, a typical communication signal model can be 

represented as: 
 ( ) ( ( ), ) ( ) ( )r t F s t m h t n t= ∗ +  (1) 
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where ( )s t  is the baseband signal from the transmitter, ( )h t  
is the impulse response of the wireless channel, and ( )n t  
signifies the additive white Gaussian noise during 
transmission. The modulation process begins by selecting a 
modulation scheme m , then using a modulator F to map the 
baseband signal ( )s t  into a modulated signal, which is then 
transformed into a form suitable for transmission through the 
channel. The goal of the AMR task is to extract features from 
the received signal ( )r t  without prior information and to 
estimate the modulation scheme m . 

B. Adversarial Perturbations 
In modulation recognition tasks, adversarial perturbations 

are designed to affect the input signal to make the model 
output incorrect predictions, thereby reducing the accuracy 
of the recognition. Such perturbations should be 
imperceptible, i.e., indistinguishable from normal noises, 
and no interfering with the normal operation of the receiver. 
To this end, the maximum amplitude of the adversarial 
perturbations is constrained with the -norml∞  to ensure that 
the generated adversarial examples remain the 
characteristics of the original signals. The definition is given 
as follows: 
 , ( )    s.t.    arg max yL xθ

ρ
ρ ρ ρ ε∗

∞
= + ≤  (2) 

In this definition, *ρ  is the adversarial perturbation. The 
term , ( )yL xθ ρ+  denotes the loss value between the 
predicted label and the true label y  when the input signal is 
the perturbed signal x ρ+  and the model parameters are θ . 

The notation 
∞
⋅  denotes the -norml∞ . 

C. Adversarial Training 
The goal of adversarial training is to find an optimal set of 

parameters such that the model minimizes the impact of 
adversarial perturbations. Specifically, adversarial training 
involves adjusting the model parameters using N training 
samples to minimize the loss function. This process is 
illustrated as follows: 

 ,

1
min max ( )    s.t.    

iy i i i
i

L x
N θ

θ
ρ ρ ε

∞
+ ≤∑  (3) 

In the formula, ,max ( )
iy i iL xθ ρ+  represents the maximum 

perturbation under a constraint, and the overall goal of the 
formula is to obtain model parameters that minimizes the 
impact of adversarial perturbations on the classification loss. 
This formulation can be seen as an extension of clean sample 
training, since it corresponds to the objective function of the 
modulation recognition model under clean-sample training 
when 0iρ = . 

IV. MODULATION RECOGNITION GUIDED BY ATTENTION 
MECHANISM 

This section provides a comprehensive overview of the 
proposed AG-AMR method, which includes the 

Attention-Guided Encoder (AG-Encoder), and the network 
structure, as illustrated in Fig. 1 The following subsections 
present the components in details. 

A. Data Preprocessing and Feature Embedding 
The long-range dependency and parallel processing 

capabilities of the Transformer are essential for effective 
AMR tasks [22]. In the process of data preprocessing and 
feature embedding, this method implements data 
segmentation and incorporates positional embeddings along 
with class tokens to achieve a comprehensive aggregation of 
the signals. This approach does not take structures like CNN 
and RNN, which thus avoid their limitations in focusing 
local features and high computational costs. By focusing on 
global patterns, the method enhances the model’s ability to 
capture essential information from the input signals while 
keeping low computational complexity. 

The input signal is treated as a two-channel image, where 
each channel corresponds to the real and imaginary parts of 
the signal. Specifically, each sample can be represented as a 
H W C× × matrix, where each element contains information 
from the I/Q channels. To preserve the integrity of the 
original modulated signal and to take advantage of the 
feature extraction capabilities of the Transformer network, 
the input signal is normalized and framed. The input signal 
examples H W Cx × ×∈ are segmented into a series of signal 
sequence frames ( )N H L C

px × ⋅ ⋅∈  with frame length L , where 
( , , )H W C  is the number of rows and columns of the original 
input signal matrix, ( )H L×  is the resolution of each 
sequence frame, and /N W L=  is the number of sequence 
blocks obtained, which is also the effective sequence 
processing length of the multi-head attention processing 
module. Then, these sequential frames are flattened one by 
one into one-dimensional columnwise vectors 2 1L

tx ×∈  
with length 2L . The vectors are horizontally concatenated to 
form the feature matrix 2N LX ×∈ . This process can be 
represented as: 

 
[ ( ), ( 1), , ( 1),

( ), ( 1), , ( 1)]
t I I I

T
Q Q Q

x r tL r tL r tL L

r tL r tL r tL L

= + + −

+ + −





 (4) 

 1 2[ , , , ]T
nX x x x=   (5) 

To generate the initial input token 0X  for training within 
the Transformer architecture, a combination of linear 
projection and positional embedding are used. First, the 
input features X are transformed into an intermediate token 
sequence N D

projX ×∈  via a linear projection, where D  is 

the embedding dimension. Then, a class token 1 D
clsx ×∈ is 

introduced to capture the global information of the entire 
signal sequence. This token is prepended to the front of each 
sequence, resulting in an extended sequence [ ; ]cls projx X , with 

clsx as the first element of the sequence. Finally, to enable the 
model to capture the temporal information within the 
sequence, each element, including the class token, is 
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augmented with learnable positional embeddings 
( 1)N D

posX + ×∈ . In summary, the generation of the input 

sequence 0X  can be represented as: 

 proj projX XW=  (6) 

 LearnableParameter( )clsx D=  (7) 

 
2 /

( , ) 2 /

sin( / 10000 ), 2

cos( / 10000 ), 2 1

i D

pos n i D

pos n i
X

pos n i

=
=

= +





 (8) 

 0 [ ; ]cls proj posX x X X= +  (9) 

where projW  denotes the linear projection weight matrix, 
pos indicates the token sequence positions, and n represents 

the value of the corresponding feature dimension. 

B. Attention-Guided Encoders 
The Attention-Guided Encoder (AG-Encoder) is a critical 

component of the proposed method, which is designed to 
enhance the processing of input data through a structured 
framework with multiple layers. The AG-Encoder consists 
of a Multi-Head Self-Attention (MSA) layer and a Gated 
Linear Unit (GLU) layer. The MSA layer enables the model 
to focus on key regions of the input by dynamically adjusting 
attention weights based on the significance of the input 
features. This attention mechanism prioritizes important 
information, while minimizing the influence of irrelevant 
one, thereby enhancing the model’s robustness to adversarial 
perturbations. The GLU layer, which replaces the 
conventional Multi-Layer Perceptron (MLP), addresses the 
computational intensity associated with feature extraction. 
By substituting the MLP with GLU, the model reduces 
computational load while retaining essential sequential 
information, which makes it to be particularly suitable for 
temporal tasks. This combination of attention and gating 
mechanisms optimizes the feature embedding process, 
which results in improved robustness against adversarial 
attacks, as it ensures that the most relevant features are 
preserved, and redundant or irrelevant features are discarded. 
The AG-Encoder can be expressed mathematically as 
follows. 

1) Guided Multi-Head Attention Mechanism: In the MSA, 
the input sequence 0X  first undergoes layer normalization to 
standardize its values. It is then transformed into query ( Q ), 
key ( K ), and value ( V ). For multi-head attention, the 
matrices , , K Q V  with shape ( 1)N D+ ×  are divided into h  
heads, where each head now has the shape ( 1) /N D h+ × . 
Taking the first head as an example, 1V  is then reweighted 
by the attention scores computed from 1A . This process can 
be described as follows: 
 1

( 1 D ( 1 D ( 1 D 0 3[ Q ] LayerNorm( )N N N D DK V X W+ × + × + × ×=
） ） ）
， ，  (10) 

 
1 1

1 1 1 1 1 1
( 1) ( 1)

( 1)
Attn( , , ) ( )D N N

N
h

Q K
K Q V SoftMax B V A V

D
+ × +

+ ×
= + =  (11) 

In this process, B represents a learnable bias term. 
Notably, all the column vectors in the matrix 1A are 

normalized by the softmax function, ensuring that the sum of 
each column vector is equal to 1. Finally, the outputs 'X  of 
the MSA module are produced by concatenating and 
transforming the outputs A  and V of each head. 
 ' 1 1 2 2 2

( 1) ( 1)Concat( , , , )h h
N D N D D DX A V A V A V W+ × + × ×=   (12) 

The magnitude of attention can reveal the importance of 
embedded features. Therefore, in our approach, this 
characteristic is used to filter out typical features while 
removing noises and interferences from the signals. 

Specifically, 
1

/
h

i

i

A h
=
∑  is obtained by summing the attention 

matrix A  and generating an index a , where the sum is 
always equal to 1, and its component represents the degree of 
receptivity to the embedded information. Conversely, the 
row vector of this result reveals the extent to which each 
input embedding influences the output embedding. Thus, the 
multi-head guided attention mechanism selects the top k  
embedded features based on the magnitude of the values in 
index a . Consequently, the output of the MSA, previously 
defined by Equation 12, is transformed as follows: 
 ' 1 1 2MaskBy[Concat( , , ), Topk( )]h h

k D k D D DX A V A V a W× × ×=   (13) 
2) Gated Linear Unit (GLU): In transformer networks, the 

feed-forward neural network (FFN) typically processes each 
token sequence independently and identically. In the 
AG-AMR, the Gated Linear Unit (GLU) is used as basic 
units, which is better suited for temporal tasks. Specifically, 
the GLU first uses its linear component to transform the 
input token sequences from the Multi-Head Self-Attention 
(MSA) mechanism, generating an intermediate output. Next, 
the gating component performs another linear 
transformation on the input and calculates a gating value 
ranging between 0 and 1 using an activation function such as 
a sigmoid. These gating values are used to modulate each 
element of the output from the linear transformation, thus 
dynamically controlling the amount of information flow. 
Finally, at the output stage of the GLU, the results of the 
linear transformation are multiplied elementwise by the 
gating values to produce the final output, as follows: 
 ' ' '( ) ( ) ( )L L G GGLU X W X b W X b= + ⊗ +  (14) 
In the formula, LW  and GW  are the weight matrices for the 
linear and gating components, respectively, while Lb  and 

Gb are the corresponding bias terms for these components. 

C. Principle and Advantages 
This section analyzes the principles and advantages of the 

proposed AG-AMR method. As shown in Fig. 2, which 
further emphasizes the attention-guided feature selection 
strategy based on the structure presented in Fig. 1, the model 
dynamically evaluates and filters data segments using the 
Guided Multi-Head Self-Attention mechanism. 

Specifically, in the process of data preprocessing and 
feature embedding, the modulation signal is treated as a 
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Fig. 2. The illustration of the Attention Guided Mechanism 

 
 

 

two-channel image with real and imaginary parts. The signal 
undergoes standardization and framing to maintain its 
integrity. It is then segmented into multiple frames, flattened, 
and transformed into token sequences through linear 
projection, which enables effective aggregation of the 
information. The introduction of class tokens and positional 
embeddings further enhances the model’s ability to capture 
global information and interpret temporal data. These steps 
provide the Transformer network with structured and 
comprehensive inputs, which promotes high accuracy on the 
tasks of modulation recognition. 

The AG-AMR method enhances the model’s performance 
by integrating the dynamic filtering capabilities of the 
attention mechanism with the gating control functions of the 
GLU. The MSA mechanism further refines the model's 
feature extraction by progressively reducing the number of 
embeddings from 1N −  to k , where N  represents the 
initial number of embeddings and k  corresponds to the 
retained essential embeddings. This reduction minimizes 
redundancy and significantly reduces the computational 
burden by discarding non-essential information. Moreover, 
with the increasing of the number of layers of the network, 
many more embeddings are progressively discarded, which 
ensures computational efficiency while maintaining 
high-quality features for the final decision-making process. 
For instance, retaining 90% of the data in a typical 12-layer 
Transformer network can increase computational efficiency 
by approximately 40%. 

Moreover, the GLU plays a crucial role in controlling 
information flow during the transformation process. It 
achieves data control through two pathways: the linear 
transformation path provides a new representation of the 
data, while the gating signal path generates weights ranging 
from 0 to 1 through a sigmoid function, which depicts the 
transmission strength of each element in the transformed 
data. By performing element-wise multiplication of these 
two outputs, the GLU finely controls the flow of the 

information, thereby it enhances the model’s ability to 
capture and process complex data relationships. 

The overall process of the proposed method is 
comprehensively described in Algorithm 1, which outlines 
the steps from signal preprocessing to embedding, feature 
selection, and training. The advantages of proposed method 
are presented as follows: Firstly, the method enhances the 
model’s ability to process signals in parallel, which enables 
efficient handling of large volumes of data during the feature 
embedding phase. This parallel processing improves 
computational efficiency, which enables the model to scale 
well with increasing data sizes. Secondly, the 
attention-guided approach enables the model to focus on the 
most relevant features while dynamically filtering out 
redundant or irrelevant data, which enhances robustness 
against adversarial perturbations. Finally, the use of the GLU 
instead of traditional MLP layers reduces computational 
overhead without compromising model performance. 
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V. EXPERIMENTS 
In this section, extensive experiments are conducted to 

validate the effectiveness of the AG-AMR method. The 
proposed method is trained and tested as well as other typical 
models using publicly available datasets under adversarial 
attacks. All experiments are performed on the NVIDIA 
GeForce RTX 3090 GPU. 

A. Experimental Setup 
1) Datasets: In this study, automatic modulation 

recognition is conducted on the datasets of RML2016.10a 
and RML2018.01a. The RML2016.10a dataset has 220,000 
modulation signals of 11 different modulation types. This 
dataset considers various factors of channel environments, 
including additive white Gaussian noise (AWGN), selective 
fading (Rician and Rayleigh), central frequency offset, and 
sampling rate offset. The signal-to-noise ratio (SNR) of 
samples is uniformly distributed between -20 dB and 18 dB 
at intervals of 2 dB. Each sample consists of 128 sampling 
points from in-phase (I) and quadrature (Q) components. 
The RML2018.01a dataset extends the range of modulation 
types and SNR values, as listed in Table Ⅰ. Each 
modulation-SNR combination contains 4,096 frames, with 
each frame comprising 1,024 complex time series samples. 
Samples are represented as floating-point numbers for the 
in-phase and quadrature (I/Q) components, where each 
frame has a shape of (1024, 2). In total, the dataset includes 
2,555,904 frames. During the experiments, stratified 
sampling is employed to partition the dataset into training, 
validation, and test sets in a 3:1:1 ratio for different 
modulation types. 

 
Table Ⅰ PARAMETERS OF THE BENCHMARK DATASETS 

Datasets Name RML 2016.10a RML 2018.01a 
Signal format In-phase and Quadrature 

Number of 
samples 220000 2555904 

Data Dimension (2, 128) (2, 1024) 
Range of SNR -20dB: 2dB: 18dB -20dB: 2dB: 30dB 

Modulations 

8 Digital Modulation 
8PSK, BPSK, CPFSK, 

GFSK, PAM4, 
16QAM, 64QAM, 

QPSK 
3 Analog Modulation 
AM-DSB, AM-SSB, 

WBFM 

19 Digital Modulation 
OOK, 4ASK, 8ASK, 
BPSK, QPSK, 8PSK, 

16PSK, 32PSK, 16APSK, 
32APSK, 64APSK, 
128APSK, 16QAM, 
32QAM, 64QAM, 

128QAM, 256QAM, 
OQPSK, GMSK 

5 Analog Modulation 
AM-SSB-WC, FM 

AM-SSB-SC, 
AM-DSB-WC, 
AM-DSB-SC 

Channel 
Conditions 

Noise (AWGN) 
Selective fading (Ricean&Rayleigh) 

Carrier frequency offset (CFO) 
Symbol rate offset (SFO) 

 
 
2) Models: To assess the performance of the AG-AMR 

method on the aforementioned datasets, it is compared 
against several competitive models proposed in recent years, 
including MCLDNN[21], PET-CGDNN[29], LSTM[19], 

and GRU[30] models. MCLDNN employs a complementary 
processing approach by decomposing IQ data into three 
input streams. It utilizes convolutional modules for feature 
extraction and fusion, followed by two LSTM layers and a 
fully connected network for further feature extraction. The 
convolutional kernel sizes are set to (8, 50), (2, 8, 50), (1, 8, 
50), and (2, 5, 100), while the number of units in the LSTM 
and fully connected layers are set to 250 and 128, 
respectively. The LSTM model leverages amplitude/phase 
features, which are processed through two LSTM layers, and 
a single fully connected layer and output the classification 
results. The PET-CGDNN and GRU models combine 
convolutional layers with gated recurrent units to recognize 
the IQ data. The convolutional kernels are set to (2, 8, 75) 
and (1, 5, 25), with the number of gated recurrent units set to 
128. The Transformer model employs the original 
multi-head attention mechanism with 12 layers. All models 
use the same training principles and configurations. The 
batch size is set to 128, and the initial learning rate is 0.01. If 
the validation loss does not decrease for 10 consecutive 
epochs, the learning rate is halved. If the validation loss does 
not decrease for 50 consecutive epochs, training is 
terminated early. 

3) Adversarial Attacks: To evaluate the robustness of the 
models against adversarial examples, extensive adversarial 
attack tests are conducted. These tests involve various 
gradient-based and optimization-based adversarial attack 
methods. The Fast Gradient Sign Method (FGSM) generates 
adversarial examples by adding small perturbations to the 
original data in the direction of the loss function gradient. 
Projected Gradient Descent (PGD), an iterative version of 
FGSM, creates stronger adversarial examples through 
updates with multiple small steps. For optimization-based 
attack methods, the Carlini & Wagner (C&W) attack 
iteratively minimizes the distance to the decision boundary 
to mislead the classifier into making incorrect decisions. 
Additionally, AutoAttack (AA) is an automated attack 
framework that combines multiple attack strategies to 
generate robust and reliable adversarial examples. These 
attack methods pose widely recognized threats to deep 
learning models and are commonly used to test a model’s 
resilience against potential attacks. All the attack methods 
are implemented using the Adversarial Robustness Toolbox. 
By employing these validation techniques, a comprehensive 
evaluation and analysis of the models’ robustness is ensured 
when being confronted with adversarial sample attacks. 

B. The Analysis of Optimal Structural Parameters 
To reveal the impact of frame length for feature 

embedding and the network layers of the AG-Encoder on 
model performance, experiments are conducted with varying 
frame lengths and network depths. The results on the two 
datasets are presented in Table Ⅱ. It is evident that, with the 
same frame length, deeper network layers provide the model 
with stronger feature extraction capabilities, resulting in 
better recognition performance. Notably, the recognition 
performance of AG-AMR demonstrates sensitivity to the 
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Fig. 3. Accuracy comparison of different discard rate on (a) RML2016.10a, (b) RML2018.01a 

 
Fig. 4. Training time comparison of different discard rate on (a) RML2016.10a and (b) RML2018.01a 

 
 

Table Ⅱ MODEL PERFORMANCE ACROSS DIFFERENT FRAME LENGTHS AND NUMBER OF BLOCKS 

Frame Length 
( L ) 

Number of 
blocks ( H ) 

RML2016.10a RML2018.01a 

Parameters Training time 
(sec/epoch) Accuracy (%) Parameters Training time 

(sec/epoch) Accuracy (%) 

2 4 10.9M 33 59.60 8.9M 762 32.09 
2 8 11.1M 70 60.70 9.1M 1628 33.54 
2 12 11.3M 112 61.32 9.3M 2681 33.93 
8 4 4.7M 16 58.29 3.4M 347 38.74 
8 8 4.9M 31 59.84 3.6M 525 40.26 
8 12 5.1M 45 60.25 3.8M 1058 41.67 

16 4 3.8M 13 57.20 3.4M 304 49.03 
16 8 3.9M 25 57.25 3.6M 573 50.48 
16 12 4.1M 36 57.66 3.8M 837 50.82 
32 4 3.5M 12 55.00 5.0M 187 59.41 
32 8 3.7M 21 57.08 5.2M 354 61.74 
32 12 3.9M 31 57.35 5.3M 517 64.03 
64 4 3.8M 11 50.48 8.9M 146 49.51 
64 8 3.9M 20 51.62 9.1M 270 50.04 
64 12 4.1M 28 52.66 9.3M 398 50.22 
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Table Ⅲ COMPARISON OF MODEL SIZE AND COMPLEXITY ON TWO DATASETS: RML2016.10a (denoted by A) and  
RML2018.01a (denoted by B) 

Model Learning 
parameters 

Training time 
(sec/epoch) 

Training 
epochs 

Minimum 
validation loss 

Dataset A B A B A B A B 

AG-AMR 11261259 5349976 112 517 121 134 1.0878 1.1191 

GRU 151179 152856 9 313 103 162 1.1124 1.1124 

LSTM 201099 202776 11 497 89 106 1.1004 1.1192 

MCLDNN 406199 407876 17 662 103 92 1.0612 1.1313 

PET-CGDNN 71871 75340 6 208 97 311 1.0945 1.1185 

Transformer 15765744 9547657 161 2796 156 169 1.0852 1.1182 

 
 

input frame length, achieving the highest accuracy with 
specific frame lengths on both datasets. Due to the 
differences in input sample dimensions across different 
datasets, the model training process should aim to extract 
feature information adequately through appropriate frame 
lengths. Specifically, short frames carrying less information 
are prone to overfitting due to over-interpretation, while long 
frames carrying too much information might not be fully 
utilized for feature extraction, leading to suboptimal 
recognition performance. Moreover, the training time of the 
model decreases with an increase in frame length and 
increases with an increase in network depth. Shorter frames 
generate more training tokens, necessitating longer training 
times. To validate the effectiveness of AG-AMR, we 
adopted the optimal structural parameters, which yielded the 
best accuracy, for further experiments on the RML2016.10a 
and RML2018.01a. 

Additionally, the impact of the attention mechanism on 
accuracy is explored by conducting experiments with 
different inter-layer discard rates in the guided multi-head 
attention mechanism. The results are shown in Fig. 3. The 
model’s accuracy is evaluated using clean examples with an 
SNR above 0 dB and adversarial examples generated by 
FGSM white-box attacks with a perturbation intensity of 
0.001. As observed, increasing the dropout rate leads to a 
decrease in accuracy for clean examples, while the accuracy 
for adversarial examples gradually improves. Analysis 
indicates that when the guided inter-layer dropout rate is set 
to 4%, the model achieves the most balanced performance on 
both datasets, maintaining 90.2% and 91.4% accuracy for 
clean sample recognition and reaching 82.45% and 82.35% 
robustness accuracy against adversarial attacks, respectively. 

The comparison of training times on the two datasets is 
illustrated in Fig. 4. Compared to the original model that 
retains all information, the guided attention model with a 4% 
dropout rate reduced computational load by 19.31% and 
shortened the training time by an average of 22.60%. This 
demonstrates that the AG-AMR method not only excels in 
balancing accuracy and adversarial robustness but also 
reduces the total amount of data involved in the forward pass, 
allowing the model to focus on key information and achieve 

faster convergence. 

C. Recognition Performance on Clean Examples 
In order to comprehensively evaluate the performance of 

AG-AMR, two AG-AMR curves are presented in Fig. 5. The 
first one, labeled by AG-AMR (with best performance), 
represents the performance achieved by the model with the 
best configuration. The second one, labeled by AG-AMR 
(with most efficiency), demonstrates the performance of the 
most efficient configuration in terms of computational 
complexity. These curves are compared with the original 
Transformer model and other typical models as described in 
Section 5.A.  

In the experiments on RML 2016.10a, the overall 
accuracy of GRU is 58.42%, with an accuracy above 0 dB of 
85.52%, which is significantly lower than the results of the 
baseline models. The overall accuracy of the PET-CGDNN 
and LSTM across all SNRs is 60.53% and 60.45%, 
respectively. However, the LSTM model performs well 
above 0 dB, with both models achieving 89.91% and 89.75%, 
respectively. The MCLDNN and Transformer have average 
accuracies of 61.48% and 61.39%, respectively, and 
recognition rates of 91.06% and 91.39% above 0 dB SNR. 
The AG-AMR (with best performance) method achieves an 
average accuracy of 61.49%, which surpasses all models. 
This model significantly improves accuracy around 0 dB 
SNR and approximates the optimal models at high SNRs. 
The experiments on the RML 2018.01a dataset show similar 
results. The AG-AMR (with best performance) method 
achieves an overall accuracy of 64.03%, which outperforms 
the MCLDNN and PET-CGDNN models, with a notable 
advantage around 0 dB SNR and competitive performance at 
high SNRs. 

By comparing the experimental results of AG-AMR (with 
best performance) and AG-AMR (with most efficiency), it is 
obvious to see that, in terms of performance, particularly the 
overall recognition accuracy, the results of the most efficient 
one are significantly lower than those of the best 
performance model. Specifically, in the RML 2016.10a 
dataset, the most efficient model achieves an overall 
accuracy of 55.00% and a recognition rate above 0 dB of 
80.88%, which is lower than both the best performance 
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models of 61.49% and 90.65%. Across the entire SNR range, 
the most efficient performs worse than the optimal model, 
especially at higher SNRs, where the accuracy gap is 
particularly pronounced. Similarly, in the RML 2018.01a 
dataset, the most efficient one also shows lower accuracy, 
with an overall accuracy of 49.03%, far below the best one 
64.03%. Additionally, it is further observed that, although 
the most efficient model exhibits lower accuracy than the 
best performance, it demonstrates significant advantages in 
efficiency. Specifically, in the experiments on both datasets, 
the most efficient model reduces the number of parameters 
by 7.8M and the training time by 2.6 hours on the RML 
2016.10a dataset, and on the RML 2018.01a dataset, the 
number of parameters is reduced by 0.9M and training time 
by 6.1 hours.  

The analysis of the comparison of model size and 
complexity across two datasets, as shown in Table III, 
reveals that AG-AMR has a larger number of parameters 
compared to other advanced models. This is primarily due to 
the use of the Transformer’s Encoder structure, which 
inherently comes with a substantial number of parameters. 
However, despite this, AG-AMR achieves a reduction in 
both model volume and training time when compared to the 
original Transformer model. Specifically, AG-AMR has 
11.3M parameters, which is lower than 15.8M of the original 
Transformer model, although it is still higher than other 
lightweight models such as GRU (0.15M) and LSTM (0.2M). 
Regarding the training time, AG-AMR takes 3.76 hours, 
which is shorter than the original Transformer’s by 3.21 
hours in RML2016.10a. By incorporating the improved 
attention-guided mechanism and optimized structural design, 
AG-AMR makes a good balance between training efficiency 
and high performance, which demonstrates that structural 
optimization can significantly improve computational 
efficiency without sacrificing model accuracy. 

These experiments indicate that the AG-AMR with an 
attention-guided mechanism can effectively discard some 
detailed information in signals. This discarding allows the 
model to remove noise components from the input signal, 
thereby increases the model’s focusing on critical 
information. Additionally, by fine-tuning the model 
structure and the attention-guided mechanism, the AG-AMR 
method achieves a modulation recognition model that 
weakens the impact of noises while maintaining high 
accuracies. 

D. Robust Performance Against Adversarial Examples 
The robustness of the AG-AMR method under different 

adversarial attacks is evaluated using several common 
adversarial attack methods, including FGSM, PGD, C&W, 
and AutoAttack. In order to ensure the validity of the attack 
results, the RML2018.01a dataset is pre-processed by 
screening and selecting examples that can be correctly 
classified by the model. Since each model exhibits different 
accuracy on the test set, the correctly classified examples 
also vary across models. By following the method in [26], a 
total of 255,590 correctly classified examples are selected to 
form the attack test set. 

For each model, various levels of adversarial attacks are 
performed on the selected examples, and the models’ 
robustness is compared based on their accuracy under 
different attack intensities. The experimental results are 
depicted in Fig. 6. It is obvious to see that, all models exhibit 
a decreasing trend in accuracy as the attack intensity 
increases. Specifically, under common attacks of FGSM and 
PGD, when the perturbation intensity reaches 0.005, the 
accuracy of baseline models such as GRU, LSTM, and 
MCLDNN drops rapidly to a value below 20%, which 
indicates that these models are highly vulnerable to 
adversarial perturbations. In contrast, the AG-AMR method 
consistently maintains an accuracy of around 30% under the 
same conditions, which demonstrates its robustness. 

Under the AA attack, although all models exhibit a 
significant decrease in accuracy, the AG-AMR shows a clear 
advantage of performance over other models under the same 
attack intensity. For instance, with an attack intensity of 
0.005, AG-AMR maintains an accuracy of about 30%, while 
other models show accuracy below 20%. This phenomenon 
demonstrates the effectiveness of the attention-guided 
feature selection strategy in improving the model’s 
robustness. Moreover, AG-AMR’s robustness is particularly 
evident in the face of high-intensity C&W attack, where 
adversarial perturbations are strategically crafted to bypass 
model defenses. Under this attack, the accuracy of AG-AMR 
remains at around 23%, whereas other models’ accuracy 
values drop to below 17%. The trends shown in Fig. 6 
highlight that, while all models experience a certain level of 
performance degradation under strong adversarial attacks, 
AG-AMR’s accuracy drops insignificantly, which 
demonstrates its ability to withstand stronger adversarial 
perturbations. This result further validates the effectiveness 
of its attention-guided mechanism, which allows the model 
to dynamically focus on key features of the signal while 
disregarding irrelevant noise components, thus reducing the 
impact of adversarial perturbations. 

E. Defense Performance Comparison with Adversarial 
Training 
Adversarial training is an effective means of enhancing 

model robustness. In this section, the models are fine-tuned 
using adversarial training on the RML2018.01a dataset, 
evaluating the advancement of the proposed method through 
the implementation of various adversarial attack methods. 

Due to the difficulty in achieving high accuracy with low 
SNR examples (modulated signals below -2 dB), it is 
unnecessary to perform adversarial attacks on these 
examples. This experiment primarily selects signal with 
SNRs greater than -2 dB as test subjects. At each SNR level, 
20% of the training set are sampled to create the adversarial 
training dataset. For generating adversarial training 
examples, the most common PAT method [31] for 
gradient-based attack methods is used. This method employs 
adversarial examples generated by PGD attacks for training, 
setting the maximum perturbation coefficient epsilon to 0.01, 
with a perturbation step size of 0.002 and 5 steps. For 

This article has been accepted for publication in IEEE Open Journal of Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJSP.2025.3526577

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

11 

optimization-based attack methods, examples generated by 
the C&W attack method with 5 query rounds are used as the 

training set. 

 
Fig. 5. Comparison on accuracy of models on (a) RML2016.10a, (b) RML2018.01a 

Fig. 6. Different degrees of different attack on AMR models on RML2018.01a 
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Table Ⅳ ACCURACY OF DIFFERENT MODELS UNDER DIFFERENT ATTACKS 

Models Average Accuracy from -2dB to 30dB (%) 
Clean PGD FGSM C&W AA 

Transformer 
(baseline) 90.53 8.95 11.49 15.11 8.69 

Adversarial Training 80.45 47.30 55.88 26.75 12.74 

Random Smoothing 77.37 34.62 47.46 27.83 11.97 

Gradient Masking 79.62 32.38 41.82 24.65 10.29 

AG-AMR 85.19 72.69 74.58 64.90 21.02 

 
After fine-tuning with adversarial training, the adversarial 

trained models are tested using clean examples and 
adversarial examples generated by PGD, FGSM, C&W, and 
AutoAttack methods. To make the attack effects more 
evident, the attack intensity is increased, setting epsilon to 
0.03 for PGD, FGSM, and AutoAttack, and setting iterations 
to 30 for C&W attacks. Since the proposed method is also 
based on the Transformer architecture, the baseline model 
for comparison is the original Transformer model. This 
ensures that the improvements achieved by the proposed 
method are due to the optimizations introduced within the 
Transformer structure itself. Various adversarial defense 
methods are selected for comparison, including the baseline 
Transformer with its adversarial training approach, as well 
as other defense techniques such as random smoothing and 
gradient masking. The experimental test results are shown in 
Table Ⅳ. The results indicate that, although the baseline 
model exhibits excellent recognition performance on clean 
examples, its accuracy drastically drops to 8.69% when 
facing adversarial attacks, especially during AutoAttack. 
Compared to the adversarial training method using the 
original Transformer, AG-AMR demonstrates better overall 
performance, exhibiting not only more prominent defense 
capabilities but also maintaining an 85.19% accuracy on 
clean examples. Furthermore, compared to typical random 
smoothing and gradient masking methods, AG-AMR 
combined with adversarial training shows superior accuracy, 
particularly in robustness against PGD attacks, achieving 2 
to 3 times the robustness of other methods.  

VI. CONCLUSION 
In this paper, a robust modulation recognition method 

based on attention guidance, AG-AMR, is proposed. 
AG-AMR fully leverages the advantages of attention 
mechanisms in extracting key features, guiding and 
optimizing attention distribution during the training process, 
which enables the model to effectively filter and enhance 
critical signal features. Through extensive exploration of the 
model structure and numerous experiments on public 
datasets, this method is validated to outperform existing 
typical modulation recognition models and adversarial 

defense methods in terms of accuracy and robustness. 
Additionally, the performance comparison after adversarial 
training further demonstrates the advantage of the AG-AMR 
method in balancing precision and robustness. The 
AG-AMR method provides performance enhancement and 
security optimization solutions for deep learning-based 
modulation recognition models, enhancing the stability and 
reliability of AI-driven spectrum monitoring systems and 
non-cooperative communication systems in practical 
applications. 
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