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ABSTRACT Pathloss quantifies the reduction in power density of a signal radiated from a transmitter. The
attenuation is due to large-scale effects such as free-space propagation loss and interactions (e.g., penetration,
reflection, and diffraction) of the signal with objects such as buildings, vehicles, trees, and pedestrians in
the propagation environment. Many current or planned wireless communications applications require the
knowledge (or a reliable approximation) of the pathloss on a dense grid (radio map) of the environment of
interest. Deterministic simulation methods such as ray tracing are known to provide very good estimates
of pathloss values. However, their high computational complexity makes them unsuitable for most of the
applications envisaged. To promote research and facilitate a fair comparison among the recently proposed
fast and accurate deep learning-based pathloss radio map prediction methods, we have organized the ICASSP
2023 First Pathloss Radio Map Prediction Challenge. In this overview paper, we describe the pathloss radio
map prediction problem, provide a literature survey of the current state of the art, describe the challenge
datasets, the challenge task, and the challenge evaluation methodology. Finally, we provide a brief overview
of the submitted methods and present the results of the challenge.

INDEX TERMS Challenge, dataset, deep learning, pathloss, radio map, received signal strength (RSS).

I. INTRODUCTION
In wireless communications, pathloss (or large-scale fading
coefficient), quantifies the loss of wireless signal strength
between a transmitter (Tx) and receiver (Rx) due to large
scale effects. The signal strength attenuation can be caused by
many factors, such as free-space propagation loss, penetration,
reflection and diffraction losses by obstacles like buildings
and cars in the environment. In dB scale pathloss amounts
to PL := (PRx)dB − (PTx)dB, where PTx denotes the transmit-
ted power at the Tx and PRx is the average received signal
power, where the averaging is over a sufficiently large time,

frequency, and space domain [2] spanning a few small-scale
fading coherence interval in time, a few small-scale fading
coherence bandwidths in frequency, and a few multiple of
the carrier wavelength in space. In this way, the effects of the
small-scale fading are averaged out and PL captures only the
large-scale effects. Notice that this local averaging is routinely
performed by mobile devices when assessing their received
signal strength (RSS), e.g. to calculate the so-called RSS
indicator (RSSI) to inform the base station about the “qual-
ity” of their channel. A pathloss radio map provides pathloss
value estimates on a fine spatial grid. Due to the local spatial
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averaging mentioned above, the resolution of the spatial
grid is tuned to accurately describe large scale effects, but
sufficiently coarse to allow for local spatial averaging. For
example, at a wavelength of 10 cm (carrier frequency of 3
GHz), a 1 m × 1 m grid may be a reasonable choice.

Many present or envisioned applications in wireless com-
munications rely on the knowledge of the pathloss radio map
of the area of interest, thus, accurately estimating pathloss
is a crucial task. Some example use cases include: coverage
map prediction [3], [4], [5], [6], user-cell site association [7],
received signal strength (RSS) fingerprint-based localization
[8], [9], [10], optimal power control [11], physical-layer secu-
rity [12], activity detection [13], transmitter location selection
[14], [15], [16], [17], optimal unmanned aerial vehicle (UAV)
placement [18], spectrum sharing for joint communication
and sensing [19], vehicle-to-vehicle (V2V) link scheduling
[20], satellite-UAV on-demand coverage [21], beam align-
ment [22], path planning [23], access point (AP) switch
ON/OFF strategy [24]. Establishing pathloss maps through
measurement campaigns is a very labor-intensive and expen-
sive enterprise. Therefore, the use of accurate deterministic
simulations based on accurate propagation models such as ray
tracing (which is based on a high-frequency approximation of
Maxwell’s equations) is considered a more feasible approach
and is widely used. See Fig. 1 for some simulated radio map
examples.

However, due to the high computational complexity of such
simulations, they are not suitable for most of the intended ap-
plications of pathloss radio maps, while the conventional low
complexity empirical methods are not capable of providing
location-specific high fidelity pathloss predictions in complex
propagation environments such as urban or indoor scenarios.
Recently, many researchers, including the authors of the cur-
rent paper [3], have presented deep learning-based pathloss
radio map estimation algorithms that provide highly accurate
pathloss map predictions, but with orders of magnitude lower
computational time than conventional high-precision simula-
tion methods, providing the fast and reliable pathloss radio
map estimation required by applications. Some of the early
work includes [3], [14], [15], [25], [26], [27].

By organizing this challenge, we have endeavored to pro-
vide an opportunity for a fair comparison of the recent neural
network (NN)-based radio map prediction methods, based on
the use of our publicly available RadioMap3DSeer Dataset
[28] (cf. Section III-A and [29] for dataset descriptions).

II. OVERVIEW OF THE PREVIOUS WORK
In this section, we present an overview of pathloss radio map
prediction methods by classifying them as either model-based
or model-free (measurement-driven) or hybrid approaches.
The focus is much more on the model-based and hybrid
approaches because of their ability to exploit knowledge of
the propagation environment and propagation physics (either
by learning from synthetically generated data from highly

FIGURE 1. Examples of simulated pathloss radio maps for 2D and 3D
settings. Tx positions are marked with a red plus sign. The intensity of the
blue color indicates the height of a building; the stronger the color, the
higher the building. The details of the system parameters corresponding to
this figure are given in Section III-A. Top: 2D setting (ground level Tx
placement). Bottom: 3D (rooftop Tx placement) setting used in the
challenge.

accurate deterministic models, or directly from field mea-
surements), resulting in higher accuracy than environment-
agnostic model-free interpolation approaches.

A. MODEL-BASED PATHLOSS RADIO MAP PREDICTION
In the following, we first summarize the two traditional types
of pathloss prediction models, namely the statistical and the
deterministic ones [30], [31]. An important feature of model-
based methods is that they do not rely on measurements at the
time of deployment, which makes these methods the only op-
tion when, for example, Tx deployments at different locations
are of interest, or a non-stationary Tx scenario is considered.
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Afterward, an overview of deep learning-based methods
follows, the subject of The First Pathloss Radio Map Pre-
diction Challenge,1 which have attracted increasing interest
in recent years due to their ability to combine accuracy
with computational efficiency. It was precisely these qualities
that motivated us to organize this ICASSP Signal Processing
Grand Challenge (SPGC).

1) STATISTICAL MODELS
Statistical (or empirical) models are primarily based on large
scale measurement campaign data in specific propagation
environments such as urban, suburban, rural scenarios. The
measurements collected in specific environment types are
used to derive environment type specific statistical relation-
ships between pathloss and a few input parameters such
as Tx-Rx distance, frequency, building density and line-of-
sight/non-line-of-sight (LOS/NLOS) conditions in (sub)urban
scenarios, while the fixed parameters of the models are deter-
mined by data fitting, i.e. they are chosen to maximize the
agreement between the model prediction and the measure-
ment data. Often, the error term between the model prediction
and the measured data is attributed to shadowing loss due
to signal penetration through obstructions in the environment
and is then introduced as a random shadowing term in the final
model equation.

Evidently, such models are not site-specific, i.e. they do
not take into account the detailed specifications of the prop-
agation environment of interest, i.e. the shapes and material
compositions of the present objects, e.g. by taking them as
input parameters, and here in this case of statistical models,
rather they treat two different environments the same, as long
as they fall into the same propagation environment category.
Moreover, the position of Rx is often only important in terms
of its distance from Tx, imposing a radial symmetry that does
not hold in a real propagation environment with irregularly
placed obstacles, or only roughly addressing the presence of
obstacles by their proportion in the direct Rx-Tx path. There-
fore, overall, these models have low accuracy in predicting
pathloss at a given location.

Due to their simplicity, these models are computationally
very efficient and have been used extensively in decision
making problems where the actual position of an Rx is not
important, but rather the distribution of pathloss for a given
Tx-Rx distance and environment type.

Some popular statistical models include the log-distance
[32], log-normal models [31], Okumura-Hata model [33],
COST-231 model [34], Stanford University Interim model
[35], Standard Propagation Model (SPM) [36] and QuadRiGa
[37].

2) DETERMINISTIC MODELS
Deterministic models are based on the physics of electromag-
netic wave propagation and are environment aware. Specif-
ically, prominent deterministic propagation models, such as

1[Online]. Available: https://RadioMapChallenge.GitHub.io/

ray tracing [38] or finite-difference time-domain (FDTD) [39]
simulations, are grounded in the physical principles of wave
propagation and provide approximate solutions to Maxwell’s
equations, the first being based on high-frequency approxi-
mations and the second on discrete solutions of Maxwell’s
equations [30].

These models utilize detailed environmental information,
including the shapes and locations of buildings and other
objects such as vegetation, material properties and electro-
magnetic characteristics such as permittivity and conductiv-
ity, and antenna settings (e.g., location, azimuth, tilt, and
radiation pattern) [27], [40], [41] to predict pathloss. By
accurately modeling the physical mechanisms of electro-
magnetic wave propagation, such as transmission, reflection,
scattering and diffraction, deterministic models offer the
potential for highly accurate predictions, especially when
accurate information about the geometry and material prop-
erties of the environment is available. Recent work such as
[42] exemplifies the promising developments in obtaining
accurate geometric and electromagnetic environment infor-
mation and the resulting improvements in pathloss prediction
by ray tracing over the use of less accurate environment
information by validating with real-world measurements,
demonstrating very good agreement between predictions and
measurements.

Also, most commercial propagation simulation tools that
employ deterministic models are validated by field measure-
ments (as we mention for WinProp [43], which we used to
generate the challenge dataset, in Remark 4), as a natural
marketing requirement, since obviously no one would want
to use a product that is not proven to work well.

In contrast to empirical models, deterministic models are
site-specific (propagation environment, Tx characteristics and
Rx location-aware) and adhere more closely to the principles
of electromagnetic wave propagation, and therefore generally
provide much more accurate results.

However, they typically consume large amounts of com-
putational resources and are time intensive, making them
prohibitively slow for many applications that require fast
computation, such as real-time operations or large-scale, ex-
haustive predictions.

Among the well-known ray-based methods are the Shoot-
ing and Bouncing Ray (SBR) [44] and the Vertical-Plane-
Launch (VPL) [45] methods [38]. Some widely employed
accelerated (e.g., by space partitioning [46]) ray-based sim-
ulation approaches include the Dominant Path Model (DPM)
[47] and Intelligent Ray Tracing (IRT) [48], the latter being
our choice for preparing the datasets of the present challenge.
A brief description of the IRT and how we chose its simulation
parameters can be found in the Appendix.

Remark 1: We note that many deterministic models have
parameters that can be calibrated by measurements, and
the degree of dependence on such calibration measure-
ments sometimes leads to classifying such methods as semi-
deterministic, especially when the deterministic physical
model part is substantially simplified. One such example is
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the DPM, where only the shortest (least attenuated) free
space path is considered, which leads to the consideration of
only diffractions and thus to the omission of reflections alto-
gether, presumably reducing complexity without significantly
compromising accuracy [47]. Among many, another notable
example of semi-deterministic models is the widely used and
improved Motley-Keenan multi-wall model [49], [50] special-
ized for indoor settings, which has been shown to provide
relatively close pathloss prediction accuracy to more complex
ray tracing methods.

3) DEEP LEARNING-BASED METHODS
In the following, we provide an overview of the deep neural
network (DNN)-based methods that learn complex determin-
istic models and can provide highly accurate predictions, but
in much less time than their deterministic model counterparts.

This approach, which has been the subject of numerous
papers and of the SPGC presented here, has been shown to
provide a very desirable trade-off between accuracy and com-
putational time, drastically reducing the latter with respect to
deterministic models without severely impairing the former,
in contrast to statistical models.
a) Motivation and background: With the advent of realistic
and large-scale data availability and computational power,
recent years have witnessed the emergence and increasing in-
terest in deep learning-based methods, which have also found
profound impact on the pathloss radio map estimation prob-
lem.

Earlier work, however, did not yet benefit from efficient
neural network designs and large, high-quality datasets with
geometric environmental descriptions, and their improve-
ments in accuracy over conventional methods are rather
limited. In addition, these neural networks are only useful in
the environment for which they are trained, i.e. they do not
generalize to unseen environment maps, as a consequence of
the fact that they are only trained to predict pathloss within a
single environment.

For example, in [51], [52], the neural network is a function
that returns an estimate of pathloss for each input Tx-Rx
location. The network is trained on a fixed map and simulated
pathloss values at a set of Tx-Rx locations. There are several
other papers on pathloss prediction that use fully connected
neural networks that do not consider the environment map
information and use additional information such as the height
of the transmitter/receiver or the distance between them. For
example, see the survey [53] and the papers [54], [55], [56].
These methods are clearly unsuitable for predicting the radio
map as a function of the environment map geometry given as
input to the neural network.

Hence, these methods can also be regarded as non site-
specific, similar to empirical models, since once trained in a
certain environment, they do not generalize to other sites.

To the best of our knowledge, the first generalizable DNNs
that can achieve high accuracy in unseen (not available in the
training dataset) were RadioUNet [3], [26], proposed by the

authors of the current paper, DA-cGAN [14], PLNet [27] and
FadeNet [15]. These models learn to approximate the (predic-
tions based on the) underlying electromagnetic propagation
phenomenon by training on datasets that were generated by
employing simulations based on high complexity determin-
istic models. Such methods take as input the Tx position
map and the environment map(s), and thus learn to predict
the pathloss radio map for any Tx position and for any en-
vironment map(s). The propagation environments considered
have been of varying complexity. While the RadioUNet set-
ting was 2D propagation (i.e., fixed Tx, Rx, and building
heights) in urban environments with isotropic Tx, so that Tx
location and building footprints can be described by black and
white images as input features, more realistic complex set-
tings (e.g., 3D propagation and evaluation settings, different
material properties, directional Tx, beam patterns) have been
considered in later work, leading to the use of many input
features to describe the complex propagation environment and
Tx characteristics.

Since these methods take essentially the same inputs to
estimate radio maps as the deterministic models, high fidelity
descriptions of the geometry and material properties of the
environment are also very important [42].

On a modern graphics processing unit (GPU), a radio map
prediction using such DNNs typically takes on the order of
tens of milliseconds, which amounts to a 100× to 10,000×
reduction in computation time, while the deviation of the
model output from the prediction of the underlying simulation
model is not large, as we also observe in the results of the
challenge participants in Section VIII.
b) Overview of the Existing Work: RadioUNet [3] has two
versions, RadioUNetC and RadioUNetS , where the former
falls into the setting of this section and takes the city envi-
ronment map and the one-hot Tx location map to predict the
pathloss radio map, while the latter takes pathloss measure-
ments from the site of interest as an additional input feature.
We call such methods that combine the learning of a propa-
gation model with the use of measurements collected at the
site of interest hybrid approaches and discuss them in Section
II-B.

RadioUNet is a UNet [57] variant that cascades two UNets,
resulting in a “W” shape. The input of the second UNet is the
same as the input of the first UNet (city map + transmitter
position as image), plus an additional feature channel, the
output of the first UNet. The WNet (cascaded UNet) is trained
in a curriculum. Initially, the first UNet is trained to estimate
the ground truth pathloss maps from a large training dataset,
which may represent reality in a coarser way than desired (for
example, due to the difficulty of generating a large dataset for
the desired setting, as noted in several papers such as [58],
[59]). Then the weights of the first UNet are frozen and the
second UNet is trained to estimate the pathloss maps.

The second UNet in the cascaded W structure was used
to serve three different purposes: 1) reducing the size of the
DNN compared to using only one large UNet, 2) estimating
the coverage map, 3) adapting to more complex propagation
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settings than the available large dataset used for training
(transfer learning [60]) through the use of measurements
(samples) collected from the complex setting of interest. The
merits of this use case have recently been experimentally
proven by measurements for the challenging case of direc-
tional Txs [61].

Other notable use cases of transfer learning were presented
in PLNet [27], EM DeepRay [58], Radio DIP [59] and in [62],
where the whole DNNs are further calibrated/fine tuned using
the real world measurements (or their synthetic surrogates
[3], [59]). Unlike RadioUNet [3] and [61], these models have
no partial DNNs whose weights are frozen (first UNet in
RadioUNet [3] and in [61]) during adaptation/calibration/fine
tuning.

PLNet [27] is a single UNet and takes 8 input features,
which are building, antenna height, frequency, antenna gain,
tilt, azimuth, clutter and terrain, to provide the model with the
ability to operate under variations of such realistic propagation
settings. Most notably, the authors show that PLNet, trained
on real field data, significantly outperforms ray tracing, indi-
cating the ability of the DNN to learn a better mapping of the
inputs to the pathloss radio map than ray tracing. PLNet is
reportedly used by many field engineers.

FadeNet [15] also uses the UNet architecture and takes as
input transmitter location (if not known to be fixed, omitted
in this case), buildings, terrain, foliage, and LOS (binary, 1 if
the grid point is in LOS, 0 otherwise) maps. The authors used
synthetic data generated by ray tracing and data augmentation,
the latter of which also proved useful in later work [4], [24],
[41], [58], [63]. The authors also investigated the effect of the
similarity of topographic features in the training and test sets
and the size of the training dataset on prediction accuracy.

In [64], the authors considered a reflection-only sce-
nario (no diffraction or penetration interactions of rays with
buildings) generated by VPL [45] simulations in 2D set-
tings, and a modified convolutional autoencoder framework
involving ResNeXt networks [65], skip connections, and
atrous/dilated convolutions [66], [67], the lastmentioned also
proving very effective in later work [4], [41], [58], [68], [69].
The authors presented a stepped solution where identical but
separate models are trained to iteratively predict each ray
reflection.

In RadioTrans [70], [71], the authors augmented the con-
volutional encoder/decoder structure with transformer-based
[72], [73] modules with the goal of learning the long-range
spatial relationships between Tx, Rx pixels, and obstacles in
the propagation environment. They supported the NN with an
additional input, which they called Grid Anchor (GA), which
involves the concatenation of grid coordinates and transmitter
coordinates at all grid points. The use of this additional input
feature has been found to be beneficial in other work as well
[29], [41], [74].

Enhancements to the UNet for pathloss prediction were
proposed in [75] by replacing the pooling layers with strided
convolutions [76] and combining the UNet with inception
modules as introduced by GoogleNet [77].

To the best of our knowledge, radio map prediction at nu-
merous heights (3D prediction setting), was first proposed in
DeepRay [68] and soon after in [78], by employing multiple
output channels corresponding to the set of altitudes consid-
ered. More recently, the problem has been studied in detail
in [79], where several DNN designs are compared and a 3D
prediction radio map dataset is presented.

PPNet [80], which was partially adopted by the challenge
method of the same name ([81], cf. Section VII-C), builds on
the SegNet architecture [82], which involves a modification of
the pooling method that stores the initial location of pixels in
high-level feature maps and exploits these maps during the up-
sampling phase to achieve higher edge resolution prediction.
Improvements in prediction accuracy were achieved by using
a Gaussian kernel instead of a one-hot representation as the
Tx input feature, and further by using a Positional Encoding
input feature that conveys the spatial distance between the Tx
location and the locations of the other points in the grid.

In EM DeepRay [58], the permittivity and conductivity of
the walls in the indoor setting are considered as input features
along with the Positional Encoding and the free space pathloss
(FSPL) map, which is a function of distance and carrier
frequency, allowing the model to perform well at different
frequencies. The benefits of using such radially symmetric
pathloss functions as input features have also been demon-
strated in [5] and recently in [61], where the log-distance
and 3GPP 38.901 UMa-NLOS models [83], respectively, were
used to generate input coarse pathloss radio maps.

Remark 2: In DeepRay [68] and EM DeepRay [58], the
Motley-Keenan multi-wall model [49], [50] was shown to
yield not too inferior performance in comparison to uncal-
ibrated ray tracing and the presented deep learning-based
methods before calibration, while suffering from longer com-
putation times than the deep learning-based method due to
its usual non-parallelized implementation, i.e., pathloss for
each pixel is computed serially, as we also observed in the
implementation of a baseline tomography method in our
RadioUNet paper [3]. We would like to point out that an
efficiently parallelized GPU-enabled computation of such al-
gorithms might be feasible, e.g. as was showcased by one of
the challenge teams [24], [84] in calculating their fractional
LOS maps using the CuPy library [85]. Although methods
such as the Motley-Keenan multi-wall model and direct path
model [86], [87] yield inferior prediction accuracy compared
to deep learning-based methods trained on large training data
(and potentially further improved by calibration/fine tuning
with measurement data), the acceleration of former methods
may still make them attractive, because of the possibly higher
accuracy of using such methods in the small data regime
where DNN based methods cannot perform well due to lack
of sufficient training data. Moreover, the use of radio maps
generated by such methods as input features to pathloss radio
map prediction DNNs has also proven very useful [88].

Nevertheless, given the relatively easy access to high com-
puting power available today, we believe that the generation
of large synthetic datasets (based on accurate deterministic
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models) is an effort that can be accomplished with relatively
modest investments, which helps immensely in achieving very
high accuracy, through the use of DNNs.

PMNet [4], whose modified version ([89], cf. Section VI-
I-B) performed best in the challenge, is an encoder-decoder
DNN where the encoder contains a series of ResBlocks [90]
and applies multiple parallel atrous convolutions at different
rates [67], [91] and uses skip connections across the layers
of the encoder and decoder. Each ResNet [65] layer consists
of several bottleneck layers comprising convolution, batch
normalization, and rectified linear unit (ReLU).

The effect of building density was studied in the challenge
(Agile method [84], cf. Section VII-A) follow-up paper REM-
U-Net [24]. The advantages of the use of the fractional LOS
map (somewhat similar to the direct path model [86], [87]),
were demonstrated over the conventional LOS map. The au-
thors developed several algorithms to generate their fractional
LOS maps. They also studied the application of pathloss radio
maps to the AP ON/OFF switching problem [92] as a novel
application of radio maps.

In [41], the authors presented a comprehensive radio map
dataset generated by ray tracing simulations with directional
antennas using environmental information taken from the real
world, including trees and realistic building heights with ap-
proximated roof shapes, as well as aerial imagery of the same
locations. The use of deformable convolutional layers [93]
was proposed and numerical experiments were performed
with different DNN architectures and with different ways of
encoding the city geometry and with aerial imagery.

In DA-cGAN [14], the authors proposed to use conditional
generative adversarial networks (cGAN) [94] for indoor radio
map prediction in parallel with optimal Tx placement while
taking into account the interference from the outside macro-
cell Txs. They introduced appropriate loss functions and a
two-stage training strategy. To better learn the propagation
patterns, they proposed the gradient similarity (GSIM) index,
a metric that measures the gradient pattern between two im-
ages rather than the sole pixel-wise match. The authors also
reported a positive impact of training their model in the cGAN
framework, which uses a discriminator architecture.

In [95], the authors considered the application of cGANs to
the outdoor scenario using the RadioMapSeer Dataset intro-
duced in [3], [29]. The authors also report on the beneficial
effects of the discriminator network and their numerical ex-
periments show that their approach provides better prediction
accuracy than RadioUNet [3] and is of lower computational
complexity.

In PL-GAN [63], the authors presented a generative adver-
sarial network (GAN)-based approach to predict pathloss of
an outdoor urban envrinmont directly from satellite images or
the height map of the region. They concluded that height maps
produce better results because the actual height profile is more
informative about the shadowing effects compared to satellite
imagery.

The authors of IRGAN [69] proposed cGAN-based DNNs
for an indoor scenario involving materials with different

electromagnetic properties. They presented a segmentation
model to extract doors, interior walls, and exterior walls from
raw floor plan images. The pixels corresponding to each ma-
terial are encoded by the value of their permittivity, and the
thickness of the walls is also taken into account. They im-
proved their method by using the attention mechanism [72]
and dilated convolutions [67].

In RADIANCE [40], the authors considered the indoor
setup with varying carrier frequencies, material types, and
notably, antenna patterns represented by the antenna gain
values for various azimuth and elevation angles. They used
a gradient-based loss function that calculates the magnitude
and direction of change in RSS/pathloss at each grid point,
similar to GSIM in [14], and employed a PatchGAN [96]
discriminator with instance normalization.

Remark 3: We would also like to point out the efforts to
efficiently parallelize highly complex ray tracing algorithms
such as SBR [44]. For example, in a recent paper [97], the
authors report that they reduced the computation time for
100,000 rays from 852 seconds to 1 second compared to serial
computation, and for 1,600,000 rays from 86,214 seconds to
6.5 seconds, a remarkable 13,263-fold speedup. We would
like to remind that the typical computation times achieved by
DNN-based methods are in the order of tens of milliseconds,
and therefore DNN-based methods seem to be more suitable
for applications that require fast predictions. Moreover, as
shown in PLNet [27], DNN-based methods trained on field
data can outperform a ray tracer (although compared to only
one ray tracing software).

Overall, we hope that all of these developments can
synergize to further reduce computation time and increase
accuracy.

B. HYBRID APPROACHES
Hybrid approaches use both the propagation pattern relevant
environment information, i.e. shape and material properties
of the present objects, and optionally information about Tx
such as its position, and measurement data (recall that the
aforementioned model-based approaches do not rely on mea-
surements in inference phase).

An early example of such a method was our measurement-
assisted RadioUNetS [3], which incorporates measurements
from the environment of interest as an additional input chan-
nel along with the environment map and the one-hot Tx
position map into the framework of the general RadioUNet
model (cf. Section II-A3b), thereby increasing the accuracy
of the radio map estimation.

Such an approach is useful when the environment map
given as an input feature channel does not represent reality
with high degree of fidelity, or when the simulation method
used to generate the training dataset is not highly accurate.
Therefore, the network learns a hybrid of a radio map estima-
tion method based on the given map, which is not completely
reliable, and an interpolation method of the accurate pathloss
measurements. In this scenario with inaccurate maps, a per-
turbed version of the ground truth maps is given as input to the
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UNet. We considered three types of inaccuracies: 1) the map
is given with one to four missing buildings; 2) the map is given
without cars, but the ground truth simulation is computed with
the cars; 3) training is done against simulations that are rather
coarse approximations of reality.

In [98], the authors considered the problem of power spec-
tral cartography, which can be viewed as RSS estimation in
a given frequency band. The authors adopted a supervised in-
painting learning approach by using completion autoencoders.
The presented method takes measurements, a mask indicating
the locations of the measurements on the grid, and the building
map as input. A multi-emitter setting was considered, where
the power measurements are assumed to be the sum of the
powers of the signals emitted by each Tx.

In [99], the authors considered the single frequency multi-
emitter scenario. They proposed not only to feed the measure-
ment information and the environmental information consist-
ing of the building map and the mask together as input, but
to provide the encoder/decoder parts with the copies of the
input measurement and/or environment information, which
led to performance improvements especially at relatively high
sampling rates. They further suggested to equip the autoen-
coder with skip connections, which outperformed the vanilla
autoencoder and the proposed dual path autoencoders without
skip connections. The numerical results showed that the skip-
aided autoencoders with or without the dual path structure
performed very similarly.

A UNet architecture taking a 3D building map and mea-
surements as input was adopted in [100]. Two separate but
identical UNets are trained to learn the mean and variance
parameters, assuming that the RSS at each location is an
independent Gaussian random variable. The variance map is
considered to quantify the uncertainty, and inference is based
solely on the output of the mean UNet. The papers on the
Agile method [24], [84] of the challenge also reported that
the use of this Gaussian modeling along with the use of KL
loss resulted in better performance.

An earlier (to the best of our knowledge, the first) applica-
tion of the hybrid approach based on deep learning to radio
map estimation was the SS-GAN [25], where the authors
recognized the importance of environmental information such
as buildings and terrain. In their proposed GAN-based archi-
tecture, the environment and measurement maps are subjected
to separate feature extraction layers, and the obtained fea-
ture vectors are concatenated to be further processed through
learnable layers and upsampled to give an estimate of the radio
map. Due to the non-availability of large datasets for training,
the authors proposed to incorporate self-supervised learning.
The performance of the proposed method was evaluated on a
real-world 4G LTE dataset.

RME-GAN [5] considered the 2D setting and cGAN archi-
tecture to estimate pathloss from Tx position, building map
and measurements inputs. The proposed method first used
the log-distance pathloss model to obtain a rough estimate.
Then, a two-stage training procedure was used where the first
stage focuses on learning global propagation patterns and the

second stage is dedicated to learning the details. A number of
loss functions were considered for the different stages. The au-
thors considered different sampling strategies to demonstrate
the high generalizability of the proposed method. Numerical
comparisons with several baselines were provided.

In EME-GAN [101], the authors used the cGAN architec-
ture to estimate indoor RSS radio maps using measurements
and a building infrastructure map as inputs, where the latter
includes material types in the floor plan and no Tx po-
sitions were required during inference. Through numerical
experiments, the good performance of the proposed method
is demonstrated, outperforming their previous UNet-based
method EME-Net [102] when sufficient number of mea-
surements are available, while in low sampling rate regime,
EME-Net [102] turned out to perform better.

In ACT-GAN [103], the authors considered three different
settings. The first involved predicting radio maps using trans-
mitter and building map information, as discussed in Section
II-A3. The second scenario incorporated measurements into
the previous setting, as described earlier in this section. The
third scenario dealt with an unknown Tx position, where es-
timating its location was posed as a problem. The proposed
DNN makes use of convolutions, convolutional block atten-
tion modules [104], aggregated contextual transformations
[105], and uses the PatchGAN [96] discriminator. Numerical
comparisons with previous work demonstrated the high accu-
racy of the proposed methods.

In [106], the authors proposed a cGAN-based method for
radio map estimation using measurements and building map
as inputs. The authors demonstrated the effectiveness of their
method in handling inaccurate building map information, even
when certain or random number of buildings are missing in
the input. Although the proposed method does not consider
Tx information, it still demonstrates competitive performance
compared to Tx position-aware (but not measurement-aided)
RadioUNetC (cf. Section II-A3b) [3].

C. MODEL-FREE PATHLOSS RADIO MAP PREDICTION
Model-free (or interpolation) methods are purely measure-
ment driven and do not use any information about the
environment or the Tx(s). As a result, such methods strug-
gle to demonstrate high performance in cluttered propagation
environments, such as urban and indoor environments, where
the exact positions and material properties of obstacles have a
profound effect on electromagnetic wave propagation.

The model-free approaches therefore impose some other
assumptions, such as smoothness or a low-rank property.
Some prominent interpolation methods include Radial Basis
Functions (RBF) interpolation [107, Sect. 5.1], Kriging [108],
tensor completion [109], and k-nearest neighbors Gaussian
process regression [110].

For more information on model-free methods, please refer
to the survey papers [111], [112] and the references therein.

In the following, we would also like to present some
measurement-only DNN-based methods that have been pub-
lished recently.
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In [113], the authors demonstrated how to build a large
indoor radio map dataset and proposed the use of a modified
UNet architecture for interpolation, where the model
takes only sparse measurements as input. Numerical and
field experiments demonstrated that the proposed method
outperforms a Gaussian process-based baseline [114] and
is more robust to measurement location errors than the
considered baseline.

For the multi-emitter power spectral cartography problem,
the authors of [115] proposed autoencoder-based methods to
complete the individual radio maps (which requires the es-
timation of the number of Txs), which resulted in a better
estimation accuracy than operating directly on the aggregated
map [98]. The proposed methods take the measurements and
the measurement mask as input, i.e., the building input could
apparently be omitted without performance degradation. Ex-
periments with both synthetic and real data were used to
evaluate the performance of the proposed algorithms.

In DeepREM [6], the authors considered the multi-emitter
RSS radio map estimation problem and studied the perfor-
mance of UNet and cGAN to estimate the radio maps using
only the measurements. They presented their corresponding
dataset and evaluated the performance of the studied methods
in several scenarios. The numerical experiments demonstrate
that UNet performs better when the test scenario aligns with
the training data distribution, whereas cGAN is more effective
when the discrepancy between the training and test scenarios
is high.

In IRDM [116], the authors applied generative diffusion
models [117] for interpolation of pathloss radio maps. They
utilized a multi-stage training strategy and data augmentation.
The authors noted certain limitations introduced by the use of
denoising diffusion probabilistic models, namely, the require-
ment for a large number of refinement steps, which can make
the method relatively slow.

III. DATASETS
A. TRAINING DATASET - RADIOMAP3DSEER DATASET
For training, we provided the challenge participants with the
RadioMap3DSeer Dataset, which we made publicly available
[28] as part of a collection of radio map datasets that we gener-
ated under various settings [29]. The RadioMap3DSeer takes
into account different building heights and Tx deployment on
rooftops of relatively high buildings (in comparison to other
buildings in the city map).

The RadioMap3DSeer Dataset was intended to represent
cellular network scenarios, and a natural use case of it is to
serve as a training dataset for learning methods that predict
pathloss from input city maps and Tx locations, the very task
of the present challenge.

The pathloss radio maps of the dataset were generated
based on the Intelligent Ray Tracing (IRT) [48] simulations
with a maximum of 2 interactions (cf. Appendix) performed
by the radio propagation modeling software WinProp from
Altair [43], on a large collection of city maps, which were

obtained from OpenStreetMap (OSM) [118] from the city
maps of Ankara, Berlin, Glasgow, Ljubljana, London, and Tel
Aviv, amounting to 701 city maps of size 256 m × 256 m.
All simulations were run at a resolution of 1 meter and saved
as images of 256 × 256 pixels in .png format. 80 rooftop
transmitter locations per map were considered, resulting in a
total of 56080 simulations. Pathloss values were simulated at
a height of 1.5 m above the ground.

Remark 4: The high accuracy of IRT simulations with
WinProp has been demonstrated by validation with field mea-
surements in many cities such as Helsinki, Munich, Nancy,
and Stuttgart, see e.g. [119] or [120] and the references
therein.

Since the building height information provided by OSM
[118] is often inaccurate (often giving constant height values,
hence the use of such maps leads to predictions with large
inaccuracies, as exemplified in [61]), we decided to assign
random building heights by considering a reasonable range
of heights to show the proof of concept. Each building in
a city map was assigned a height in the range from 2 to 6
stories, where a story is regarded as 3.3 m. This range of
13.2 m (from a minimum of 6.6 m to a maximum of 19.8
m) is divided into 255 levels of equal length, and building
heights are found by uniformly selecting one of these levels.
This data is provided as two image sets in 8-bit .png format,
one as black and white (BW) images of the pixels occupied
by buildings (pixel value 255 if it belongs to a building, 0
otherwise), and one with their height encoded as gray levels
1-255 as explained above. The corresponding polygons with
heights2 are provided in .json format. All buildings are
assumed to have the same generic material property.

Tx positions of the pathloss radio map simulations were
generated on the buildings with a height of at least 5 stories
(16.5 m). The transmitters were placed close to the edges to
emulate a realistic deployment. The transmitter height from
the rooftop was set to 3 m. We have restricted the Tx to
be positioned within the 150 × 150 area in the center of the
256 × 256 city map if possible, and considered a larger area
of 230 × 230 for the city maps with no buildings within the
150 × 150 area in the center. In the dataset, Tx positions are
provided as one-hot images, where the pixel of the Tx is
set to white, and the rest of the image is black. Similar to
the height encoding in city maps described above, we also
provided height-encoded Tx images where only the pixel of
the Tx has a non-zero value. The value of this pixel was set as
the height-encoding value of the building on which the Tx is
placed. In addition, the Tx coordinates are provided as .json
files.

The results of the IRT simulations are provided as 8-bit
.png image files, which were obtained by post-processing of
the simulation results by first converting the pathloss values

2Note that the building objects we generate are based on the footprints
imported from OpenStreetMap [118] and the heights we assign to them, i.e.,
only horizontal flat roofs and vertical walls are considered.
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TABLE 1. Parameters of the RadioMap3DSeer Dataset

PL to pixel values between 0 and 1 by

p = max

{
PL − PL,thr

PL,max − PL,thr
, 0

}
, (1)

where PL,max=-75 dB denotes the maximum pathloss in all
radio maps (the value at an Rx next to a Tx pixel with a
height of 19.5 m. Note that the maximum is −75 dB, be-
cause the software averages over the 1 m2 pixels and the
Txs are placed 3 m above tall buildings with a minimum
height of 16.5 m) in the dataset and PL,thr is the pathloss
threshold, below which the received signal power is assumed
to be not large enough for successful detection [3], [29],
i.e., it is below the noise floor. In mathematical terms, we
are interested in the pixels with the received signal power
(PRx)dB = PL + (PTx)dB above the noise floor (N )dB, i.e. the
positions in the pathloss simulations where (PRx)dB ≥ (N )dB

holds, where (N )dB = 10 log10 W N0 + NF is the noise floor
in dB, with NF being the noise figure, W the signal bandwidth
and N0 the thermal noise power spectral density. Solving
this for pathloss PL we get the pathloss threshold PL,thr as
PL ≥ PL,thr = −(PTx)dB + (N )dB. For the parameters of the
dataset in Table 1 we found PL,thr=-111 dB. Overall, after the
post-processing of a pathloss simulation by (1), the pixels with
pathloss values below the noise threshold are set to 0, and high
pathloss values (high received signal powers) in simulations
obtained high values in pathloss radio maps, e.g. an Rx pixel
next to a Tx pixel of minimum height (placed 3 m above on
a 16.5 m tall building) has the maximum value of 255 in a
post-processed radio map presented in the RadioMap3DSeer
Dataset.

We would like to point out that over-the-rooftop propaga-
tion from a Tx placed on a relatively tall building (3D setting
considered in the RadioMap3DSeer) will reach greater dis-
tances than a Tx at ground level of 1.5 m (2D setting), and
together with the varying building heights, such placement

gives rise to richer and more complicated pathloss patterns
compared to ground level Tx deployment, see Fig. 1. For
the radio map in the 2D setting in Fig. 1, the center carrier
frequency was set to 5.9 GHz. PL,max = −47 dB and PL,thr =
−147 dB were found and used to scale the simulated values to
the pixel values by (1) as described above. All buildings were
set to a height of 25 m.

A snapshot from a simulated pathloss radio map by Win-
Prop and the rays for a receiver pixel in the adopted 3D setting
are shown in Fig. 2(a). The entire simulated pathloss radio
map of this area of 256 m × 256 m is shown in Fig. 2(b).
Fig. 2(c) shows the corresponding pathloss radio map in the
RadioMap3DSeer Dataset after the post-processing described
above. The corresponding 2.5D and 2D (BW) city maps are
shown in Fig. 2(e) and in (d), respectively.

B. TEST DATASET
To evaluate the participants’ methods, we prepared a test
dataset that was not previously published. 84 city maps of
the same size of 256 m × 256 m were taken from Open-
StreetMap [118] in Istanbul, resulting in 6720 (84 maps ×
80 Tx per map) pathloss simulations. The same dataset gen-
eration procedure and simulation parameters were used as for
RadioMap3DSeer Dataset as described above.

IV. THE CHALLENGE TASK
The task of the challenge was to predict the pathloss radio map
given the city map and the transmitter location, i.e., the same
task and input setting of deterministic simulation methods
such as ray tracing (cf. Section II-A3).

The participants were allowed to design their input features
(i.e. pre-processing) freely, as long as the test run-time of
the proposed method was orders of magnitude lower than the
pathloss simulation by the propagation modeling software.

V. EVALUATION METHODOLOGY
Participants were asked to submit their radio map predictions
for the challenge test set (sent to them without ground truth)
along with the code that runs the evaluation.

When assessing the prediction performance of the pre-
sented methods, we first set the pixels of the radio map
predictions known to be occupied by the buildings to zero,
i.e., since the ground truth value at such pixels is zero, the
prediction error for such pixels was guaranteed to be zero.

We evaluated the accuracy of the submitted methods by the
root mean square error (RMSE)

RMSET =
√

1

|T |
∑
n∈T

RMSE(n)2 (2)

where T is the test set and RMSE(n) is the RMSE for the
radio map n, defined as

RMSE(n) =
√√√√ 1

RC

R∑
i=1

C∑
j=1

(
P̃(n)

L (i, j) − P(n)
L (i, j)

)2
(3)
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FIGURE 2. (a) A snapshot of a WinProp IRT simulation showing the rays reaching a selected location on the grid. (b) The bird’s eye view of the simulated
pathloss radio map. (c)–(e) Corresponding images from the RadioMap3DSeer Dataset. (c) Pathloss radio map in the dataset after post-processing of
simulation results shown in (b) and (d) Map of the buildings with their heights are encoded in gray levels. (e) BW city map.

where P̃(n)
L and P(n)

L are the predicted and the ground truth
radio maps, R and C are the number of rows and columns
in a radio map image (R = C = 256 in our setting of Ra-
dioMap3DSeer Dataset), respectively.

VI. BASELINE METHOD
Our previously published work RadioUNet [3] and its pub-
licly available code3 were available for the participants as
a baseline. Please see Section II-A3b for the description of
RadioUNetC , which is the relevant version of RadioUNet for
the challenge.

VII. SUBMITTED METHODS
In the following, we describe the submitted methods. Most of
the submitted methods are adaptations of the authors’ previ-
ous work for the challenge, namely, the PMNet [89] and [81]

3[Online]. Available: https://GitHub.com/RonLevie/RadioUNet

are adaptations of the methods under the same name presented
in [4] and [80], respectively, whereas the Agile method [84]
incorporates a well-suited Kullback-Leibler (KL) divergence
loss that was proposed by the authors in [100]. The detailed
descriptions of the relevant previous work can be found in
Section II-A3b.

A. AGILE RADIO MAP PREDICTION USING DEEP LEARNING
[24], [84]
The proposed method adopts a UNet architecture and uses an
additional input feature, namely, a fractional LOS map gen-
erated using Bresenham’s line algorithm [121] and the CuPy
library [85], which allow efficient GPU-accelerated compu-
tations. Furthermore, the authors use the Kullback-Leibler
divergence loss function presented in [100] for uncertainty
prediction, with the aim of reducing the effect of pixels with
high uncertainty on the loss.
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TABLE 2. Accuracies of the Submitted Methods on the Test Dataset T .
PPNet [81] Adopts a SegNet-Like Design. Agile [24], [84] is UNet Based and
Takes an Additional Fractional LOS Map as Input. PMNet [89] Makes Use of
ResBlocks, Dilated Convolutions, Skip Connections and Data Augmentation

B. PMNET: LARGE-SCALE CHANNEL PREDICTION SYSTEM
FOR ICASSP 2023 FIRST PATHLOSS RADIO MAP
PREDICTION CHALLENGE [89]
For this challenge, the authors adapted their previous pathloss
map prediction network (PMNet) [4] with some modifica-
tions, such as adjusting the size of the feature map. The
PMNet is an encoder-decoder DNN, where the encoder con-
tains a series of ResBlock [90]. Similar to UNet [57], skip
connections across the layers of the encoder and the decoder
are employed. Moreover, PMNet uses atrous (dilated) convo-
lutions with different rates [67], [91] and data augmentation.

C. DEEP LEARNING-BASED PATH LOSS PREDICTION FOR
OUTDOOR WIRELESS COMMUNICATION SYSTEMS [81]
The authors presented a SegNet-like [82] fully convolutional
encoder-decoder pathloss prediction network (PPNet) [80],
where the pooling layers not only extract the largest values
from the region of the feature map covered by the filter, but,
unlike typical max-pooling, also the locations of the largest
values, which are then used in the decoding phase.

VIII. CHALLENGE RESULTS
We summarize the accuracies of the submitted methods in
Table 2 and show the prediction results for some samples
from the test dataset in Fig. 3. Based on our evaluations and
the declarations of the participants, a significant degradation
of performance of all the submitted methods on the new test
dataset was observed (with respect to testing on a hold-out
subset of RadioMap3DSeer Dataset).

All participants reported run-times of about ∼10 ms, com-
plying with the requirements of the challenge.

All the methods used the height-encoded city maps and Tx
maps as input features. The use of the fractional LOS map as
an additional input feature map proved to be useful, as shown
by the results of the Agile method [84] (see the challenge
follow-up paper [24] for more details).

We would like to note here that the RMSE calculations
reported in [89] differ from the one explained here (2),(3)
and in [81], [84]. The RMSE results presented in [89] were
found by evaluating on a hold-out set of RadioMap3DSeer
and seemingly by averaging of RMSEs calculated on mini-
batches of size 16, and without setting the building pixels

to zero. Also, we couldn’t verify PMNet (w/ Fine Tuning)
version to yield the given results in [89], as we observed worse
performance also in the hold-out RadioMap3DSeer subset the
authors apparently used. Nevertheless, the best performing
setting of PMNet with the suitable choice of strides of the
convolution, which leads to the output of the encoder to have
size H

8 × W
8 (H and W are the height and width of an input

image, H = W = 256 in our challenge setting), demonstrated
a remarkable performance on the challenge test dataset, and
ranked the first among all the methods.

IX. DISCUSSION AND FUTURE OUTLOOK
Visual inspection of the results in Fig. 3 shows that the
best performing method, PMNet [89], has the most accurate
shadow prediction of all the methods submitted. PMNet has
three main features that differentiate it from other methods:
the use of dilated convolutions, data augmentation, and Res-
Blocks. The results presented in PMNet [89] demonstrate the
significant improvements in accuracy due to data augmenta-
tion and suggest that a significant amount of PMNet’s superior
performance can be attributed to it. Similarly, the results of the
Agile method presented in [84] demonstrate the importance of
another pre-processing in the form of generating an additional
fractional LOS input feature. As can be seen in Fig. 3, this
method demonstrates a higher long-range estimation accuracy
with the use of LOS maps as an input feature map.

Therefore, to evaluate the performance of the neural net-
works alone, their contribution needs to be isolated by fixing
other factors, such as the aforementioned very effective use of
LOS maps as inputs or data augmentation. We hope that this
will be addressed in future work and challenges.

APPENDIX
INTELLIGENT RAY TRACING (IRT) [48]
This method starts with a pre-processing step for the consid-
ered city map which allows to reduce the computation time for
different Tx placements in the same propagation environment.
In the pre-processing, the faces of the buildings are discretized
into regular tiles, their edges into segments, and the visibility
relations among the centers of these elements are found. For
the visible element pairs, the distance between their centers
and the subtended angles are calculated and stored. The result
of the pre-processing of the city map is a tree structure com-
prising tiles, segments and receiving points of the prediction
area of interest.

For prediction, only the tiles, segments and receiving points
visible from the Tx position need to be determined. In addi-
tion, the angles of incidence for the tiles and segments that are
visible have to be calculated. After that, a path between the
Tx point and the receiving point can be found by recursively
processing all the visible elements and checking if the specific
conditions for reflection or diffraction are met. The search is
stopped when a given maximum number of of interactions
or a receiving point is reached. Finally, the sum of the field
strength at all potential receiving points is calculated.
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FIGURE 3. Examples from the test dataset. First column: height-encoded city map (the lighter the pixel, the taller the building) and Tx locations (shown
with a red plus sign). Second column: ground truth simulation. Third to fifth columns: predictions of the successful methods and RMSEs. RMSEs of all the
6 examples: PMNet [89]: 0.0374, Agile [84]: 0.045, PPNet [81]: 0.0522.
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Based on our experiments with different maximum num-
bers of interactions, we chose 2 interactions for its man-
ageable computation times, which allowed us to prepare the
dataset in a reasonable time, while the simulation results did
not differ much from those with higher numbers of interac-
tions. We set the length of the segments/tiles of the buildings
to 10 meters, which, similarly as above, gave a good trade-off
between computation time and richness of reflection patterns
in the simulations.
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