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ABSTRACT Deep neural networks have shown state-of-the-art results in audio source separation tasks in recent
years. However, deploying such networks, especially on edge devices, is challenging due to memory and computation
requirements. In this work, we focus on quantization, a leading approach for addressing these challenges. We start
with a theoretical and empirical analysis of the signal-to-distortion ratio (SDR) in the presence of quantization noise,
which presents a fundamental limitation in audio source separation tasks. These analyses show that quantization noise
mainly affects performance when the model produces high SDRs. We empirically validate the theoretical insights
and illustrate them on audio source separation models. In addition, the empirical analysis shows a high sensitivity to
activations quantization, especially to the network’s input and output signals. Following the analysis, we propose Fully
Quantized Source Separation (FQSS), a quantization-aware training (QAT) method for audio source separation tasks.
FQSS introduces a novel loss function based on knowledge distillation that considers quantization-sensitive samples
during training and handles the quantization noise of the input and output signals. We validate the efficiency of our
method in both time and frequency domains. Finally, we apply FQSS to several architectures (CNNs, LSTMs, and
Transformers) and show negligible degradation compared to the full-precision baseline models.

INDEX TERMS Source separation, quantization, DNN, SDR, compression, knowledge distillation.

I. INTRODUCTION
Recently, deep neural networks have shown great results on many au-
dio tasks such as speech enhancement [1], [2], source separation [1],
[2], [3], [4], [5], speech recognition [6], [7] and text-to-speech [8],
[9]. However, such networks generally require a large memory
footprint and high computational complexity, which makes their
deployment on edge devices very challenging. Several approaches
have been suggested to address these limitations, such as prun-
ing [10], low-rank approximation [11], and quantization [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21]. The focus of this work is
quantization, one of the most promising methods to overcome these
challenges.

Quantization methods can be roughly divided into two categories:
quantization-aware training (QAT) [13], [15], [16] and post-training
quantization (PTQ) [14], [17]. PTQ is usually a simple technique
that requires a small dataset to gather statistical information about
the model. In contrast, QAT typically involves retraining the en-
tire model on the full training dataset to compensate for the errors
introduced by quantization. Although PTQ typically requires less
computational resources, it often comes with sacrificing the accuracy
compared to QAT.

In this work, we focus on QAT to harness its enhanced per-
formance potential. The delivery of fully quantized low-precision
models could be hardware-friendly, especially for edge devices, since
all operations (e.g. addition, convolution, and matrix multiplica-
tion) are performed using low-precision integer arithmetic [15]. This
allows the use of dedicated resource-constraint hardware to enable
efficient deployment.

Several prior arts have quantized audio models in various ways.
Low-bit quantization is suggested in [18], [19] for speech separa-
tion but is applied only to the model’s weights to decrease its size.
In [20], quantization is used only for convolutions, leaving other
layers in floating-point operations. The authors of [22] use integer-
only quantization, but it is specific for speech recognition. Recently,
a new QAT method called Fully Quantized Speech Enhancement
(FQSE) [23] suggested a new scheme for full 8-bit quantization.
However, it was applied only to time-domain CNN-based models for
speech enhancement. In addition, FQSE suggested data augmenta-
tion, which is used during QAT to strengthen the robustness of the
quantized model. Nevertheless, the augmentation was specifically
designed for speech enhancement tasks. This limits the extendability
of FQSE to additional tasks since it requires a different augmentation
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for each task, which can be nontrivial in some cases. As far as we
know, there is an open gap in the capability to obtain fully quantized
models for audio source separation tasks.

This paper aims to close this gap and obtain fully quantized mod-
els for audio source separation tasks that can be easily deployed on
edge devices. We begin with a theoretical analysis of the signal-to-
distortion ratio (SDR) [24] of quantized separation models, showing
that quantization has a significant effect when the floating-point
model produces high-performance results. The theoretical analysis
is followed by an empirical one in which we first validate the
theoretical results and then analyze which part of the quantized
model contributed to the degradation in performance. Specifically,
we show that input and output activations quantization significantly
affect performance degradation. Based on our theoretical and em-
pirical analysis, we propose a new QAT method for audio source
separation tasks called Fully Quantized Source Separation (FQSS),
which enables 8-bit full quantization for efficient deployment. FQSS
utilizes knowledge distillation [25] in a unique way, which guides the
training process to reduce the quantization error, especially in cases
where quantization causes considerable degradation in performance.
In addition, we correct the input and output quantization errors by
extending the quantization scheme from [23] to speech and music
separation, as well as to frequency domain separation approaches.
Finally, we conduct several experiments to validate our method on
various architectures (e.g., CNNs, LSTMs, and Transformers) over
speech and music separation tasks. FQSS shows a significant im-
provement in memory footprint and the number of bit operations
while having a negligible degradation compared to the floating-point
model.

Our contributions are summarized as follows:
� We present a theoretical and empirical analysis of the SDR for

audio source separation in the presence of quantization noise.
� We introduce a new QAT method for speech and music sep-

aration, using a novel knowledge distillation loss that pays
attention to the quantization-sensitive samples in the retraining
process.

� We present results on several architectures such as CNNs
(Conv-TasNet [2]), LSTMs (DPTNet [3]) and Transformers
(Sepformer [4], HTDemucs [5]) and validate their performance
using 8-bit full quantization for both weights and activations.

In the spirit of reproducible research, our code is available at
https://github.com/ssi-research/FQSS.

II. BACKGROUND
This section provides essential background such as quantization
and knowledge distillation, along with the splitter and reconstructor
scheme from [23], which are fundamental for understanding the
method described in our work.

A. QUANTIZATION
Here, we provide a short overview of quantization. A uniform quan-
tizer maps a floating-point number to its nearest quantization level.
Given a scalar x with quantizer step-size �, zero-point z, and bit-
width b, the quantization of x is represented by:

Q(x) � � · clip

(⌊
x − z

�

⌉
, 0, 2b − 1

)
+ z, (1)

where clip(x, α, β ) limits x to the range between α and β, and
�·� : R −→ Z is the rounding operation. This formula is used element-
wise for a vector x. There are various ways to select the quantization

parameters � and z. In this work, we use min-max, similarly to [15].
For symmetric signed quantization, z = −t and � = t

2b−1 , where

t = maxi(|xi|), and for asymmetric quantization � = maxi (xi )−mini (xi )
2b−1

and z = mini(xi ).

B. KNOWLEDGE DISTILLATION
Knowledge Distillation (KD) is a method for training compact yet
efficient models using a high-capacity ‘teacher’ model to train a
smaller ’student’ model. This strategy has been widely applied in
diverse fields, such as computer vision [17], speech processing [26],
[27], etc. Several adaptations of KD have been investigated to
train models dedicated to audio. [26] is a teacher-student technique
that trains multiple teacher models for distinct signal-to-noise ratio
(SNR) ranges. In [27], layer-wise learning and objective shifting
mechanisms are used to distill knowledge from large Transformer-
based speech separation models. In our work, we apply KD by having
the ‘teacher’ model (the floating-point model) instruct the ’student’
model (the quantized model), mainly focusing on quantization-
sensitive samples.

C. SPLITTER AND RECONSTRUCTOR
FQSE [23] shows that a large part of the performance degradation
was caused mainly by quantizing the model’s input and output activa-
tion tensors. It overcomes this degradation by introducing the splitter
and reconstructor which keeps the input and output waveforms at
high-precision (16-bit) while only using low-precision operations (8-
bit). Here, we briefly describe the splitter and reconstructor scheme.

The splitter splits a single input channel of 16-bit into two
channels of 8-bit using bits-splitting. Specifically, denote the bit-
width of a low-precision as bl . The splitting operation can be

expressed as: X =
[

QF(x)

QF( 2·t ·ε
�
− t )

]
where x is the input sample and

QF is a symmetric floor quantizer. ε is the residual error: ε � x −
QF(x) and the symmetric floor quantizer is given by: QF(x) � � ·
clip(� x

�
�,−2bl−1, 2bl−1 − 1), where �·� : R −→ Z denotes the floor

operation. To restrict the residual error in the same range [−t, t ) as
QF(x), they scale it by 2·t

�
and subtract t . This way, X remains per

tensor quantization. This split requires changing the splitter’s first
layer to support two channels (instead of one channel), the same as
the input.

The reconstructor combines two outputs of 8-bit into one output
of 16-bit. Specifically, let Y ∈ R

c×k , X ∈ R
1×n be the input (features)

and output (samples) of the model’s decoder, respectively, where c is
the number of channels, k is the number of elements in each channel
and n is the number of output samples. Then, FQSE introduces
a Residual Quantization Block (RQB) to produce a quantization
correction term. RQB consists of additional encoder Ẽ : R1×n →
R

c×k and additional decoder D̃ : Rc×k → R
1×n. It projects the low-

precision samples back into the feature space using Ẽ , which results
in Ỹ = Q(Ẽ (X)). Then, using the low-precision features, computes
the residual error in feature space by U = Q(Y− Ỹ). Finally, the
error is projected back using D̃, which results in the correction term
δX = Q(D̃(U)). The final quantized output is achieved by scaling and
adding the correction term and given by Q(X)+ δX

2bl−1 ∈ R
1×n. De-

tailed RQB scheme is shown in [23]. Finally, the model is retrained
with QAT, where the new parameters of the splitter and recon-
structor are learned. Since quantization is a non-differentiability
operation, a Straight-Through Estimator (STE) [28] is used to com-
pute the gradients during the retraining. In our work, we extend the
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splitter-reconstructor scheme to multi-source separation tasks and to
frequency domain approaches.

III. ANALYSIS OF QUANTIZED MODELS
In this section, we analyze the effect of model quantization on the
performance of source separation tasks. Specifically, we investigate
the SDR [24] of quantized models. We present a theoretical anal-
ysis in which we provide an upper bound (Theorem III.1) for the
performance of the quantized model in terms of the SDR of the
floating-point model and the quantization noise. In addition, we
validate Theorem III.1 on models trained using QAT and present
empirical findings to support our formulation.

A. THEORETICAL ANALYSIS
We start by defining the SDR. Specifically, let sm ∈ R

n be the m-th
clean source and g =∑M

m=1 sm be a mixture of M sources where M is
the number of sources. Given a floating-point model fm that separates
the m-th source, its output is defined as ŝm = fm(g) = sm + wm where
wm is the model noise. Then, the SDR [29] for multiple sources is
defined as:

Definition III.1 (Signal-to-Distortion Ratio (SDR)):

SDR � 1

M

M∑
m=1

10 log10

E
[‖sm‖2

2

]
E

[‖ŝm − sm‖2
2

] , (2)

where ‖ · ‖2 denotes the L2 norm and E[·] denotes the expectation
w.r.t. all random variables.

Similarly, for a quantized model of the m-th source f Q
m , we obtain

s̃m = f Q
m (g) = ŝm + vm where vm is the noise due to the model quan-

tization. Similar to (2), SDRQ is the SDR of the quantized model for
multiple sources and is defined as:

Definition III.2 (Quantized SDR):

SDRQ � 1

M

M∑
m=1

10 log10

E
[‖sm‖2

2

]
E

[‖s̃m − sm‖2
2

] . (3)

We aim to understand the effect of the quantization noise on the
performance of separation models. Thus, we provide an upper bound
on the SDR of quantized models in the following Theorem:

Theorem III.1 (SDR of Quantized Models):

SDRQ ≤ SDR− 10

M
log10

(
1+ 10M· SDR−SQNR

10

)
+ α̃, (4)

where α̃=− 10
M log10(1− αmax), and αmax =

maxm | E[wT
mvm]√

E[‖vm‖22]
√

E[‖wm‖22]
| is the maximal absolute normalized

correlation factor between the model and quantization noises, and

SQNR = 1
M

∑M
m=1 10 log10

E[‖sm‖22]

E[‖vm‖22]
is the Signal-to-Quantization

Noise Ratio.
A detailed proof of Theorem III.1 is given in Appendix A. From

Theorem III.1, we observe that the SDR gap between the floating-
point and the quantized models increases when the SDR of the
floating-point model increases. This means that the effect of quan-
tization is significant at high SDRs, while it has a minor effect at low
SDRs.

In the following Corollary, we analyze the theoretical results by
examining two corner cases. Note that by a
 b we mean that b

a →∞.
Corollary III.1.1 (Asymptotic Quantized SDR):

SDRQ =
{

SDR SDR
 SQNR,

SQNR SDR� SQNR.
(5)

FIGURE 1. Asymptotic lines of SDR and SQNR from Corollary III.1.1 that
illustrate the behavior of SDRQ.

A detailed proof of Corollary III.1.1 is given in Appendix B. From
(5), we observe two asymptotic behaviors. When SDR
 SQNR, the
model noise is the dominant noise, and when SDR� SQNR, the
quantization noise is the dominant noise. This shows that SDRQ is
mostly limited by SQNR at high SDRs. This is illustrated in Fig. 1,
where we present asymptotic lines over a range of SDR values.

B. EMPIRICAL FINDINGS
Following the theoretical results, we present empirical findings
demonstrating Theorem III.1. We quantize Conv-TasNet [2] for the
separation of two speakers using 8-bit vanilla QAT as described
in [15], which is a common quantization practice. Throughout this
paper, we refer to signal-to-noise ratio (SNR) as the signal-power
ratio between the sources in the context of audio source separa-
tion tasks. Since other sources are considered “noise” for a specific
source, the SNR (dB) of the m-th source is quantitatively measured

by SNRm � 10 log10(
‖sm‖22
‖g−sm‖22

). The mixtures are created from the

LibriMix [30] test set with a wide range of SNRs. Additional ex-
perimental details are described in section V.

Fig. 2(a) shows that empirical SDRQ values match the upper
bound from Theorem III.1. The x-axis is the SNR of the first speaker,
where high values represent high SNRs, which are equivalent to low
SNRs for the second speaker. In addition, in Fig. 2(b), we compare
the SDR [24] of the baseline floating-point model to the SDR of the
quantized model where different parts of the model are quantized:
1) weights only1; 2) weights and activations; 3) weights and activa-
tions except for the input-output signals. It can be seen that weights
quantization does not cause any performance degradation and when
the activations are quantized, there is a considerable degradation in
performance [21], [23]. We also observe that quantization mostly
affects high SNR sources (i.e. −10 dB or 10 dB) and the most
sensitive parts are the input and output. In such cases, quantization
noise becomes more dominant, and its effect is significant.

IV. METHOD
We suggest Fully Quantized Source Separation (FQSS), a method
to enable efficient deployment for audio source separation models.
FQSS’s quantization technique consists of two parts: 1) SDR-Aware

1Note that in QAT, depending on the bit-width and quantization method,
performance might exceed the floating-point precision.
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FIGURE 2. Analysis of SDR under Quantization. (a) Empirical SDRQ against the theoretical upper bound across various SNRs. (b) Impact of quantization
on SDR, comparing the baseline floating-point model against a vanilla QAT model where different parts of the model are quantized. (c) A histogram of
the SNR for two speakers using LibriMix [30] test set.

FIGURE 3. FQSS scheme. For the input, we split each high-precision channel into multiple low-precision. The Separator extracts per-source feature maps
from the mixed features. For the output, multiple RQBs in the decoder extract error quantization terms to correct the model’s low-precision outputs.
Handling the input and output enables full quantization with only low-precision tensors. The floating-point model is used for QAT with SDR-Aware
Knowledge Distillation (SAKD). Signals are waveforms (1D) or spectrograms (2D).

Knowledge Distillation (SAKD), which is a new loss that emphasizes
quantization-sensitive samples by focusing on these samples while
minimizing the overall task loss; 2) extending splitter-reconstructor
to multi-source separation tasks as well as to frequency domain
approaches. Fig. 3 illustrates the extended splitter-reconstructor and
their interface with the input and output, respectively. This scheme
tackles the primary source of the quantization error, which is the
input and output quantization, as demonstrated in Fig. 2(b). The new
scheme is fully quantized and trained with the SAKD loss function.
We describe SAKD in Section IV-A and the extension of the splitter-
reconstructor from the previous work [23] in Section IV-B.

A. SDR-AWARE KNOWLEDGE DISTILLATION
Based on Theorem III.1, quantization noise can cause performance
drops, particularly at high SDRs, where the model noise is small
and the quantization noise becomes more dominant. Paying attention
to quantization-sensitive cases can improve the robustness of the
quantized model. We suggest SDR-Aware Knowledge Distillation
(SAKD) to handle samples with low SDRQ detected during training.
Knowledge distillation forces the quantized model to minimize the
difference between its outputs and the floating-point model’s outputs.

Additional SDR information can guide the QAT learning process.
Thus, we add a per-sample weighting to the task loss to consider data
samples relative to their quantization errors. In this way, the QAT
process can minimize the quantization effect, in particular when the
SDR of the floating-point model is much better than the quantized
SDR. Specifically, let us consider a floating-point model f �, where
� represents the parameters of the model, trained to minimize a
task loss Ltask on dataset D. The dataset D consists of N pairs (gi,
Si) where gi ∈ R

1×n is a mixture sample and Si = {sk ∈ R
1×n}Mk=1 is

a set of M ground truth clean sources. The quantized form of f �

is denoted as f �, where � includes the quantized representation
of � and the quantization parameters �, z of all quantizers. The
m-th separated source of f � and f � are denoted by f �m and f �m ,
respectively. For the sample gi, we define its quantization-sensitivity
weighting by:

γi = 10

(
SDRi−SDRQ i

10

)
, (6)

where SDRi � 10
M

∑M
m=1 log10

‖sm‖22
‖ f�m (gi )−sm‖22

and SDRQ i �
10
M

∑M
m=1 log10

‖sm‖22
‖ f�m (gi )−sm‖22

are the SDRs (dB) of the floating-point

VOLUME 5, 2024 929



IEEE OPEN JOURNAL OF SIGNAL PROCESSING, VOL. 5, 2024

and quantized models ( f � and f �, respectively), for the sample
gi. The overall loss used to train the quantized model is defined as
follows:

Ltotal (�) = (1− λ)
N∑

i=1

Ltask

(
f �(gi ), Si

)

+ λ
N∑

i=1

γi · Lkd

(
f �(gi ), f �(gi )

)
, (7)

where λ is a hyper-parameter to weigh the knowledge distillation
loss term, and Lkd is the knowledge distillation loss between the
floating-point model and quantized model outputs. The Lkd focuses
on improving the SQNR by addressing only the quantization noise
and not the model noise that is added in both models. This loss,
supported by our theoretical analysis, increases the potential for im-
proving SDRQ in quantization-sensitive SNR ranges and the overall
performance of the quantized model.

B. SPLITTER AND RECONSTRUCTOR
In [23], the Splitter and RQB components are designed to reduce
quantization noise in single-source, time-domain models, as dis-
cussed in Section II. This work extends its functionality in two
significant directions:

Multiple Sources: We adapt the RQB to support multiple sources,
enabling its usefulness in source separation tasks. The RQB learns to
produce a quantization correction term which is the quantization er-
ror. Since the quantization errors do not depend on a specific source,
we share the RQB’s parameters across all sources. Specifically, let
RẼ ,D̃ : (Y,X)→ δX be the RQB where Y and X are the input (fea-
tures) and output (samples) of the model’s decoder, respectively, and
δX is the residual quantization error. In the case of multiple sources,
we denote Yi and Xi as the input and output of the model’s decoder
for source i, respectively. Then, the RQB’s parameters (Ẽ , D̃) can
be reused by applying RẼ ,D̃(Yi,Xi ) = δXi ∀i ∈ {1, 2, . . .,M}. We
repetitively use each correction term δXi to correct each separated

source Xi by applying Q(Xi )+ δXi
2bl−1 .

Frequency Domain: We extend the splitter-reconstructor appli-
cability to include frequency domain approaches, where the inputs
are spectrograms. The real and imaginary components of the spec-
trograms are folded into the channel dimension. Then, we apply a
splitter to replace a single high-precision spectrogram with two low-
precision spectrograms. We add weights to the model’s encoder to
align the new input channel count, initializing them with a Gaussian
distribution matching the existing weights’ mean and variance. In
this context, the RQB corrects quantization errors in the frequency
domain. This results in spectrograms that are 8-bit fully quantized.

V. EXPERIMENTS
In this section, we present experiments for two tasks: speech sepa-
ration and music separation. In all of our experiments, we aligned
Lkd to be equivalent to Ltask and set λ = 0.1 unless otherwise
noted. We use per-channel symmetric signed quantization for the
weights and asymmetric per-tensor quantization for activations. For
each model, we report performance metrics, size, and Tera Bit-
Operations (TBOPs). BOP is the total number of bit operations
that is hardware-agnostic and resembles the model’s computational
complexity. TBOPs are evaluated for a 1-second audio segment. In
addition, we present an ablation study to demonstrate our method
on a wide range of SNRs. Appendix C describes Algorithm 1 for
simulating SNR levels. For simplicity, we denote the splitter and

reconstructor for the input and output as IN and OUT, respectively.
Unless mentioned otherwise, all models were trained using the
Adam [31] optimizer on 4 NVIDIA V100 32 GB GPUs.

A. IMPLEMENTATION DETAILS
1) SPEECH SEPARATION
Training: We use the LibriMix [30] dataset for retraining and testing
our method for the separation of two speakers. LibriMix is derived
from the LibriSpeech [32] data set and the WHAM [33] noises. It
consists of three splits: train, dev, and test. Each split contains short
mixed/noisy speech, 16 bits per sample at 8 kHz. For training, we use
the train split (train-360), which contains 50,800 samples. We use the
shortest waveform length between the mixed and clean signals. The
loss function is negative SI-SDR [24]. Conv-TasNet [2] was trained
with a learning rate of 10−3 and batch size of 6 and we use the same
training recipe as in [34]. DPTNet and Sepformer were trained with a
batch size of 1 and learning rates of 4 · 10−4 and 1.5 · 10−4 following
the settings in [3] and [4], respectively. In DPTNet, internal activa-
tions in LSTM layers were quantized by dynamic quantization [12].

Evaluation: We use the LibriMix test split, which contains 3,000
samples. The following metrics are reported: SI-SDR, SDR [24],
and Short-Time Objective Intelligibility Measure (STOI) [35]. We
use TorchMetrics [36] for the implementation of the metrics. Fur-
thermore, we present SI-SDR results in several SNRs to emphasize
the increased sensitivity of quantization and the advantages of FQSS
in such scenarios. Specifically, we select three SNR values: low
(−10 dB), medium (0 dB), and high (10 dB), to represent a range of
the SNRs observed in Fig. 2(c). For each selected SNR, we simulate
the entire test set using Algorithm 1.

2) MUSIC SEPARATION
Training: We use the Musdb18HQ [37] data set to retrain and test our
method. Musdb18HQ is a high-quality version of the Musdb18 [38]
dataset, which consists of 150 songs sampled at 44.1 kHz, 100 of
them for training, provided as raw WAV files. We apply FQSS on
Conv-TasNet [2] and HTDemucs [5], which is a hybrid (time and
frequency) transformers-based model. In HTDemucs, we evaluate
our method on both time and frequency networks. We follow the
training setups of [39] and [5] with batch size of 32 and learning rates
of 10−5 and 3 · 10−4 for Conv-TasNet and HTDemucs, respectively.
The loss function is an L1 norm loss. Additionally, HTDemucs was
trained on 8 NVIDIA A100 80 GB GPUs.

Evaluation: We use the Musdb18HQ test set, which contains 50
songs. We report the total SDR and the SDR per instrument as
defined by the SiSEC18 [40], the median across the median SDR
over all 1-second chunks in each song. Similar to speech separation,
we evaluate the separation of vocals, where all other instruments act
as noise, in three values of SNR: low, medium, and high, which are
−15 dB, −5 dB, and 5 dB, respectively. These values have been se-
lected to cover SNR conditions of input vocals based on Musdb18HQ
histogram, and we simulate the entire test set for each SNR. Here, we
skip audio segments without vocals.

B. RESULTS
Speech Separation: Table 1 compares FQSS’s results with floating-
point and vanilla QAT. We show that our approach reduces sen-
sitivities across a wide range of SNRs. FQSS outperforms vanilla
QAT on the LibriMix test. In particular, it has the most SI-SDR
improvements when one speaker is much stronger than the other. Our
8-bit quantized model cuts the size of the floating-point model by 4x
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TABLE 1. Speech Separation. Comparison Between Floating-Point Models and Their 8-Bit Fully Quantized Models on LibriMix [30]

TABLE 2. Music Separation. Comparison Between Floating-Point Models and Their 8-Bit Fully Quantized Models on Musdb18HQ [37]

and the complexity by 16x while keeping similar performance. The
overhead of the splitter and reconstructor is minimal due to simple
bit-splitting and addition.

Music Separation: Table 2 compares the performance of FQSS
with the floating-point and vanilla QAT. FQSS outperforms vanilla
QAT on the Musdb18HQ test set. Specifically, it improves the to-
tal SDR by 0.6 dB for HTDemucs [5]. Results suggest that 16-bit
precision can be replaced with 8-bit without sacrificing performance
for the time and frequency domains. Our model is 4x smaller and
16x faster than the floating-point model, which is crucial for edge
devices. This is with a negligible performance degradation compared
to the floating-point baseline.

C. ABLATION STUDY
Here, we provide an ablation study for our proposed method. First,
we evaluate FQSS method incrementally to show the effectiveness
of each component. Then, we explore several values of λ for SAKD.
Finally, we present an ablation for the splitter-reconstructor on a
frequency domain network.

Incremental Ablation: To investigate the contribution of FQSS
components, we present incremental ablation for speech separation
using Conv-TasNet2 [2]. We begin with a vanilla QAT and gradually
add FQSS components as follows: SAKD, SAKD+IN, and FQSS
(SAKD+IN+OUT). We present the SI-SDR results in Fig. 4(a). It
illustrates that SAKD plays a significant role in improving perfor-
mance. The results show an improvement across a wide range of
mixed speech and especially high SNRs, where we reach an improve-
ment of more than 1 dB compared to vanilla QAT. This ablation
shows the impact of each component, showing performance drops
when a component is absent.

2Similar results were observed with both speech and music separation, as
well as with other models.

FIGURE 4. Ablation. (a) Incremental ablation for FQSS. (b) SDR
improvement of the vocals separation for various distillations (λ) in SAKD.
High SNRs show the most improvement.

TABLE 3. Frequency Domain Ablation. Evaluating SDR on HTDemucs [5]
for Different Input and Output Precisions

SAKD: Fig. 4(b) provides an ablation for SAKD using Conv-
TasNet [2] for music separation2. Here, we set several values to the
hyperparameter λ, starting from λ = 0 (w/o distillation), and train
a quantized model for each value. Then, we evaluate the vocals
separation for the same three SNR levels: low, mid, and high. The
figure shows a significant improvement around λ = 0.1 compared
to the results without distillation. The knowledge obtained from
the floating-point model can boost performance, especially at high
SNRs, while having a minor effect at low SNRs.
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Frequency Domain Network: Table 3 shows an ablation for the
frequency domain network in HTDemucs [5]. Here, we keep the
input-output of the time domain network in 16-bit while using the
splitter-reconstructor scheme only in the frequency domain. The
table indicates the effectiveness of the splitter-reconstructor in avoid-
ing performance loss caused by 8-bit input-output quantization for
spectrograms.

VI. CONCLUSION
In this paper, we developed a theoretical upper bound for SDR in
quantized models, showing a particular effect on high-performing
floating-point models. Our empirical analysis highlights the quan-
tized model’s sensitivities, especially when the input and output
are quantized. We proposed a new QAT method for audio source
separation, using a novel knowledge distillation loss that focuses
on sensitive samples during the retraining. In addition, we extend
the FQSE’s splitter-reconstructor to source separation tasks. Our
method, FQSS, shows model size and complexity reductions with
minor performance drops on various architectures and tasks. This
work presents the first fully quantized models for audio separation,
which paves the way for future research in further directions, such as
PTQ, mixed precision, and beyond.

APPENDIX A
THEORETICAL ANALYSIS OF QUANTIZED MODELS
A. PROOF: SDR OF QUANTIZED MODELS
Proof: First, we look at the log argument in (3):

ψ =
M∏

m=1

P(m)
s

P(m)
v + P(m)

w + 2E
[
wT

mvm

] , (8)

where P(m)
s = E[‖sm‖2

2], P(m)
v = E[‖vm‖2

2] and P(m)
w = E[‖wm‖2

2] are
the powers of the vectors sm, vm and wm, receptively. Now, we
investigate the denominator of (8):
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where αmax = maxm
|E[wT

mvm]|√
E[‖vm‖22]

√
E[‖wm‖22]

is the maximal absolute nor-

malized correlation factor. For the following step, let’s define wm =
γ (m)

w w̄m and vm = γ (m)
v v̄m such that E[‖w̄m‖2

2] = 1 and E[‖v̄m‖2
2] =

1. Writing the following term w.r.t. um � P(m)
v

P(m)
w

= E[‖vm‖22]

E[‖wm‖22]
= ( γ

(m)
v

γ
(m)
w

)2:

Cm � 1−
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√
P(m)
v

P(m)
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1+ P(m)
v

P(m)
w

) = 1− 2αmax
√

um

1+ um
≥ 1− αmax. (10)

Notice that αmax does not depend on um. Since 0 ≤ αm ≤ 1, the
local minima of Cm w.r.t. um is equal to 1− αmax. Plugging (10) and

Algorithm 1: Mix2(s1, s2, β).

α← 10 log10
‖s1‖22
‖s2‖22

if β > α then
s2 ←

√
α

β
· s2 � Decrease s2

else
s1 ←

√
β

α
· s1 � Decrease s1

end if
return s1 + s2

(9) into (8) results in:

ψ ≤ (1− αmax)−M
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where φ =∏M
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and η =∏M
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are the SDR and SQNR

to the M power in natural units, respectively, and r �
∏M

m=1(1+
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v
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)− 1− φ

η
≥ 0 is the residual part. Pulling (11) back into (3)

results in (4).
�

B. PROOF: ASYMPTOTIC QUANTIZED SDR
Proof: In the asymptotic cases, P(m)
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w 
 P(m)
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(12)

Pulling it back into (3) results in (5). �

C. SNR SIMULATION
To simulate a wide range of SNRs, we use Algorithm 1, which mixes
two signals, s1 and s2, with the desired SNR, β. Then, we scale the
mixed signal if needed, as in [30].
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