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ABSTRACT In recent years, the use of time series analysis has become widespread, prompting researchers to
explore methods to improve classification. Time series self-supervised learning has emerged as a significant
area of study, aiming to uncover patterns in unlabeled data for richer information. Contrastive self-supervised
learning, particularly, has gained attention for time series classification. However, it introduces inductive
bias by generating positive and negative samples. Another approach involves Masked Autoencoders (MAE),
which are effective for various data types. However, due to their reliance on the Transformer architecture,
they demand significant computational resources during the pre-training phase. Recently, inspired by the
remarkable advancements achieved by convolutional networks in the domain of time series forecasting,
we aspire to employ convolutional networks utilizing a strategy of mask recovery for pre-training time
series models. This study introduces a novel model termed Hierarchical Sparse Convolutional Masked-
Autoencoder, “HSC-MAE”, which seamlessly integrates convolutional operations with the MAE architecture
to adeptly capture time series features across varying scales. Furthermore, the HSC-MAE model incorporates
dedicated decoders that amalgamate global and local information, enhancing its capacity to comprehend
intricate temporal patterns. To gauge the effectiveness of the proposed approach, an extensive array of
experiments was conducted across nine distinct datasets. The experimental outcomes stand as a testament
to the efficacy of HSC-MAE in effectively mitigating the aforementioned challenges.

INDEX TERMS Time series classification, self-supervised learning, time series pre-training.

I. INTRODUCTION
The applications of time series analysis are manifestly evident
across various academic disciplines, including finance [1],
meteorology [2], transportation [3], and biology [4]. These
instances of application vividly underscore the remarkable
versatility of time series analysis. Unlike traditional machine
learning methods such as K-Nearest Neighbors (KNN) [5],
decision trees [6], and Support Vector Machines (SVM) [7],
deep learning methods automatically learn representations
from data without the need for complex feature engineer-
ing [8]. However, deep learning methods heavily rely on a
large amount of labeled data, which is difficult to obtain in
real-world scenarios. This difficulty has led researchers to
explore learning features from unlabeled data. Self-supervised

learning has made remarkable progress in computer vision
(CV) [9], [10] and natural language processing (NLP) [11],
[12] domains, inspiring researchers in the time series do-
main. Self-supervised learning has gained substantial traction
within the realm of time series analysis, constituting two fun-
damental categories: contrastive learning-based methods and
generation-based methods. To elucidate, Franceschi et al. [13]
treats sub-sequences from the same series as positive sam-
ples and sub-sequences from different series as negative
samples. Tonekaboni et al. (TNC) [14] considers adjacent
sub-sequences as positive pairs. Eldele et al. (TS-TCC) [15]
partitions samples based on augmented sequences obtained
from transforming time series and learns sequence represen-
tations with contextual information. Yue et al. (TS2Vec) [16]
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creates positive and negative samples from both the time
dimension and the instance aspect, where sequences with
augmentation on the same timestamp are considered posi-
tive pairs, and sequences from the same instance are positive
samples. Zhang et al. (TF-C) [17] simultaneously utilizes
time-domain and frequency-domain augmentation, combin-
ing time-frequency consistency for pre-training. Regardless
of their specific methodologies, contrastive learning methods
such as TNC, TS-TCC, TS2Vec, and TF-C [13], [14], [15],
[16], [17], all share a common characteristic: they construct
positive and negative samples based on predefined assump-
tions about data characteristics. The demarcation between
positive and negative instances introduces inherent inductive
biases, which, in turn, could potentially engender model pre-
disposition.

Another major approach to time series classification in-
volves the use of Transformer architecture centered around
masking and prediction. This approach draws its inspiration
from the notable achievements of BERT [18] in the realm
of representation learning for natural language processing
(NLP). Zerveas et al. (TST) [19] introduced the application of
Transformer masking and prediction techniques to the domain
of time series data. In TST, the original sequence is ingested
as input, and subsequently, the obscured segments are se-
quentially restored. Conversely, Cheng et al. (TimeMAE) [20]
considers computational complexity and the redundancy
in time series data by partitioning the time series into
patches and designing classification and regression pretext
tasks.

However, Transformer-based models exhibit two primary
limitations. Firstly, when confronted with lengthy sequences,
the intricate nature of the self-attention mechanism leads to
a substantial escalation in the computational and storage re-
sources essential for both the training and inference phases.
Secondly, conventional Transformers tend to disregard the
multi-scale temporal dependencies inherent in time series
data. The intricate relationships and patterns within a time
series fluctuate across various temporal spans. Transformers
prioritize global information interaction and modeling, rela-
tively neglecting the local characteristics at different scales.
In contrast, convolutional networks typically have fewer pa-
rameters, enabling efficient parallel computation, and are
well-suited for extracting local features of time series data.
Moreover, recent advancements in the field of time series fore-
casting, exemplified by PatchMixer [21], have demonstrated
the effectiveness of convolutional networks in handling time
series data. At the same time, as noted by Zhao et al. [22], con-
volution may cause the network to focus excessively on local
information while relatively neglecting long-range dependen-
cies. To fully leverage the potential advantages of CNNs over
Transformer-based methods by effectively combining global
and local information while mitigating the introduction of
inductive bias, we propose the Hierarchical Sparse Convolu-
tional Masked-Autoencoder, HSC-MAE, for learning features
from time series data. The pivotal contributions of this article
are outlined as follows:

1) Our study adeptly combines convolutional operations
with the MAE-style approach during the time series
pre-training phase by employing sparse convolution. We
propose a simple yet effective architecture that enables
the model to learn time series features from multi-scale
perspectives, further validating the feasibility of convo-
lutional networks in the field of time series analysis.

2) We propose novel pretext tasks: including the local re-
covery and global reconstruction. These tasks guide the
model to simultaneously focus on both local and global
information without introducing additional inductive bi-
ases.

3) To evaluate the effectiveness of our approach, we
conduct comprehensive experiments on nine distinct
datasets. Our method achieves state-of-the-art(SOTA)
performance on five of these datasets. Additionally, the
average accuracy and F1 scores across all nine datasets
show improvements.

The remainder of this paper is organized as follows.
Section II reviews time series classification and time se-
ries self-supervised learning. Section III provides a detailed
presentation of our HSC-MAE method. Section IV compre-
hensively outlines the experimental details and analyzes the
experimental results of our method. Finally, we conclude in
the last section.

II. RELATED WORK
We will briefly review related works in the areas of time se-
ries classification and self-supervised learning for time series,
pertinent to our research.

A. TIME SERIES CLASSIFICATION
Traditional machine learning algorithms mostly rely on sta-
tistical and distance-based approaches. Bagnall et al. [23]
achieved favorable results using nearest neighbor classi-
fiers [5] and distance functions such as Dynamic Time
Warping (DTW) [24]. Lines et al. [25] proposed HIVE-
COTE, combining multiple classifiers and hierarchical voting
for classification. Rocket [26] utilizes multiple random con-
volutional kernels for feature extraction, followed by linear
classifiers to obtain results. Proximity Forest [27], similar to
the random forest [28], employs distance measures to com-
pare unclassified samples with randomly chosen samples from
each class, facilitating classification. However, traditional
learning methods necessitate complex feature engineering.
In contrast, deep learning methods are driven by data. Is-
mail [29], Zheng [30], Tan et al. [31], employ convolutional
networks for time series analysis. MACNN [32] integrates at-
tention mechanisms and multi-scale CNNs for classification.
Wu et al. [33] combine time-frequency attention with frame-
wise self-attention for sound classification. Wu et al. [34]
utilize graph neural networks to extract temporal information.
However, many of these methods heavily rely on labeled data,
which is often challenging to acquire.
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FIGURE 1. Left: Hierarchical pre-training structure based on patch-wise sparse masking. Right: Configurations of the two pretext tasks. The local decoder
recovers only the masked portions, while the global decoder reconstructs the entire sequence by applying self-attention to the features.

B. SELF-SUPERVISED LEARNING FOR TIME SERIES
Given the difficulty in acquiring labeled data and the re-
markable achievements of self-supervised pre-training in the
domains of natural language understanding [35], [18] and
computer vision [36], [37], [38], researchers in the field
of time series have also turned their attention towards the
paradigm of self-supervised learning. Reconstruction-based
methods employ auto-encoders to recover the original se-
quences. For instance, TimeNet [39] uses recurrent neural
networks for reconstruction. TST [19] employs Transform-
ers to sequentially recover masked sequences. Similar to
PatchTST [40], TimeMAE [20] utilizes Transformer to re-
construct sequences with continuous sub-sequences as basic
units. Meanwhile, contrastive learning-based methods are
prevalent. SelfTime [41] leverages different levels of samples
and temporal relationships between sub-sequences, employ-
ing an architecture similar to SimCLR [37] for contrasting
time series information. CoST [42] combines temporal con-
sistency and frequency domain information, learning repre-
sentations through a prediction-based approach. Deldari [43]
maximizes shared information within continuous time inter-
vals while minimizing shared information across non-adjacent
time intervals to detect changes in time series. Hyvarinen [44]
utilized logistic regression to learn temporal dependencies
by contrasting sub-sequences of the original time series
with randomly transformed time points. InfoTS [45] employs
an information-aware augmentation approach and adaptively
selects the optimal augmentation for learning time series
representations. SimMTM [46] integrates mechanisms for
contrastive learning and masked time-series modeling, uti-
lizing series similarity to aggregate and reconstruct time
series. Furthermore, TS-TCC [15], TS2Vec [16], TF-C [17],
TNC [14], and others are not reiterated here. It is evident
that the foundation of contrastive learning relies on prior as-
sumptions about the data, such as determining whether there
is an overlap between sub-sequences to distinguish positive
and negative samples. This prior assumption requires human
judgment, potentially introducing inductive bias. For example,

TS2Vec [16] uses different samples at the same timestamp
as negative samples for contrastive learning, constructing a
contrastive loss. However, the assumption that different sam-
ples are necessarily dissimilar can sometimes fail, affecting
the effectiveness of pre-training.

III. METHODOLOGY
A. OVERALL FRAMEWORK
Each multivariate time series sample, denoted as X i, is charac-
terized by its sequence length T and feature dimension D. Our
network aims to map X i to Ri, where Ri ∈ Rm×k , with m and
k respectively denoting the time and variable dimension of the
representation vector. This mapping aims to ensure that Ri ac-
curately captures the essential representation of X i, enabling
general pre-training so that the model can be fine-tuned for
various specific tasks. The overall architecture of HSC-MAE
is illustrated in Fig. 1, which comprises the following key
components: patch-wise sparse masking for pre-training, a
hierarchical architecture with layered encoding and decoding,
and a novel optimization strategy that captures both global and
local features.

B. PATCH-WISE SPARSE MASKING FOR PRE-TRAINING
Patch Partition: Time series data often exhibit significant
temporal redundancy between adjacent points, making it
relatively easy to recover one point from its neighboring
points [20]. Therefore, we adopted the methodologies pro-
posed by PatchTST [40] and TimeMAE [20]. This approach
involves segmenting the original time series data into non-
overlapping patches using one-dimensional cross-channel
convolution. Each patch is then treated as a fundamental unit
for masking with a fixed probability, resulting in the trans-
formation of each X i into Zi with Zi ∈ Rl×d , where l and
d respectively represent the time and variable dimension of
embedding.

Sparse Convolution: Unlike Transformer-based methods,
convolutional networks lack built-in mechanisms for handling
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FIGURE 2. Comparison between sparse convolution and ordinary convolution. The figures are represented using binary masks, with the unmasked region
denoted as 1. As depicted in the left, when using ordinary convolution, the result will be nonzero whenever the convolution kernel covers any unmasked
point (value 1 position), leading to a reduction in the masked region. In contrast, as shown in the right, sparse convolution can skip masked positions,
thereby avoiding the expansion of the unmasked region.

sequences of varying lengths. Directly setting masked posi-
tions to 0 and inputting them into the network carries the risk
of distorting the underlying data distribution. Additionally, as
multiple convolutional layers are applied, the initially masked
region may gradually decrease in size [47]. To overcome
these challenges, we draw inspiration from the techniques
proposed in SparK [47] and ConvNeXt V2 [48]. Specifically,
we employ sparse convolution for encoding during the mask-
ing stages. The comparison between ordinary convolution and
sparse convolution is illustrated in Fig. 2. This choice ensures
stability within the masked region and mitigates potential
issues related to shifts in data distribution. Importantly, it
should be noted that the integration of sparse convolution is
limited to the encoder phase of the pre-training process. After
pre-training is completed, sparse convolution is reverted to
standard convolutional operations.

C. HIERARCHICAL ENCODER AND DECODER
Encoder: The HSC-MAE network employs a hierarchical
encoding-decoding structure to incorporate time series pat-
terns from multiple scales. The encoder network applies re-
peated convolution modules and down-sampling three times,
with each down-sampling reducing the scale by a factor of 2.
For input data Zi ∈ Rl×d , after each convolution block and

down-sampling, the data scales become S1 ∈ R
l
2×h1 , S2 ∈

R
l
4×h2 , and S3 ∈ R

l
8×h3 , where h1, h2, and h3 are represen-

tation dimensions at different scales. The configuration of
the convolution module utilizes 1D convolution and follows
the order of cross-channel, channel-split, and cross-channel
convolution, with a maximum convolution kernel applied dur-
ing channel-split convolution. The design of the convolutional
module in HSC-MAE is illustrated in Fig. 3.

Decoder: The decoder receives features from the encoder’s
corresponding positions and input from smaller feature maps.
For example, when computing the embedding vector D2 of the
decoder’s second layer, the decoder uses D1 from its first layer

FIGURE 3. HSC-MAE Block Designs. Consistent with ConvNeXt [49], the
design mimics a self-attention mechanism, following the principle of an
inverted bottleneck. “Indim” represents the input dimension, and “KS”
denotes the kernel size in the context of the convolution module. “LN”
refers to Layer Normalization, “GELU” denotes the activation function, and
“GRN” stands for Global Response Normalization, which aggregates global
features for data normalization and calibration.

and S2 from the encoder’s second layer. For masked positions
in S2, we use learnable embeddings for padding.

D. OPTIMIZATION STRATEGY
To enable the model to comprehensively consider both global
and local information, we introduce two decoders: the local
decoder and the global decoder. Specifically, the architec-
ture of the local decoder is as follows: each layer receives
features from the corresponding layer of the encoder, and
the final layer of the local decoder focuses on reconstructing
the masked regions. Meanwhile, the global decoder processes
features from the corresponding layer using self-attention op-
erations. Taking the process of obtaining feature D2 as an
example, the computation is performed as described in (1),
where N2 represents the second-layer decoder network and S′2
represents the feature obtained by replacing the masked region
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Algorithm 1: Pre-Training.
Require: time series data: X = {X1, X2, . . . , Xn},

downsampling layers: down_l
Ensure: minimal Loss
1: Loss = 0
2: for Xi ∈ X do
3: Zi ← patchify(Xi )
4: S1 ← Sparse-Enc1(Zi )
5: for j ← 2 to down_l do
6: S j ← Sparse-Convnet j (S j−1)
7: end for
8: S′down_l =

Replace the masked positions in Sdown_l

with learnable embeddings.
9: Dlocal1 ← Local-dec1(S′down_l )

10: Dglobal1 ← Global-dec1(S′down_l )
11: for k← 2 to down_l do
12: S′down_l−k = Replace the masked positions in

Sdown_l−kwith learnable embeddings.
13: Dlocalk ← Local-deck (Dlocalk−1, S′down_l−k )
14: Dglobalk ←

Global-deck (Dglobalk−1, SA(S′down_l−k ))
15: end for
16: Xout1 ← MLP1(Dlocaldown_l )
17: Lossi1 ← Mask-Region&MSE(Xout1, Xi )
18: Xout2 ← MLP2(Dglobaldown_l )
19: Lossi2 ← MSE(Xout2, Xi )
20: Loss← Loss+ Lossi1 + Lossi2

21: end for

with learnable embeddings:

D2 = N2
(
D1, SA

(
S′2

))
, (1)

where SA(S′2) can be calculated as

SA
(
S′2

) = Softmax

(
S′2 · S′T2√

d

)
· S′2. (2)

In conclusion, following its traversal through the final
decoder layer, the global decoder undertakes the task of re-
constructing the entire sequence, without regard to whether it
pertains to a masked region or not. It is imperative to highlight
that both of these decoders employ the mean squared error
(MSE) as the loss function. This architectural choice empow-
ers the model to holistically incorporate both local and global
information into its learning process when dealing with time
series features. In Algorithms 1 and 2, we respectively outline
the processes of pre-training and downstream classification
tasks. Notably, during the classification task, the decision to
freeze the pre-trained network is contingent upon whether the
current evaluation pertains to linear evaluation or fine-tuning
evaluation. Detailed explanations regarding linear evaluation
and fine-tuning evaluation are expounded upon in the experi-
mental section.

Algorithm 2: Downstream Classification.
Require: time series data: X = [X1, X2, . . . , Xn], label:
Y = [y1, y2, . . . , yn], pretrained model: Sparse-Encs

Ensure: minimal Loss
1: Loss = 0
2: Change Sparse-Encs into conventional ConvEncs
3: for Xi ∈ X do
4: Zi ← patchify(Xi )
5: Ei ← ConvEncs(Zi )
6: end for
7: for all i ∈ {1, 2, . . . , n} do
8: Xout ← MLP3(Ei )
9: Loss← Loss + CrossEntropy(Xout, yi )

10: end for

TABLE 1. Statistics of the 9 Datasets Used in the Experiments

IV. EXPERIMENTAL RESULTS
A. EVALUATION DATASETS AND EXPERIMENTAL SETTINGS
In our study, we conduct an analysis employing nine exten-
sively utilized time series classification datasets retrieved from
the UEA time series archive [50], [51]. The details of the
datasets are presented in Table 1. For the HSC-MAE model,
we adopt a patch size of 4 and executed three successive
rounds of convolution and down-sampling blocks, with each
down-sampling operation diminishing the scale by a factor of
2. Following the convolutional modules, the embedding di-
mensions are configured to 96, 192, and 384, correspondingly.
The default mask rate is set to 0.5. The batch size for both the
training and testing sets is set to 200 by default. The number
of epochs for the pre-training process is 50, while the default
number of epochs for the fine-tuning process is 200. In the
optimization process, we employ the Adam optimizer with a
default learning rate of 0.001. For both decoders, we utilize
the mean squared error (MSE) function as the loss function.
In the evaluation phase, we assess model performance using
accuracy and F1 score as our chosen performance metrics.
To assess the effectiveness of the pre-training process, we
conduct experiments using both linear evaluation and fine-
tuning evaluation methods. In the linear evaluation, we freeze
the pre-trained parameters and exclusively fine-tuned the final
classification head. Conversely, in the fine-tuning evaluation,
we fine-tune the parameters of the entire network.Whenever
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TABLE 2. Comparison Results of HSC-MAE and Competitive Baselines on 9 Widely-Used Datasets

feasible, we utilized the hyperparameters provided in the orig-
inal papers for the comparative methods. All experiments
are conducted using the PyTorch 1.7.1 library on a com-
puter equipped with a GeForce RTX 3060 GPU supporting
NVIDIA CUDA.

B. ONE-TO-ONE PRE-TRAINING RESULTS
In the forthcoming experiments, we endeavor to address the
following eight research questions (RQs).

RQ1: Can HSC-MAE be more accurate and effective com-
pared to competitive models?

Table 2 presents the evaluation metrics across nine datasets,
and a comparative analysis reveals the overarching superiority
of fine-tuning evaluation over linear evaluation within each
model architecture. Given that fine-tuning evaluation is predi-
cated upon supervised training, its performance surpasses that
of the linear adjustment of classification heads, in alignment
with anticipated outcomes. Conversely, the performance of
the linear fine-tuning approach substantiates the efficacy of
pre-training.

Firstly, let us consider the scenario of linear evalua-
tion. In the experimental results of linear evaluation, our
method HSC-MAE achieves SOTA performance across five
datasets. It is noteworthy that, on average, the time series
lengths of these five datasets are relatively long, enabling
our pre-training approach to conveniently leverage informa-
tion captured from a multiscale perspective. For instance, the
EthanolConcentration (EC) dataset exhibits a lengthy time
span of 1751, posing challenges for Transformer-based mod-
els due to their high computational resource requirements,
ultimately affecting their efficiency. In contrast, HSC-MAE
adeptly integrates multiscale temporal dependencies, enhanc-
ing its ability to detect broad temporal patterns, as evidenced
by its accuracy of 37.26% on the EC dataset. On the other
hand, the shorter time spans of the remaining four datasets

may limit HSC-MAE’s capability to capture multiscale fea-
tures. Nonetheless, HSC-MAE consistently demonstrates ro-
bust performance, highlighting its proficiency in capturing
local information. HSC-MAE achieves a particularly out-
standing accuracy of 25.56% on the PhonemeSpectra dataset,
surpassing even the supervised learning performance of other
models. Clearly, compared to contrastive learning methods
such as TS2Vec, TF-C, and TS-TCC, HSC-MAE exhibits
greater improvements, particularly outperforming TF-C by a
significant margin of 49.00%. This observation underscores
the versatility of the MAE training paradigm. While con-
trastive methods continue to achieve SOTA on a limited
number of datasets, this may be attributed to their inherent pri-
ors aligning well with dataset characteristics. However, their
scalability remains constrained.

The experiments on linear evaluation above demonstrate
that a simple mask recovery strategy during the pre-training
process can yield satisfactory results. Next, we consider the
performance of fine-tuning evaluation. It can be observed that
HSC-MAE continues to lead in terms of average accuracy.
This suggests that employing convolutional networks as the
backbone is a reasonable approach. However, for the Japane-
seVowels and NATOPS datasets, with their relatively shorter
time lengths, the network’s effectiveness in extracting mul-
tiscale features from them is slightly inferior to the optimal
solution. The DuckDuckGeese dataset, possibly due to its
large dimensions, may result in the single-encoder structure
showing some inadequacy in handling dimensional infor-
mation. However, overall, the architecture of convolutional
networks is capable of addressing the majority of dataset
scenarios.

C. ONE-TO-MANY EVALUATION
RQ2: Can the network learn general features of time series?

One major advantage of self-supervised methods is their
ability to learn generic representations of data. Therefore, we
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TABLE 3. One-to-Many Evaluation of HSC-MAE

assess the transferability of pre-trained models to observe
whether the model has learned some universal representa-
tions from the data. Specifically, we conduct pre-training on
one dataset and then freeze the parameters of the pre-trained
network. Subsequently, we perform fine-tuning on another
dataset, adjusting only the final classification head without
changing the parameters of the pre-trained network. To ensure
alignment between inputs from different datasets, a simple
linear mapping is applied before feeding the data into the
pre-trained network. We use the HAR dataset with the largest
data volume for pre-training and perform fine-tuning on the
remaining eight datasets individually. The results of transfer
learning are compared with those of separately pre-trained and
linear evaluation, as well as fine-tuning evaluation on each
dataset, demonstrating the model’s ability to learn generic
representations. The results are presented in Table 3. It can
be observed that over half of the datasets among the eight
demonstrate better results than mere pre-training on their own
datasets. The results of transfer learning are close to those
of fine-tuning evaluation similar to supervised learning. The
reason for this might be the relatively similar features between
these datasets and the HAR dataset. Meanwhile, the HAR
dataset learns richer representations, alleviating the issue of
insufficient pre-training due to limited data for datasets like
NATOPS. However, on datasets such as PhonemeSpectra, the
performance of transfer learning is not as good as separate
pre-training, which is reasonable. In cases with sufficient data,
individual pre-training and fine-tuning for a specific dataset
lead to the learning of more unique, dataset-specific features
by the network. In conclusion, the above analysis indicates
that our model can provide assistance to the target task when
pre-trained on other tasks, especially when the dataset for the
target task is limited. Our model exhibits the potential to be
applied across different domains, making it a candidate for a
universal model.

D. ANALYSIS OF PRE-TRAINING SETS WITH DIFFERENT
PROPORTIONS
RQ3: Can the increase in data volume lead to an enhancement
in model performance?

Subsequently, we aim to analyze whether an increase
in the scale of data can lead to an enhancement in the

performance of the model. The process of collecting time
series data is relatively straightforward, but the labeling pro-
cess is highly complex, requiring a substantial investment of
human and material resources. Therefore, if the model can
better leverage a larger-scale dataset to learn more nuanced
features, rather than experiencing saturation, thereby avoiding
the wastage of a larger dataset, it holds significant implica-
tions. In this context, we conducted experiments utilizing the
largest-scale HAR dataset. We employed various proportions
(2.5%, 10%, 25%, 50%, 75%, 100%) of the training set for
pre-training. Subsequently, we conducted fine-tuning under
two modes: freezing the pre-trained network, referred to as
linear evaluation, and training the entire network, referred
to as fine-tuning evaluation. Furthermore, during fine-tuning,
we utilized different proportions (75%, 100%) of the training
set to observe the model’s performance. The experimental
results, as depicted in Fig. 4, reveal that with an increase in
the proportion of the pre-training dataset, the overall trend
of the model’s performance shows improvement, particularly
in the case of the linear evaluation mode, where the improve-
ment is more pronounced. Even in the fine-tuning evaluation
mode, which is equivalent to supervised training, a larger
pre-training dataset yields some performance improvement.
This could be attributed to the fact that the pre-training pro-
cess under a larger dataset provides better initial parameters
for subsequent optimization processes. The aforementioned
analysis suggests that our model holds promise for perfor-
mance improvement by acquiring a larger pre-training dataset,
thereby offering foundational assistance to the target task as a
foundation model.

E. ABLATION STUDY
RQ4: Is the design of combining local decoder and global
decoder appropriate and effective?

In this study, we conducted a series of ablation experi-
ments aimed at validating the indispensability of both local
and global decoders within our framework. The obtained re-
sults, as illustrated in Fig. 5, unequivocally demonstrate that
the collaborative utilization of these two decoders leads to
a significant enhancement in overall detection performance.
Furthermore, the performance of using only the local decoder
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FIGURE 4. The performance of HSC-MAE across different proportions of the pre-training dataset. The performance of our model is described in terms of
accuracy and F1 score (y-axis) under different proportions of pre-training data (x-axis) and various fine-tuning modes. In this context, Case 1 denotes the
utilization of a 75% training set during fine-tuning, while Case 2 signifies the application of a 100% training set during fine-tuning.

FIGURE 5. Average accuracy and F1 scores across the 9 datasets. LD
stands for local decoder, and GD stands for global decoder.

surpasses that of using only the global encoder. This out-
come underscores the feasibility of employing convolutional
networks to focus on local temporal characteristics. More-
over, the integration of a global decoder aids in capturing
global information, thereby endowing the network with richer
features.

F. T-SNE ANALYSIS
RQ5: Can the pre-trained features be distinguishable?

Next, we will visualize the effects of pre-training using
a t-SNE [52] approach on the HAR dataset to validate the

distinguishing ability between different time series classes.
The t-SNE approach is an algorithm used for dimensional-
ity reduction and visualization of high-dimensional data. It
maps data points to a two- or three-dimensional space while
preserving local structures and similarities. Fig. 6(a) dis-
plays the outcomes of the randomly initialized encoder, while
Fig. 6(b) demonstrates the performance of the pre-trained en-
coder without any fine-tuning. Fig. 6(c) represents the results
of linear evaluation, and Fig. 6(d) showcases the outcomes
of fine-tuning evaluation. It can be observed that, without
any adjustment to the pre-training process, as depicted in
Fig. 6(b), the network has already preliminarily distinguished
and clustered various types of points. This indicates that our
network has initially learned the features of time series. After
a simple linear evaluation process, as shown in Fig. 6(c),
points of different types further distance themselves from each
other, and points of the same type become more closely re-
lated. This suggests that, following the initial learning of data
features during the pre-training process, the network can be
effectively adapted to downstream tasks with relatively small
additional costs. At last, as shown in Fig. 6(d), the results of
the fine-tuning evaluation demonstrate that the network, under
supervised conditions, performs well in achieving the target
task. The inherent design of the network structure enables
the capture of time series features. Naturally, as fine-tuning
evaluation is akin to supervised training, it exhibits the best
classification performance. In conclusion, our pre-training
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FIGURE 6. t-SNE visualization on the HAR dataset. Different colors represent different classes.

paradigm effectively aids in feature separation, thereby gen-
erating distinct clusters in visualization.

G. ANALYSIS OF THE IMPACT OF MODEL SIZE ON MODEL
PERFORMANCE
RQ6: Can larger models, extended training durations, and the
design of an inverted bottleneck contribute to an improvement
in model performance?

A series of studies suggest that larger-scale self-supervised
pre-trained models and longer training durations hold the
potential to achieve superior model performance. Thus, we
aim to investigate whether similar characteristics apply to our
time series pre-training model. Additionally, given that our
network, similar to ConvNeXt [49], adopts an inverted bottle-
neck design, we seek to understand the impact of the inverted
bottleneck design on model effectiveness. Consequently, we
validate the performance of the model under different param-
eters by varying the number of layers of the convolutional
module (l = 3, l = 6), the presence or absence of the inverted
bottleneck, and the number of training epochs. The results
are presented in Table 4. Firstly, both linear evaluation and
fine-tuning evaluation consistently show that larger models
and extended training times generally lead to performance
improvements. However, for smaller datasets, such as Duck-
DuckGeese, employing a relatively small model during the
pre-training phase proves to be adequate. This implies that
the enhancement of pre-trained model performance depends
not only on the model itself but also on factors such as data
scale and features. Furthermore, it is observed that during

pre-training, larger models require more extensive training
times for optimal performance. Taking the example of linear
evaluation under l = 6, inverted, epoch = 25 for Phoneme-
Spectra and JapaneseVowels, despite the model’s enlargement
compared to l = 3, the limited number of training rounds
results in suboptimal performance. In addition, in most cases,
the model’s performance under the inverted bottleneck de-
sign surpasses that of the model under the bottleneck design.
However, it is noteworthy that the inverted bottleneck design
necessitates a longer training time. In summary, when faced
with larger-scale data, larger-scale models, increased train-
ing duration, and the inverted bottleneck design hold more
promise for achieving superior performance.

H. ANALYSIS OF THE NUMBER OF LAYERS IN THE
HIERARCHICAL ENCODER AND DECODER
RQ7: How does the number of down-sampling layers affect
the model’s performance?

Our model adopts an overall design in the style of U-Net.
Therefore, we aim to investigate the impact of the number
of down-sampling and up-sampling operations on the model.
The experimental results are presented in Table 5. Generally, it
can be observed that a network with three down-sampling op-
erations is sufficient. If the down-sampling operations are too
few, the model may struggle to capture an adequate amount
of information from a multi-scale perspective. On the other
hand, excessive down-sampling operations may result in in-
sufficient information about the inherent characteristics of the
time series, leading to a decline in performance.
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TABLE 4. Model Performance Under Various Model Sizes

TABLE 5. The Impact of Different Numbers of Down-Sampling Layers on Model Performance

TABLE 6. The Results of Different Mask Ratios on HSC-MAE
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I. ANALYSIS OF THE IMPACT OF DIFFERENT MASK RATIOS
ON MODEL PERFORMANCE
RQ8: What is the impact of different mask ratios on model
performance?

Time series inherently possesses a certain degree of in-
formation redundancy. Therefore, our HSC-MAE network
considers a small segment of the sequence as the fundamental
unit for masking and recovery. Consequently, we investigate
the impact of different mask ratios on model performance,
with results presented in Table 6. It can be observed that,
when employing a higher mask ratio, the model’s performance
remains reasonable, indicating that time series may inherently
contain a substantial amount of redundant information that
can be relatively easily reconstructed from the unmasked por-
tions. However, for achieving optimal results, a moderately
low mask ratio proves to be more effective. This approach
avoids the loss of details associated with excessively high
mask ratios and prevents the reconstruction task from being
overly simplistic, ensuring the model learns the distinctive
features of the time series.

V. CONCLUSION
In the domain of time series self-supervised training, the chal-
lenge introduced by the potential bias inherent in constructing
positive and negative pairs has led to the adoption of genera-
tive approaches based on mask prediction, akin to the masked
autoencoder paradigm. Recognizing the challenges posed by
the handling of extended sequences and intricate multi-scale
dependencies encountered by prominent Transformer-based
techniques, we introduce HSC-MAE into the realm of time
series analysis. HSC-MAE considers the redundancy within
time series by utilizing short segments as the basic units for
masking. Through the fusion of global and local information
at multiple scales, HSC-MAE exhibits exceptional perfor-
mance in benchmark evaluations, thereby underscoring the
untapped potential of convolutional-based MAE paradigms.
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