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ABSTRACT This paper introduces a DOA estimation method for sources beyond the aliasing frequency.
The method utilizes multiple frequencies of sources to exploit the frequency difference between them,
enabling processing at a frequency below the aliasing frequency. Gridless sparse processing with atomic
norm minimization is derived for DOA using difference frequency (DF). This approach achieves higher
DOA resolution than previous DF-DOA estimators by enforcing sparsity in the beamforming spectrum and
estimating DOAs in the continuous angular domain. We consider one or more measurements in both time
(snapshot) and frequency (DF). We also analyze approaches for considering multiple DFs: multi-DF and
multi-DF spectral-averaging. Numerical simulations demonstrate the effective performance of the method
compared to existing DF techniques.

INDEX TERMS Difference frequency, DOA estimation, spatial aliasing, atomic norm minimization.

I. INTRODUCTION
Spatial aliasing for DOA estimation requires the frequency to
be less than c/2 d (velocity c and element spacing d). Pro-
cessing above this gives ambiguous DOA estimates. Signals
of interest can be out of band at higher frequencies, e.g., for
passive array systems. We introduce a gridless sparse method
for DOA with difference frequency (DF), which accurately
estimates the DOAs of sources beyond the aliasing frequency.

The method utilizes a pair (or more) of multiple frequen-
cies on the array. Multi-frequency processing leverages more
information than one frequency, giving more accurate estima-
tion [1], [2], [3], [4], [5]. An intuitive approach is to treat each
frequency individually using single-frequency techniques and
then average the DOAs across all frequencies to obtain the
final DOAs. Methods that jointly handle multiple frequencies
can outperform single-frequency methods.

The spectral properties of multi-frequency signals were
used for DOA using co-prime arrays with improved perfor-
mance. Multiple frequencies were used to fill in the elements
of the virtual co-array, resulting in improved DOA perfor-
mance [6], [7], [8], [9], [10]. Co-prime arrays use spacing dif-
ferences between elements to obtain virtual co-array elements.
Similarly, DF employs frequency differences to acquire vir-
tual low frequencies. In co-arrays for one frequency, each

virtual sensor response is obtained by multiplying the sensor
data at one sensor with the complex conjugate at another.
Co-array approach with high-order cumulant-based methods
outperforms traditional second-order statistics methods as it
suppresses noise and achieves virtual array expansion [11],
[12], [13], [14], [15], [16], [17]. Similarly, in the DF frame-
work, the data at one frequency at one sensor is multiplied
with the complex conjugate at another frequency. This could
lead to higher-resolution sensing, contributing to integrated
sensing and communications [18].

Multi-frequency DF enables processing signals above the
aliasing frequency falias. The technique utilizes sources with
a pair of high frequencies { f , f + � f } > falias, with the fre-
quency difference � f below the aliasing frequency � f <

falias. The received far-field on the array is assumed to be
a superposition of plane waves. The frequency difference is
then achieved by taking the product of the complex conjugate
of the data at frequency f and the data at frequency f + � f .
This gives virtual data at the lowered frequency � f , avoiding
spatial aliasing [19], [20], [21], [22].

The DF technique was used for array processing and val-
idated experimentally [20], [21], [22], [23], [24], [25], [26],
[27]. For DOA, conventional beamforming (CBF) was em-
ployed [20]. The DF-CBF at frequency � f lowered by DF
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showed comparable results to the CBF at frequency � f with-
out DF [23]. For source localization, DF for matched field
processing was demonstrated [28], [29], [30]. High-resolution
DF-MUSIC (multiple signal classification) [21] and DF grid-
ded sparse processing [22] were performed, but no gridless
DF has been derived.

Gridless sparse beamforming [31], [32], [33] offers high-
resolution DOAs. Sparse DOA methods can be extended
to multi-frequency and have demonstrated improved perfor-
mance over the single-frequency model [9], [34], [35], [36],
[37], [38], [39]. Gridded sparse methods [31], [40] for DOA
suffer from basis grid mismatch when the true DOAs are
not on the search grid, as discrete dictionaries do not repre-
sent the data [41], [42], [43]. Mitigating grid mismatch bias
can be achieved by adaptive grid refinement [34], off-grid
methods [44], and gridless methods [40], [41], [45], [46].
The gridless method leverages the mathematical theory of
super-resolution and estimates DOAs in the continuous angle
domain.

We present gridless atomic norm minimization (ANM) for
DF-DOA for sources above the spatial aliasing frequency.
While the DF approach provides aliasing-free DOA estima-
tion, it generates unwanted (artifact) DOA estimates. An ideal
DF DOA estimator should estimate both true and artifact
DOAs, and further analysis should refine these DOAs to the
true DOAs. In addition to numerical verification [Section VI],
the key contributions are as follows:

1) We introduce DF-DOA and analyze the DOA character-
istics caused by DF, providing insights for integrating the DF
concept into state-of-the-art DOA estimators [Section III].

2) We formulate high-resolution DF-DOA estimation with
ANM [40], [41], [45], [46]. This handles noise-corrupted
data and provides mean-squared-error estimates for denoising
beamforming spectra with the atomic norm [Section IV-B].

3) Multiple measurements in time and frequency are used.
With multiple equally spaced frequency differences, multiple
DFs with the same frequency difference and thus steering
vectors. Like conventional multi-snapshot processing, where
multiple snapshot data vectors are aligned in a matrix and
processed, the multi-DF aligns and processes multiple DF
data. This approach is expanded to the multi-snapshot-DF,
where all multi-snapshot and multi-DF data are grouped and
processed [Section V].

4) Multi-DF spectral-averaging (SA) is proposed for ar-
bitrarily spaced multiple DFs by solving the multi-snapshot
ANM for each frequency pair (DF) and obtaining null spectra
to identify the DOA support of the sparse signals for each
DF. Subsequently, the null spectra are averaged across DFs
to extract DOA estimates. This method generalizes to non-
uniformly spaced DFs and is simple and effective at high
signal-to-noise ratios (SNRs). In contrast, at low SNR, the
multi-snapshot-DF integrates DF data more effectively than
the multi-snapshot-DF-SA [Section VI-E].

Notation: For a matrix A, AT is the transpose, A∗ the
complex conjugate, and AH the conjugate transpose. The
Hadamard products of matrices A and B is denoted A ◦ B.

II. ARRAY DATA MODEL
Consider K DOAs with L snapshots at frequency f . We
assume the sources with DOAs θk ∈ [−90◦, 90◦) are in the
far-field of a uniform linear array (ULA) with M sensors.
Let X f ∈ C

K×L be the complex source amplitudes, whose
(k, l )-element is xktl , f ∈ C, k = 1, . . . , K , l = 1, . . . L, and
the array data Y f = [yt1, f . . . ytL, f ] ∈ C

M×L, where ytl , f =
[y1tl , f . . . yMtl , f ]T ∈ C

M , is modeled as

Y f =
K∑

k=1

a f (θk )xT
kL, f + E f , (1)

where xkL, f = [xkt1, f . . . xktL, f ]T ∈ C
L, E f = [et1, f . . . etL, f ]

∈ C
M×L, where etl , f = [e1tl , f . . . eMtl , f ]T ∈ C

M , is the addi-
tive noise, and the steering vector,

a f (θ ) =
[
e− j2π f d1 sin θ/c . . . e− j2π f dM sin θ/c

]T ∈ C
M, (2)

where c is the velocity of propagation and dm = (m − 1)d ,
m = 1, . . . , M, is the distance between sensors 1 and m with
the ULA element spacing d . The additive noise E f is assumed
independent across sensors and snapshots, with each element
following a complex Gaussian CN(0, σ 2).

The signals and noise are assumed to be statistically inde-
pendent. The array covariance matrix is expressed as

E[ytl , f yH
tl , f ] = AE[xtl , f xH

tl , f ]AH + E[etl , f eH
tl , f ], (3)

where E[·] is the expectation across time tl , at time tl ,
ytl , f = [y1tl , f . . . yMtl , f ]T ∈ C

M , xtl , f = [x1tl , f . . . xKtl , f ]T ∈
C

K , etl , f = [e1tl , f . . . eMtl , f ]T ∈ C
M , l = 1, . . . , L, and A =

[a f (θ1) . . . a f (θK)] ∈ C
M×K with K true DOAs {θ1, . . . , θK}.

The signal-to-noise ratio (SNR) is defined for one snapshot,
SNR = 20 log10(‖∑K

k=1 xktl , f a f (θk )‖2/‖etl , f ‖2).

III. DF FOR DOA
This section reviews DF for DOA [21], [22].

A. ARRAY DATA MODEL USING HADAMARD PRODUCT FOR
DF
We model the array data for a single frequency as a sum of
plane waves (1) and assume multi-frequencies arrive at the
array at the same DOAs. To exploit the frequency difference,
� fi = f U

i − f L
i , f U

i > f L
i , we utilize the Hadamard product

(◦) of upper-frequency data Y f U
i

and the complex conjugate

of lower-frequency data Y f L
i

[21], giving Z� fi ∈ C
M×L,

Z� fi = Yf U
i

◦Y∗
f L
i

=
[
yt1, f U

i
. . . ytL, f U

i

]
◦
[
y∗
t1, f L

i
. . . y∗

tL, f L
i

]

=
K∑

k=1

a� fi (θk )
[
xT

kL, f U
i

◦ xH
kL, f L

i

]

+
K∑

k′=1

K∑
k′′=1

k′ �=k′′

[
a f U

i
(θk′ ) ◦ a∗

f L
i

(θk′′ )
] [

xT
k′L, f U

i
◦ xH

k′′L, f L
i

]

+ E�, (4)
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a� fi(θ )= a f U
i

(θ ) ◦ a∗
f L
i

(θ )

=
[
e− j2π� fid1 sin θ/c . . . e− j2π� fidM sin θ/c

]T
.

(5)

Compared to (1), the product Z� fi (4) is a sum of steering vec-
tors but in � fi, a� fi (θ ) (5). Unlike the frequencies { f U

i , f L
i },

the DF � fi can be below array aliasing frequency.
The cross-terms in (4) generate artifact DOAs {θ a

1 , . . . ,

θ a
K2−K

} [Section III-D]. Let Xt
� fi

= [xt
t1,� fi

. . . xt
tL,� fi

] ∈
C

K×L be the true source components and Xa
� fi

= [xa
t1,� fi

. . . xa
tL,� fi

] ∈ C
(K2−K )×L be the artifact source components.

Xt
� fi

and Xa
� fi

are related to the source amplitudes xktl , f U
i

and
xktl , f L

i
, for the (k, l )-element,

xt
ktl ,� fi

= xk′tl , f U
i

x∗
k′′tl , f L

i
, for k′ = k′′,

xa
ktl ,� fi

= xk′tl , f U
i

x∗
k′′tl , f L

i
, for k′ �= k′′, (6)

where k′, k′′ = 1, . . . , K .
The product Z� fi (4) is given by

Z� fi = At
� fi

Xt
� fi

+ Aa
� fi

Xa
� fi

+ E�, (7)

where At
� fi

= [a� fi (θ1) . . . a� fi (θK )] ∈ C
M×K is the DF

steering matrix (5) corresponding to the true DOAs and
Aa

� fi
= [a� fi (θ

a
1 ) . . . a� fi (θ

a
K2−K

)] ∈ C
M×(K2−K ) is for the

artifact DOAs.
The array covariance matrix of ztl ,� fi has fourth-order com-

ponents in x and is expressed as

E

[
ztl ,� fi z

H
tl ,� fi

]
= At

� fi
E

[
xt

tl ,� fi
xtH

tl ,� fi

]
AtH

� fi

+ Aa
� fi

E

[
xa

tl ,� fi
xaH

tl ,� fi

]
AaH

� fi

+ E[etl ,�eH
tl ,�

], (8)

where, at time tl , ztl ,� fi = [z1tl ,� fi . . . zMtl ,� fi ]
T ∈ C

M ,
xt

tl ,� fi
= [xt

1tl ,� fi
. . . xt

Ktl ,� fi
]T ∈ C

K , xa
tl ,� fi

= [xa
1tl ,� fi

. . .

xa
Ktl ,� fi

]T ∈ C
K2−K , and etl ,� = [e1tl ,� . . . eMtl ,�]T ∈ C

M .
The first term in (8) is similar to the first term in (3), but

evaluated at � fi and shows the true DOAs in the quadri-
covariance matrix. The second term with K2 − K components
represents artifact DOAs. The challenge will be to reduce the
effect of these in the following steps, although we are not
directly using the covariance matrix.

B. CBF
CBF for one frequency f uses the data sample covariance
matrix (SCM) R f as an estimate of E[ytl , f yH

tl , f ] (3). For

N potential DOAs θ̄ = [θ̄1 . . . θ̄N ]T ∈ [−90◦, 90◦), the beam-
former power for CBF is then,

PCBF
f (θ̄n) = aH

f (θ̄n)R f a f (θ̄n), n = 1, . . . , N, (9)

R f = 1

L

L∑
l=1

ytl , f yH
tl , f . (10)

FIGURE 1. CBF and DF-CBF for K = 2 equal-strength DOAs at [−61, 45]◦

The ULA has M = 20 sensors with a spacing d . The frequencies are
measured using the spatial aliasing frequency �f = (c/d )/2. CBF uses
frequencies f ∈ [0.2�f, 11�f ]. DF-CBF uses a constant �f (= fU − fL ) with
fL ∈ [0.2�f, 10�f ] and fU ∈ [1.2�f, 11�f ]. Across frequencies, DF-CBF has
constant K2 = 4 DOAs, with K true and K2 − K artifact.

This gives aliasing for f > c/(2 d ).

C. DF-CBF
DF DOA estimation uses the product Z� fi (4) and the steering
matrix built using a� fi (θ ) (5). The CBF for DF DOA uses the
DF-SCM R� fi as an estimate of E[ztl ,� fi z

H
tl ,� fi

] (8). For N

potential DOAs θ̄ = [θ̄1 . . . θ̄N ]T ∈ [−90◦, 90◦), the DF-CBF
power is then,

PDF−CBF
� fi

(θ̄n)=aH
� fi

(θ̄n)R� fi a� fi (θ̄n), (11)

R� fi =
1

L

L∑
l=1

ztl ,� fi z
H
tl ,� fi

= 1

L

L∑
l=1

(
ytl , f U

i
yH

tl , f U
i

)
◦
(

ytl , f L
i

yH
tl , f L

i

)∗
. (12)

Note that CBF for one frequency f uses Y f (1), a f (θ ) (2),
and the data SCM, i.e.,

∑L
l=1 ytl , f yH

tl , f /L, thus averaging the
single-snapshot SCM. The DF uses the Hadamard product of
two array covariance matrices (12).

Fig. 1 shows CBF and DF-CBF. CBF has aliasing, which
increases with frequency. DF-CBF has a consistent K2 num-
ber of DOAs across frequencies. As the processing frequency
is lowered, � fi < f L

i , the resolution of the beamformer dete-
riorates. The beamwidth of the main lobe increases, and this
decreases the resolution. The cross-terms in (4) show artifact
DOA patterns in the beamforming spectrum. K true DOAs
have K2 − K artifact DOAs, determined by the frequency and
true DOAs. DF processing can have aliasing when the fre-
quency difference � fi exceeds the aliasing frequency (� fi >

falias), see Fig. 2. K2 − K artifact DOAs are independent of
aliasing.
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FIGURE 2. DF-CBF for �fi and potential DOAs. As in Fig. 1, but with
different �fi ∈ [0.2�f, 1.8�f ] using fL = 10�f and fU ∈ [10.2�f, 11.8�f ].
DF-CBF has aliasing, when �fi exceeds the aliasing frequency (= �f )
(dash-dotted).

D. ARTIFACT DOA PROBLEM
The artifact DOA can be found by assuming the power
xkL, f L

i
= xkL, f U

i
= 1, only retaining the cross terms in (4), and

finding when the beam power is 1, [21]

a� fi(θ̃ )T

⎡
⎢⎢⎣

K∑
k′=1

K∑
k′′=1

k′ �=k′′

a f U
i

(θk′ ) ◦ a∗
f L
i

(θk′′ )

⎤
⎥⎥⎦ = 1. (13)

Solving this gives the artifact DOAs θ̃

θ̃ = sin−1
(

f U
i sin θk′ − f L

i sin θk′′

f U
i − f L

i

+ 2ξ

)
, k′ �= k′′, (14)

where ξ is an integer that represents the number of jumps that
must be added or subtracted to return θ̃ ∈ [−90◦, 90◦).

To give intuition, the artifact DOAs θ̃ (14) vary based on
lower frequencies f L

i for constant � fi, see Fig. 3(top), and
true DOAs θk , see Fig. 3(bottom).

Even with only one DF pair, we can obtain the true DOA.
DF DOA provides K2 DOA estimates. If we assume K out
of K2 are the true DOAs, the corresponding K2 − K artifact
DOAs are given by (14). The K assumed true DOAs and K2 −
K artifact DOAs are compared with the estimated K2 DF DOA
estimates, and by finding the matching case, we retrieve the
true DOAs. Since DF DOA requires estimating K2 DOAs, K2

should be sufficiently less than the number of sensors.
We utilize sparse techniques to enable high-resolution es-

timation of K2 DOAs in DF DOA. Sparse methods provide
high-resolution DOA performance with both single and mul-
tiple snapshots.

IV. SPARSE METHODS FOR DF DOA ESTIMATION
We explore sparse methods in support of DF for DOA, aiming
for high resolution. For reference, we start with the gridded
sparse approach with an angular search grid [Section IV-A]

FIGURE 3. Predicted DF-DOA locations (14) (top) vs. lower frequency fL

with a constant DF �fi = �f , and (bottom) moving DOA [−90, 90]◦ at
fL
1 = 4�f with �f1 = �f , thus fU

1 = 5�f . The plots show true DOAs
(orange), the corresponding artifact DOAs (blue), and when true and
artifact DOAs coincide (red x). The ULA is as in Fig. 1.

and focus on the gridless sparse technique using the atomic
norm to address the grid mismatch issue [Section IV-B].

A gridded sparse method for DOA with DF [22] utilizes
l1 norm minimization for sparse processing and handles one-
snapshot data ztl ,� fi ∈ C

M . This work utilizes gridless ANM
and handles multi-snapshot and multi-DF data [Section IV-B].

A. GRIDDED SPARSE PROCESSING
This section is only for reference as the paper is focused on
gridless methods. For the noiseless measurement (1) with K
true DOAs, the product of the noiseless data Z�

� fi
∈ C

M×L

(4) has K2 DOAs, including the true and artifact, see Fig. 4(a),
i.e.,

Z�
� fi

=
K2∑

k=1

a� fi (θk )x�T
kL,� fi

, (15)

where x�
kL,� fi

= [x�
kt1,� fi

. . . x�
ktL,� fi

]T ∈ C
L, whose element

is x�
ktl ,� fi

, k = 1, . . . , K2, l = 1, . . . , L. For N potential DOAs

θ̄ = [θ̄1 . . . θ̄N ]T ∈ [−90◦, 90◦), the gridded DF DOA estima-
tion, when there is no grid mismatch, is expressed as,

Z� fi = A� fiX� fi + E�, (16)

A� fi = [a� fi(θ̄1). . . a� fi(θ̄N )], (17)

where the complex source amplitude X� fi ∈ C
N×L exhibits a

K2-row-sparse structure for Z�
� fi

(15), see Fig. 4(b).
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FIGURE 4. DF DOA estimation (16) for noiseless data (4) (K = 2).

Sparse methods [31], [34], [47], [48] exploit the joint (row)
sparsity of the solution to improve performance, which leads
to the l2,1 mixed-norm minimization problem,

min
X� fi

1

2
‖Z� fi − A� fi X� fi‖2

F + τ (l2,1)‖X� fi‖2,1. (18)

The regularization parameter τ (l2,1) > 0 balances the data
fitting A� fi X� fi − Z� fi and the (row) sparsity level in
X� fi ∈ C

N×L . Joint sparsity on the rows xnL,� fi ∈ C
1×L, n =

1, . . . , N , is achieved by the l2,1 mixed-norm, defined as

‖X� fi‖2,1 = ‖x(l2 )
� fi

‖1, (19)

x(l2 )
� fi

= [‖x1 L,� fi‖2 . . . ‖xNL,� fi‖2
]T

. (20)

An inner l2 norm is applied on the rows of X� fi , and an

outer l1 norm is applied on the vector of l1 row-norms x(l2 )
� fi

.
The inner l2 norm couples the elements in a row. Although
it is appropriate to seek the solution with the minimum l2,0

pseudo-norm, it leads to an NP-hard combinatorial problem,
which is computationally intractable. Convex relaxation with
an l2,1 mixed-norm is employed to obtain computationally
tractable problems [31], [34], [47], [48].

B. GRIDLESS SPARSE PROCESSING AND ATOMIC NORM
Gridless sparse methods for DOA [31], [32], [33] are lever-
aged with DF. They operate directly in the continuous angle

domain, thus, not needing to grid the look angles, cf. N po-
tential DOAs (16). This enables resolving the grid mismatch
problem [40], [41], [45], [46].

The sparse signal x�
tl ,� fi

= [x�
1tl ,� fi

. . . x�
Ktl ,� fi

]T ∈ C
K for

the lth sample z�
tl ,� fi

= [z�
1tl ,� fi

. . . z�
Mtl ,� fi

]T ∈ C
M (15) hav-

ing continuous θ is expressed as

Xl (θ ) =
K2∑

k=1

x�
ktl ,� fi

δ(θ − θk ), (21)

where x�
ktl ,� fi

∈ C is the complex amplitude of the kth DOA
for the lth sample z�

tl ,� fi
and δ(θ ) is the Dirac delta function

with θ ∈ [−90, 90). The mth element of Z�
� fi

for the lth sam-
ple is expressed as [45], [49], [50]

z�
mtl ,� fi

=
∫

θ

e− j2π� fidm sin θ/cXl dθ

=
K2∑

k=1

x�
ktl ,� fi

e− j2π� fidm sin θ/c =
[
F(� fi )

M Xl

]
m

, (22)

where the operator F(� fi )
M maps the continuous signal Xl to the

data z�
tl ,� fi

∈ C
M so that z�

tl ,� fi
= F(� fi )

M Xl . For the gridded
method (16), A� fi (17) maps the gridded sparse signal X� fi

to the data Z�
� fi

, i.e., Z�
� fi

= A� fi X� fi . F(� fi )
M is linear in

amplitudes and nonlinear in DOAs: (for each α, β ∈ R)

F(� fi )
M [αXl (θ ) + βXl (θ )] = αF(� fi )

M Xl (θ ) + βF(� fi )
M Xl (θ ),

(23)

F(� fi )
M Xl (αθ1 + βθ2) �= αF(� fi )

M Xl (θ1) + βF(� fi )
M Xl (θ2).

(24)

The data Z�
� fi

(15) is expressed as Z�
� fi

=
[F(� fi )

M X1 . . .F(� fi )
M XL], see Fig. 4(c).

In ANM [40], [41], [45], [46], Z�
� fi

(15) is considered as

a convex combination of atoms a(θk )φkL with φT
kL ∈ C

L ,
‖φkL‖2 = 1 and the DOAs θ are continuous and thus gridless.
The atomic norm of the noise-free Z�

� fi
is defined as

∥∥∥Z�
� fi

∥∥∥
A

= inf
ξk ,

θk ,φkL

⎧⎨
⎩

K2∑
k=1

ξk :Z�
� fi

=
K2∑

k=1

ξka� fi(θk )φkL

⎫⎬
⎭ , (25)

cf. the gridded method has Z�
� fi

= A� fi X� fi (16). Regard-
ing the support (nonzero rows) of X� fi (16), x�

kL,� fi
, k =

1, . . . , K2, the kth component has the relation, x�
kL,� fi

=
ξkφkL. Thus, the atomic norm (25) can be viewed as a con-
tinuous counterpart of the l2,1 mixed-norm (19) used in the
gridded setting, i.e., ‖Z�

� fi
‖A = ‖X�

� fi
‖2,1.

The atomic norm (25) has the equivalent SDP [41],∥∥∥Z�
� fi

∥∥∥
A

= inf
u�fi

,VL

1

2 M
Tr
(
Toep(u�fi )

) + 1

2
Tr(VL )

s.t.

[
Toep(u�fi ) Z�

� fi

Z�H
� fi

VL

]
� 0, (26)
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where Toep(u�fi ) is a Toeplitz matrix related to the data co-
variance matrix, containing DOA information θk within the
data Z�

� fi
and VL ∈ C

L×L is a free matrix variable.
Gridless sparse processing for noisy data Z� fi (4) is formu-

lated using the atomic norm (25) [51], [52],

min
Z�

� fi

1

2
‖Z� fi − Z�

� fi
‖2

F + τ‖Z�
� fi

‖A, (27)

where Z�
� fi

is a measurement parameter to be estimated. The
regularization parameter τ can be tuned as in (18). Using the
equivalent SDP formulation (26), the SDP formulation of (27)
is given by [41], [51], [52]

min
Z�

� fi
,

u�fi
,VL

1

2
‖Z� fi −Z�

� fi
‖2

F+ τ

2

(
1

M
Tr
(
Toep(u�fi)

)+Tr(VL )

)

s.t.

[
Toep(u�fi ) Z�

� fi

Z�H
� fi

VL

]
� 0. (28)

The standard SDP solver CVX [53] is employed for (28).

C. DOA RECOVERY
DOAs are encoded in Toep(u�fi ) (26). After solving (28)
and obtaining Toep(u�fi ), we retrieve the DOAs using the
Vandermonde decomposition of the Toeplitz matrix,

Toep
(
u�fi

) =
K2∑

k=1

ξa�fi(θk )aH
�fi

(θk )=A�
�fi

diag(ξ)A�H
�fi

, (29)

A�
�fi

= [a�fi (θ1) . . . a�fi (θK2 )]. (30)

Any positive semidefinite Toeplitz matrix Toep(u� fi ) ∈
C

M×M of rank K2 ≤ M admits the atomic Vandermonde de-
composition (29). The decomposition is unique if K2 ≤ M
[31, Theorem 11.5]. The Vandermonde decomposition (29)
can be computed efficiently via root finding or by Prony’s
method [40], [48] or matrix pencil approaches [31], [54].

We employ the decomposition method [55, Sec. III.B] and
the steps are:

1) Eigendecompose Toep(u� fi ) into signal- and noise-
subspace, i.e.,

Toep(u� fi ) = US�SUH
S + UN�N UH

N . (31)

2) Compute the null spectrum, given by

D� fi(z) = aH
�fi

(z)UN UH
N a�fi (z), (32)

z = e− j2π� fid sin θ/c, (33)

a�fi (z) = [z0 z1 . . . zM−1]T. (34)

Recall the steering (2) and DF steering vectors (5).
3) Find the roots of D� fi(z) in complex z-plane by local-

izing the K2 lowest local minima of D� fi(z) on the unit
circle |z| = 1 [55, Eq. (43)],

ẑ =
k

argmin
|z|=1

D� fi(z), k = 1, . . . , K2. (35)

FIGURE 5. Null spectrum contour [dB] and evaluation on the unit circle
with one DF data. The environment is as in Fig. 1 at fL = 10�f and
fU = 11�f .

Since UN ⊥ a�fi (zk ) and |zk| = 1, the DOA θk encoded
in zk is associated with the K2 roots of D� fi(z) on the
unit circle.

4) DOAs are obtained by

θ̂k = − sin−1
(

c∠ẑk

2π� fid

)
. (36)

5) Refine the amplitudes of the corresponding θ̂k using
least squares and construct a K2-rank Toeplitz matrix
(29).

The null spectrum is plotted in Fig. 5. There are K true
and K2 − K artifact DOAs, with changes in � fi, the true
DOAs remain stationary while the artifact DOAs vary [Sec-
tion VI-B].

V. MULTIPLE TIME AND FREQUENCY SAMPLES
Multiple measurement vector (MMV) processing deals with
multiple observations simultaneously. Simultaneous sparse
methods group MMVs into a matrix and recover sparse sig-
nals from MMVs. The condition for using MMV models is
that they share the common support (sparsity profile) [Fig. 4].
Simultaneous MMV treatment outperforms single measure-
ment vector (SMV) because it handles more data together.
For stationary DOAs (DOAs are constant but amplitudes
vary), sparse MMV models are ideal. In the following, we
introduce a multi-snapshot MMV model with one DF and pro-
pose two methods to handle DF MMVs: multi-snapshot-DF
[Section V-B] and multi-snapshot-DF-SA [Section V-C].
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FIGURE 6. DF DOA estimation (16) for noiseless data (4) (K = 2) with
multiple observations: L time samples, t1, . . . , tL, and F DF samples,
f1, . . . , fF . (a total LF samples) Note that, multiple time samples share a
common A�fi

, which multiple DF samples do not.

FIGURE 7. Gridless sparse DF DOA estimation with MMVs:
(a) multi-snapshot model (37) [the ANM (43)], (b) multi-DF model (39), and
(c) multi-snapshot-DF model (40) [the ANM (42)].

A. SINGLE-DF MULTI-SNAPSHOT PROCESSING
Joint sparse DOA methods in Section IV are MMV models,
which handle multiple L time snapshots as MMVs and a
DF � fi as an SMV. As L MMVs z�

tl ,� fi
, l = 1, . . . , L, share

the common K2-sparsity profile, multi-snapshot processing is
available, see Fig. 7(a). Multi-snapshot DOA estimation for
a single DF � fi collects all snapshot data into one matrix,

ZL,� fi ∈ C
M×L (5),

ZL,� fi = [
zt1,� fi . . . ztL,� fi

]
. (37)

L snapshot samples z�
tl ,� fi

, l = 1, . . . , L, share common

dictionaries a� fi (θk ) and a common K2-sparsity profile.
F DF samples z�

tl ,� fi
, in contrast, have different dictionaries

for each DF � fi, i = 1, . . . , F , i.e., a� fi (θ ) �= a� f j (θ ) (i �= j)
and share a common K-sparsity profile for the true DOAs but
not for the K2 − K artifact DOAs, see Fig. 7(b).

B. MULTI-SNAPSHOT-DF WITH UNIFORMLY-SPACED DFS
Consider the DF data ztl ,� fi , i = 1, . . . , F . If DFs are
uniformly-spaced, � fi = � f , i = 1, . . . , F , the DF-steering
vector a� fi (θ ) (5) is the same over F DF pairs, i.e.,

a� f (θ ) = a� f1 (θ ) = . . . = a� fF (θ ). (38)

This provides that ztl ,� fi , i = 1, . . . , F , share the same a� f (θ )
(38). Then we can concatenate F DF observations at time
tl and achieve multi-DF processing, see Fig. 7(b). Multi-DF
DOA estimation for one snapshot tl collects all DF data into
one matrix, Ztl ,F ∈ C

M×F ,

Ztl ,F = [
ztl ,� f1 . . . ztl ,� fF

]
. (39)

The L time samples are concatenated as each ztl ,� fi shares
the same DF-steering vectors a� fi (θ ) (5) over L snapshots.
Compared to the multi-snapshot [Fig. 7(a)], the multi-DF
has artifact DOAs different across DFs � fi, i = 1, . . . , F
[Fig. 7(b)].

Uniformly-spaced DFs � f enables multi-snapshot-DF pro-
cessing, which treats all LF time and frequency observations
jointly, see Fig. 7(c). The method is achieved by concatenating
LF data, ZL,F ∈ C

M×LF , i.e.,

ZL,F = [zt1,� f1 . . . ztL,� f1 . . . zt1,� fF . . . ztL,� fF ]. (40)

C. MULTI-SNAPSHOT-DF-SA
We propose a method that handles L-time data jointly at each
DF (the multi-snapshot [Section V-A]), solves the SDP (28)
for F -DFs, and aggregates the sparse spectra across DFs using
averaging from which the DOAs are extracted. While the arti-
fact DOAs are inconsistent across DFs, the true DOAs remain
consistent, see Fig. 7(b). Therefore, we can extract the true
DOAs from consistent DOA estimates across DFs. An exam-
ple of using MUSIC with spectral averaging (SA) to handle
multiple DFs is in [3, Eq. (12)]. Unlike the multi-snapshot-DF
[Section V-B], the multi-snapshot-DF-SA is not restricted to
uniformly-spaced DFs.

As in Fig. 5, we calculate D� fi(zk ) (34) in terms of θ in-
stead of z, i.e., D� fi(zk ) → D� fi(θk ), k = 1, . . . , K2, using the
relation (36). The multi-snapshot-DF-SA obtains DOAs from
averaging F spectra

θ̂ =
k

argmin
|z|=1

1

F

F∑
i=1

D� fi(θ )
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FIGURE 8. DOA spectra for K = 2 equal-strength DOAs at [−49, 45]◦, fL = 10�f (F = 1), and SNR 20 dB using (a) one snapshot (L = 1) and multiple
snapshots (L = 25) with (b) incoherent and (c) coherent arrivals.

FIGURE 9. Null spectrum D�fi
(θ) (34) evaluated on unit circle for multi-snapshot processing [Section V-A]. The null spectrum D�fi

(θ) for one snapshot:
(a) 1st, 2nd, and 3 rd snapshot, and for (b) multiple snapshots (L = 25). The data in Fig. 8(b) is considered [multiple snapshots (L = 25) and single DF
(F = 1)]. (c) The same environment as Fig. 9(b) but with DF pairs given by fL: 9.80�f , 9.90�f , and 10.00�f .

=
k

argmin
|z|=1

1

F

F∑
i=1

aH
�fi

(θ )UiUH
i a�fi (θ ), (41)

where Ui is the noise subspace UN at DF � fi (31). Since the
noise in each DF � fi is assumed statistically independent,
averaging the spectra across DFs improves the DOA accuracy.
The null spectra are in Fig. 9.

Averaging of the null spectrum (41) reduces the impact of
noise, resulting in more reliable spectral minima at the true
DOAs. Additionally, averaging provides robust estimates of
the dominant DOAs across DFs for true DOAs and mitigates
artifact DOAs.

D. SDP FORMULATION
The implementation of the multi-snapshot-DF [Section V-B]
and multi-snapshot-DF-SA [Section V-C] is done using
ZL,F ∈ C

M×LF (40) and ZL,� fi ∈ C
M×L (37), i = 1, . . . , F ,

respectively.
We use the following steps for each method:
1) Multi-snapshot-DF [Section V-B] solves (28) with ZL,F

(40),

min
Z�

L,F ,

u�f ,VLF

1

2
‖ZL,F − Z�

L,F ‖2
F

+ τ

2

(
1

M
Tr
(
Toep(u�f )

) + Tr(VLF )

)

s.t.

[
Toep(u�f ) Z�

L,F

Z�H
L,F VLF

]
� 0. (42)

DOAs are extracted using Toep(u�f ) (42) and
Section IV-C.

2) Multi-snapshot-DF-SA [Section V-C] solves (28) with
ZL,� fi (37) for each� fi, i = 1, . . . , F,

min
Z�

L,�fi
,

u�fi
,VL

1

2
‖ZL,�fi − Z�

L,�fi
‖2

F

+ τ

2

(
1

M
Tr
(
Toep(u�fi )

) + Tr(VL )

)

s.t.

[
Toep(u�fi ) Z�

L,�fi

Z�H
L,�fi

VL

]
� 0. (43)

DOAs are extracted using (41).

VI. RESULTS
We present several results for our DF DOA estimation. First,
we compare the beamforming spectra of the method to those
of DF-CBF and DF-MUSIC [21] under various conditions.
Next, we discuss results on multiple time and frequency sam-
ples and evaluate the DOA performance.

Various scenarios are considered, including single (L = 1)
and multiple (L = 25) snapshots with one DF (F = 1), co-
herent arrivals (multipath environment), in Figs. 8 and 9,
and with multiple DFs (F = 3) using the multi-snapshot-DF
[Section V-B] and multi-snapshot-DF-SA [Section V-C] in
Figs. 10 and 11.

We consider a ULA with M = 20 elements with a spacing
d . The frequencies are measured using the spatial aliasing
frequency � f = (c/d )/2. The DF is uniform for all pairs of
frequencies, i.e., � fi = � f , i = 1, . . . , F .
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FIGURE 10. (a) Multi-snapshot-DF-SA for DOA [Section V-C]. Top: Null
spectrum and Bottom: the resulting DOA spectrum. Three F = 3 null
spectra in Fig. 9(c) are averaged. (b) Multi-snapshot-DF for DOA
[Section V-B]. Top: Null spectrum and Bottom: the resulting DOA spectrum.
A total of LF = 75 samples [L = 25 and F = 3] are simultaneously
processed.

The DOA performance is evaluated based on the root-
mean-squared error (RMSE), which is computed,

RMSE =
√
E

[
1

K

∑K

k=1

(
θ̂k − θ true

k

)2
]
. (44)

A. DF DOA ESTIMATION FOR EACH SINGLE DF
Fig. 8(a) compares DF-CBF and sparse method in the case of
one snapshot and one DF. DF-CBF fails to estimate all DOAs
accurately due to its low resolution.

The multi-snapshot considers all snapshots simultaneously
and seeks support across snapshots to improve estimation
accuracy [Fig. 8(b)]. With multiple snapshot data, we can
use DF-MUSIC [21], which provides high-resolution esti-
mates for all DOAs. However, MUSIC cannot handle coherent
arrivals [Fig. 8(c)]. In contrast, the gridless sparse method
handles all scenarios.

B. NULL SPECTRA AND THE SPARSITY PROFILES IN MMVS
Fig. 9 shows the DOA recovery using null spectra D� fi(θ )
(34), evaluated on the unit circle by locating the minimum
points [Section IV-C]. The spectra for one snapshot show
peaks at the true and artifact DOAs while sharing a common
sparsity profile [Fig. 9(a)]. The multi-snapshot [Fig. 9(b)]
exploits the shared support to achieve accurate estimates by
handling all snapshots simultaneously.

The null spectra for the multi-snapshot-single-DF (L = 25
and F = 1) exhibit peaks at the true DOAs and artifact DOAs,
see Fig. 9(c). Compared to Fig. 9(a), the polynomials across
f L share a common sparsity profile for the true DOAs but not
for the artifacts [Fig. 9(c)].

Dealing with multiple DFs is illustrated: the multi-
snapshot-DF [Section V-B] and multi-snapshot-DF-SA [Sec-
tion V-C]. The multi-snapshot-DF-SA solves (43) and re-
covers DOAs using (41) [Fig. 10(a)]. The multi-snapshot-
DF solves (42) and recovers DOAs as in Section IV-C
[Fig. 10(b)]. Both methods consider multiple DFs, enhancing
the true DOAs while mitigating the artifacts.

FIGURE 11. Multi-snapshot-DF [Section V-B] and multi-snapshot-DF-SA
[Section V-C] with different single DF (a), (c) and multi-DF (b), (d): CBF
(dotted), multi-snapshot-DF-SA (orange), and multi-snapshot-DF (blue). In
(a)–(d), DOAs are at {−49, 45}◦ at SNR = 20 dB. RMSEs are (a) 0.03◦ (both),
(b) 0.01◦ (orange) and 0.02◦ (blue), (c) 0.18◦ (both), and (d) 0.03◦ (orange)
and 0.04◦ (blue). (e,f) As in (a), (b), (c), (d), DOAs are at {15, 45}◦. RMSEs
are (e) 0.16◦ (both) and (f) 0.01◦ (orange) and 0.02◦ (blue).

C. MULTIPLE DF DATA
We compare the performance of two methods for multiple
DF data: the multi-snapshot-DF [Section V-B] and multi-
snapshot-DF-SA [Section V-C]. We consider two scenarios as
in Fig. 3. In the first example, all true and artifact DOAs are
well-separated. In the second example, they are nearby.

Fig. 11(a) has all true and artifact DOAs well-separated,
leading to accurate DOA performance, RMSE 0.03◦. In con-
trast, in Fig. 11(c), the minimum separation between true
{−49, 45}◦ and artifact DOAs {−52.3, 48.1}◦ is only 3.1◦.
The sparse method can distinguish between them. However,
the RMSE 0.18◦ increases relative to Fig. 11(a).

Multiple DF data give accurate DOA performance when
all true DOAs and artifact DOAs are well-separated, see
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FIGURE 12. RMSE vs. SNR of the simulated methods for (a) 1 DOA at −45◦, (b) 2 DOAs at [−45,−35]◦, and (c) 3 DOAs at [−65,−3, 2]◦.

Fig. 11(b). Moreover, the multi-snapshot-DF-SA reduces
DOA error when true and artifact DOAs are close, see
Fig. 11(d). The averaging mitigates the error for f L

i =
9.92� f , as the other f L

i = 9.00� f and 9.48� f have the ar-
tifact at another location, resulting in improved performance,
RMSE 0.03◦.

Similar to the scenario where true and artifact DOAs co-
incide based on DF pairs in Fig. 3(left), a similar situation
occurs based on DOA pairs, see Fig. 3(right). Figs. 11(e) and
(f) show a case having the true at {15, 45}◦ and artifact DOAs
at {13.0, 47.9}◦, with a minimum separation of 2.0◦ between
the true and artifact. The performance is similar to that of
Figs. 11(c) and (d).

D. BIAS OF THE MULTI-SNAPSHOT-DF
Dealing with multiple DFs offers improved DOA accuracy
and mitigates errors when true and artifact DOAs are closely
located. However, the multi-snapshot-DF performs worse than
the multi-snapshot-DF-SA. For the multi-snapshot-DF, where
multiple DF data are handled simultaneously [Section V-B
and Figs. 7(b) and 7(c)], the artifact DOAs which vary
across DFs impact the true DOAs, giving larger RMSE (0.04◦
[Fig. 11(d)] and 0.02◦ [Fig. 11(f)]) than the multi-snapshot-
DF-SA (0.03◦ [Fig. 11(d)] and 0.01◦ [Fig. 11(f)]). This
is because the nonlinear SDP used in the multi-snapshot-
DF is less effective than the SA for closely spaced DOAs.
Artifact DOAs show variations across DFs, reducing the
multi-snapshot-DF performance.

E. SNR PERFORMANCE
We compare the RMSE (250 trials) of the DOA estimates
produced by our approach to those obtained using existing
methods including DF-CBF and DF-SBL [a DF version of
sparse Bayesian learning (SBL) [56], [57], [58], [59], [60],
[61], [62]] and the Cramér-Rao bound (CRB) [63, Eq. (110)]
(considering DF data as MMVs). The gridded methods use a
grid [−90 : 0.005 : 90]◦. We consider L = 18 snapshots. The
lower frequencies of the DFs are F = 25 uniformly spaced
in f L ∈ [5� f , 7.5� f ], and the paired upper frequencies are
f U = f L + � f .

Fig. 12 presents three DOA scenarios: (a) one, (b) two, and
(c) three DOAs. The sources have equal magnitude but each
has random phases on [0, 2π ) at SNRs [−15 : 3 : 30] dB.

For one DOA [Fig. 12(a)], all methods exhibit good results.
The DF is beneficial in one DOA because it avoids artifact
DOAs caused by cross-terms generated by multiple DOAs due
to the product in the DF application.

For two DOAs [Fig. 12(b)], DF-CBF has bias from the in-
teraction between the two main lobes near the corresponding
DOAs (RMSE 0.1◦ at high SNR). In contrast, both multi-
snapshot-DF-SA and multi-snapshot-DF perform better.

The multi-snapshot-DF-SA with gridless sparse processing
shows a similar curve to that with SBL (also for the multi-
snapshot-DF), as seen in Fig. 12(b) and (c). The estimates can
be biased when DOAs are closely located in DF data, but well-
spread-out DOAs give accurate estimates. With the DF-SA,
since each DF is processed independently, averaging reduces
the impact of the biased results.

The multi-snapshot-DF method, on the other hand, con-
siders all DFs together. DFs with closely located DOAs and
the other DFs with well-spread-out DOAs are processed si-
multaneously, leading to an overall bias in the results. It
was shown [3], [21], [64], [65] that in multi-frequency DOA
estimation, the multi-frequency (coherent) method performs
worse than the averaging (incoherent) method in high SNRs
due to this bias.

At high SNRs, the multi-snapshot-DF-SA, which estimates
the DOA spectrum for each DF, outperforms the multi-
snapshot-DF, see Fig. 12(c) for SNR > 15 dB.

The advantage of the DF is its ability to process more
DF data simultaneously. In low SNRs, where accurately es-
timating DOA for individual DFs is challenging, the DF
outperforms the DF-SA despite the inherent bias, owing to
the larger data being considered, see Fig. 12(c) for SNR −6 to
15 dB.

F. COMPLEXITY
The CPU times on an M2 MacBook Pro are shown in
Fig. 13(a) vs. number of DFs F for L = 10 and in Fig. 13(b)
vs. number of snapshots L for F = 10. The CPU time is
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FIGURE 13. (a) CPU times vs. number of snapshots L for F = 10 and (b)
CPU times vs. number of DFs F for L = 10. 2 DOAs are at [−49, 45]◦.

mainly determined by solving the SDP. The multi-snapshot-
DF-SA solves an SDP separately for each DF. The semidefi-
nite constraint dimension is (M + L) × (M + L) (43), and this
SDP is solved F times. The multi-snapshot-DF considers all
LF data, solving an SDP once with a semidefinite constraint
dimension of (M + LF ) × (M + LF ) (42). These SDP-based
methods are slower than the SBL.

The DF-SA’s CPU time increases linearly with F since it
solves the SDP F times, see Fig. 13(a). The DF’s CPU time in-
creases more rapidly with increasing F due to the larger SDP
constraint dimension LF . For F ≥ 6, DF becomes slower than
DF-SA. Fig. 13(b) presents the CPU time as L varies with
F = 10. For L < 6, the DF-SA, which repeats solving the
SDP F = 10 times, is slower than the DF. As L increases, the
semidefinite constraint dimension in DF grows with LF . This
gives slower CPU time for DF than DF-SA for L ≥ 6.

VII. CONCLUSION
We derived an aliasing-free DOA estimator for high-
frequency sources. It utilizes multiple frequency components
of the source, particularly their frequency differences, to pro-
cess signals at frequencies lower than the aliasing frequency,
thus resolving spatial aliasing. However, this difference
frequency (DF) application introduces unwanted (artifact)
DOAs, necessitating a high-resolution DOA estimator for fil-
tering.

To address this, we employed gridless sparse DOA process-
ing. A gridless sparse method injects sparsity to obtain a sharp
beamforming spectrum, enhancing resolution and estimating
DOAs in the continuous angle domain to overcome grid mis-
match. From the application perspective of this technique, we
provided formulations for various scenarios when multiple
data are measured in time and frequency: multi-snapshot-DF-
SA and multi-snapshot-DF methods.

The performance indicates that the multi-snapshot-DF,
which requires uniformly-spaced DFs and treats all time and
frequency measurement data together, works best at low SNR,
while the multi-snapshot-DF-SA, where each DF is handled
individually and the null spectra are averaged across DFs for
handling arbitrarily-spaced DFs, performs best at high SNR.
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