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ABSTRACT In this paper, we propose key-based defense model proliferation by leveraging pre-trained
models and utilizing recent efficient fine-tuning techniques on ImageNet-1 k classification. First, we stress
that deploying key-based models on edge devices is feasible with the latest model deployment advancements,
such as Apple CoreML, although the mainstream enterprise edge artificial intelligence (Edge AI) has
been focused on the Cloud. Then, we point out that the previous key-based defense on on-device image
classification is impractical for two reasons: (1) training many classifiers from scratch is not feasible, and
(2) key-based defenses still need to be thoroughly tested on large datasets like ImageNet. To this end, we
propose to leverage pre-trained models and utilize efficient fine-tuning techniques to proliferate key-based
models even on limited compute resources. Experiments were carried out on the ImageNet-1 k dataset using
adaptive and non-adaptive attacks. The results show that our proposed fine-tuned key-based models achieve
a superior classification accuracy (more than 10% increase) compared to the previous key-based models on
classifying clean and adversarial examples.

INDEX TERMS Adversarial defense, fine-tuning, image classification, image encryption, key-based defense,

pre-trained models.

I. INTRODUCTION

Deep learning has brought breakthroughs in many applica-
tions [1]. Some notable examples are visual recognition [2],
natural language processing [3], and speech recognition [4].
Despite the remarkable performance, machine learning (ML)
generally, including deep learning, is vulnerable to vari-
ous attacks. Notably, many ML algorithms, including deep
neural networks, are sensitive to carefully perturbed data
points known as adversarial examples intentionally designed
to cause ML models make mistakes [5], [6], [7]. In many
cases, perturbation added to make adversarial examples is
often imperceptible to humans but still causes ML models to
make erroneous predictions with high confidence. Previous
works have proven that adversarial examples can be applied
to real-world scenarios [8], [9]. Adversarial examples can
potentially be dangerous, especially for autonomous vehicles
[10], [11].

As adversarial examples are an obvious threat, researchers
have proposed numerous methods to defend against adver-
sarial examples in the literature [12]. However, most defense
methods either reduce the classification accuracy or are com-
pletely broken by adaptive attacks [13], [14]. Therefore,
defending against adversarial examples is still challenging
and remains an open problem. Inspired by cryptography, a
new line of research on adversarial defense has focused on
using secret keys so that defenders have some information ad-
vantage over attackers [15], [16], [17], [18], [19]. Key-based
defenses follow Kerckhoffs’s second cryptographic principle,
which states that a system should not require secrecy even
if it is exposed to attackers, but the key should be secret
[20]. By keeping a secret key, key-based defenses make ad-
versarial attacks ineffective. The idea of making adversarial
attacks expensive or ideally intractable is further supported on
a theoretical basis that adversarially robust machine learning
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FIGURE 1. Scenario of on-device image classification under adversarial
settings.

could leverage computational hardness, as in cryptography
[21]. To further harden key-based defenses, researchers have
also proposed to use implicit neural representation [22] and
ensembles of key-based defenses [23], [24].

One of the advantages of key-based defenses is that a clas-
sifier has its own key. This feature is handy as adversarial
examples are transferable within models with the same archi-
tecture [25] or different ones [26]. Therefore, in this paper, we
consider an on-device image classification scenario (Fig. 1)
where each classifier has its own key. If an attacker success-
fully reverse engineers a classifier (e.g., classifier 3 in Fig. 1),
adversarial examples generated for the compromised model
cannot transfer to other models.

The use case of the one-key-one-model approach is rele-
vant and realistic, especially nowadays, because even large
models can be deployed on CPUs [27] and on edge devices
[28]. For example, Apple Silicon devices can run a large
image generative model like Stable Diffusion [28]. In addi-
tion, even large language models (LLMs) can be deployed
on edge devices by using C/C++ implementation of models
with the ggml! library. For image classification, vit.cpp? (C++
inference engine for vision transformer models) is available
for edge devices. Although deep learning models are widely
deployed on edge devices and will be deployed more and
more in the near future, the one-key-one-model approach is
underexplored.

Therefore, we focus on the one-key-one-model scenario in
this paper. First, we point out that key-based defenses seem
promising but are not practical for two reasons: (1) training
many classifiers from scratch is not feasible, and (2) key-
based defenses have not yet been thoroughly tested on large
datasets like ImageNet. Then, we build upon the idea of key-
based defense and propose to leverage pre-trained models and
use the latest fine-tuning techniques to train many defended
models efficiently. In experiments, our key-based models are
efficiently trained and achieve a higher classification accu-
racy for both clean and p-norm bounded adversarial examples
for ImageNet-1 k classification compared to state-of-the-art
methods. However, key-based models have information ad-
vantage over attackers for having a secret key. We make the
following contributions in this paper.

![Online]. Available: https:/github.com/ggerganov/ggml
2[Online]. Available: https:/github.com/staghado/vit.cpp
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® We propose to leverage pre-trained models and use the
latest fine-tuning techniques to train key-based models
efficiently for the first time.

® We conduct experiments for ImageNet-1 k classification
and evaluate key-based models using adaptive and non-
adaptive attacks.

e We apply attention visualization and plot decision
boundaries on key-based defended models to gain in-
sights into the behavior of key-based defense.

The rest of this paper is structured as follows. Section
II presents related work on adversarial examples, defenses,
pre-trained models, and a recent fine-tuning technique, LoRA.
Section III puts forward the proposed defense. Experiments on
various attacks including adaptive ones are presented in Sec-
tions IV, and V presents discussion on the proposed defense.
Then, Section VI concludes this paper.

Il. RELATED WORK

A. ADVERSARIAL EXAMPLES

Adversarial examples [5], [6], [7] are intentionally perturbed
inputs to machine learning models that cause the model
to make erroneous predictions [29]. There are two kinds
of adversarial examples based on how they are generated:
perturbation-based and unrestricted adversarial examples.
Perturbation-based adversarial examples are generally p-norm
bounded, and different matrix norms such as £, [30], ¢;
[31], £; [32], and £¢ [33] are used to restrict the perturbation.
Beyond norm-bounded perturbation, adversarial examples can
also be found in an unrestricted way [34] by applying spatial
transformation [35] or generative models [36].

Adversarial examples can generalize to real-world applica-
tions and have the potential to be dangerous. Kurakin et al.
showed that an adversarial example can be photographed with
a smartphone, and the taken picture can still fool a model
[8]. Researchers have also demonstrated that it is possible to
construct 3D adversarial objects [9]. The threat of adversarial
examples is especially alarming for autonomous vehicles. At-
tackers could create stickers or paint to design adversarial stop
signs to cause accidents [10], [11]. In addition, adversarial ex-
amples can be deployed in many different ways to fool facial
recognition or object detection systems, such as adversarial
t-shirts [37], adversarial hats [38], adversarial glasses [39], ad-
versarial make-up [40], etc. Generating real-world adversarial
examples is not limited to small or imperceptible changes to
the input. Adversarial examples can also be crafted by placing
a small visible image-independent patch [41].

In this paper, we still deploy p-norm bounded adversarial
examples since they are well-defined to evaluate the proposed
defense. However, we consider a realistic attacking scenario.

B. ADVERSARIAL DEFENSES
There are two distinct strategies in designing adversarial de-
fenses.

1) Classifiers are designed in such a way that they are robust
against all adversarial examples in a specific adversarial space
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either empirically (i.e., adversarial training) or in a certified
way (i.e., certified defenses). Current empirically robust clas-
sifiers utilize adversarial training, which includes adversarial
examples in a training set. Madry et al. approach adversarial
training as a robust optimization problem and utilize projected
gradient descent (PGD) adversary under ¢,,-norm to approx-
imate the worst inputs possible (i.e., adversarial examples)
[30]. As PGD is iterative, the cost of computing PGD-based
adversarial examples is expensive. Much progress has been
made in reducing the computation cost of adversarial training,
such as free adversarial training [42], fast adversarial train-
ing [43], and single-step adversarial training [44]. However,
adversarially trained models (with £+, norm-bounded pertur-
bation) can still be attacked by ¢; norm-bounded adversarial
examples [45].

Another approach is to use formal verification methods in
such a way that no adversarial examples exist within some
bounds [46], [47], [48], [49]. Ideally, these defenses are pre-
ferred for achieving certain guarantees. Although certified
defenses are attractive, they can be bypassed by generative
perturbation [50] or parametric perturbation (outside of pixel
norm ball) [51].

2) Another primary strategy for designing adversarial de-
fenses is that input data to classifiers are pre-processed in
such a way that adversarial examples are ineffective (i.e., input
transformation defenses, key-based defenses). The idea is to
find a defensive transform to reduce the impact of adversarial
noise or make adversarial attacks ineffective (i.e., comput-
ing adversarial noise is either expensive or intractable). The
works in this direction use various transformation methods,
such as thermometer encoding [52], diverse image processing
techniques [53], [54], denoising strategies [55], [56], GAN-
based transformation [57], and so on. Although these input
transformation-based defenses provided high accuracy at first,
they can be attacked by adaptive attacks such as [13], [14].
Unlike input transformation-based defenses, key-based de-
fenses have an information advantage over attackers. Such
key-based defenses include [15], [16], [22].

Inspired by cryptography, the main idea of the key-based
defense is to embed a secret key into the model structure with
minimal impact on model performance. Assuming the key
stays secret, an attacker will not obtain any useful information
on the model, which will render adversarial attacks ineffec-
tive. Generally, key-based defenses hide a model’s decision
from attackers by means of training the model with encrypted
images. In this paper, we adopt block-wise pixel shuffling
from the key-based defense [16]. The major differences be-
tween the proposed defense and the work from [16] are as
follows.

e The proposed method focuses on the key-based defense
of fine-tuned models from a practical perspective, while
the previous work [16] concentrates on training from
scratch. Although a simple experiment of fine-tuning a
ResNet50 ImageNet model was presented in the previ-
ous work, efficient fine-tuning tricks such as [58] and
[59] were never considered.
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® The proposed method builds on top of large-scale pre-
trained models (ImageNet-21 k) that improve the overall
performance, whereas the previous work utilizes an
ImageNet-1 k pre-trained model on a limited case.

® The proposed method focuses on a realistic threat model
where the attacker has imperfect knowledge of the de-
fense model. The attacker carries out a transferred attack,
which is more practical. In contrast, the previous work
considers full knowledge of the model except for the
secret key and a modified version of a black-box model
where the attacker must query a defended model with a
key, which is not practical in real-world applications.

® The proposed method focuses on larger models such as
ViTs, whereas the previous work experiments only on a
smaller model such as ResNet50.

C. PRE-TRAINED MODELS

Pre-training is a favorable paradigm for many computer vision
tasks because training a large-scale model is a non-trivial task
and requires a significant amount of resources. Therefore, it is
not feasible for many users to train a large-scale model from
scratch. Besides the training cost, pre-training also improves
generalization for downstream tasks [60]. Recent works on the
pre-training ImageNet-21 k dataset [61] (approximately 14
million images with about 21,000 distinct object categories)
show superior performance on ImageNet-1 k classification
[58], [62].

Moreover, current frontiers of Al applications such as
ChatGPT are driven by pre-trained models (a.k.a. founda-
tion models). The term foundation model was coined by
researchers from the Stanford Institute for Human-Centered
Artificial Intelligence (HAI). A foundation model is a large-
scale model trained with a vast amount of data (generally
using self-supervised learning), and it can be adapted to a wide
range of downstream applications such as generating text and
images, understanding natural language, etc. [63].

We are motivated by the success of pre-trained models, and
we utilize an ImageNet-21 k pre-trained vision transformer
(ViT) [64] in this paper.

D. LORA

LoRA, which stands for low-rank adaptation of large lan-
guage models is an efficient fine-tuning technique initially
introduced to fine-tune large language models [59]. Instead
of fine-tuning the whole model, LoRA first freezes all the
pretrained model weights and then injects trainable rank de-
composition matrices into each layer of the transformer block.
Therefore, the number of trainable parameters of a model
is significantly reduced. Compared to full fine-tuning, LoRA
maintains a competitive performance without increasing any
additional inference latency. In this paper, we utilize LoRA to
fine-tune a pre-trained ViT model to be a key-based defended
ViT model.

VOLUME 5, 2024
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1ll. PROPOSED DEFENSE

A. REQUIREMENTS

We aim to fulfill the following requirements in the proposed
defense.

e Leverage pre-trained models and fine-tune them effi-
ciently so that training a key-based model on an Ima-
geNet scale is practical for the majority of users.

® Achieve high classification accuracy for both clean and
adversarial examples.

® Associate one key to one model only so that a successful
attack on one model does not transfer to another model
with another key.

B. THREAT MODEL
A threat model includes a set of assumptions, such as an
adversary’s goals, knowledge, and capabilities [65].

As we focus on image classifiers, the adversary’s goal is to
change the predicted class from a true class either in a targeted
or untargeted way. We deploy the AutoAttack (AA) strategy,
which is a suite of both targeted and untargeted attacks [66] in
this paper.

The adversary’s knowledge can be classified as white-box,
black-box, or gray-box. In white-box settings, the adversary
has complete knowledge of the model, its parameters, training
data, and the inner workings of the defense mechanism. In
contrast, the black-blox adversary has no knowledge about
the model. However, in many cases, the adversary knows
something in between white-box and black-box, which is re-
ferred to as a gray-box scenario. Since the gray-box scenario
is more realistic, we consider that the adversary knows the
model architecture and has access to pre-trained models and
training data. In addition, we assume the gray-box adversary
also knows the mechanism of the key-based defense, but not
the secret key.

We consider a p-norm bounded threat model for its well-
defined nature. Therefore, the adversary can add small pertur-
bation ¢ under some budget € (i.e., [|8]|, < €), where € > 0.

With the above assumptions, Fig. 2 shows the considered
gray-box adversary that performs attacks on a pre-trained
model or an adapted fine-tuned model with an assumed key
to target a defended model.
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keys to produce many defended models.

C. OVERVIEW

We consider an on-device image classification scenario. Such
a scenario is practical because, nowadays, devices such as
autonomous vehicles or smartphones are equipped with im-
age classifiers. The basic idea of the proposed defense is to
personalize a pre-trained model with a secret key efficiently so
that a classifier has its own decision-making process based on
a key. By leveraging the previous works, key-based defense
[16], training improvements [58], and efficient fine-tuning
[59], we propose to efficiently fine-tune a pre-trained model
to many defended models with many different keys, as shown
in Fig. 3 in this paper. Consequently, defended models can be
potentially deployed on devices such that one defended model
is associated with one key only.

D. TRAINING

Given a dataset D with pairs of examples (images and
corresponding labels), {(x,y) | x € X, y € Y}, a key-based
defense maps the input space X to an encrypted space H
by using some transformation # controlled by a secret key K
(i.e.,x — t(x, K)). A classifier f : H — ) is trained by using
encrypted images #(x, K) € ‘H. For simplicity, we define such
a defended model with key K as

Mg () = f(-, K)), (D

where (-, K) is a key-based transformation and f is a deep

neural network-based image classifier such as ViT [64]. Fig. 4

depicts supervised learning with a key-based defense. In this

paper, we adopt block-wise pixel shuffling from [16] as #(-, K)
and the detailed procedure is as follows.

1) Divide a three-channel (RGB) color image, x with w x

h into non-overlapping blocks, each with P x P such

that {By, ..., B;, ""B(%x%)}'
2) Generate a random permutation vector, v with key K,
such that (vi,..., vk, ..., v, ..., V3p2), Where v #

v ifk £ K.
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FIGURE 5. Example of block-wise transformed images in different block
sizes.

3) For each block B;,
flatten three-channel block of pixels into a vector, b;
such that b; = (b;(1), ..., b;j(3P?)),
permute pixels in b; with v such that

bi(k) = bi(vg), k € {1,...,3P%, 2)

and reshape the permuted vector b back into the three-
channel block B;.

4) Integrate all permuted blocks, B} to B; B
PXP

to form a
three-channel pixel shuffled image, x'.

A key-based defended model Mg is obtained by fine-
tuning a pre-trained model M, (which is trained by using
plain images) with transformed images by key K. Examples of
transformed images with different block size P are shown in
Fig. 5. By leveraging efficient fine-tuning techniques such as
LoRA [59], many defended models (Mg, , Mg,, ..., Mk,)
can be efficiently fine-tuned given keys (K1, K>, ..., K,,) as
shown in Fig. 3. We are the first to consider LoRA in the
key-based defense.

The previous work [67] showed that a key-based defended
model can be obtained by fine-tuning only the patch embed-
ding layer and the classifier head of an isotropic convolutional
neural network. However, the performance accuracy dropped.
We further extend the previous work [67] by applying LoRA
to both the patch embedding layer and the gkv layer in each
transformer block to improve the performance accuracy in this

paper.

E. INFERENCE

During inference, a defended model M first transforms test
images with key K prior to image classification procedure by a
deep neural network backbone such as ViT. A predicted class
label J is obtained from a defended classifier Mg as

¥y = arg max; Mg (x); = arg max, f(¢(x, K)),. 3)

906

F. EVALUATION METRIC

To evaluate the proposed defense, we calculate accuracy for
classifying both clean and adversarial examples. The accuracy
is computed as

¥ et LMk () = y) (clean)
3N LMk (x; +8i) = y;) (attacked),

“)
where Mg is a defended classifier with key K, N is the
number of test images, 1(condition) is one if condition is
true, otherwise zero, {x;, y;} is a test image (x;) with its cor-
responding label (y;), and §; is its respective adversarial noise
depending on a specific attack.

Accuracy = {

IV. EXPERIMENTS

A. SETUP

Datasets: We carried out ImageNet-1 k classification experi-
ments for the proposed defense. We utilized the ImageNet-1 k
dataset (with 1000 classes) consisting of 1.28 million color
images for training and 50,000 color images for validation
[68]. ImageNet-1 k was introduced for the ILSVRC2012 vi-
sual recognition challenge and is regarded as one of the main
datasets for image classification research. It is a subset of the
ImageNet-21 k dataset, which consists of approximately 14
million images with about 21,000 classes [61]. We resized all
images to a dimension of 224 x 224. In addition, we used
the CIFAR-10 [69] dataset for analysis. CIFAR-10 consists
of 60,000 color images (dimension of 32 x 32 x 3) with 10
classes (6000 images for each class) where 50,000 images are
for training and 10,000 for testing.

Models: We utilized pre-trained ViT base models with a
patch size value of 16 from [58] and [64] that were trained
on ImageNet-21 k. To implement the proposed defense, we
modified pytorch image models,® and LoRA fine-tuning.*
We followed the training settings from [58] to fine-tune the
proposed defended models. For LoRA, we used a low-rank
dimension value r = 16 and a value of scaling factor 16. In
addition, we used ResNet18 for analysis with CIFAR-10. We
adopted training settings from the publicly available reposi-
tory” to train ResNet18 from scratch.

Attacks: For evaluation, we deployed the AutoAttack (AA)
strategy, which is an ensemble of strong, diverse attacks con-
sisting of both targeted and untargeted attacks [66]. Table 1
summarizes attacks that are deployed in AA. We used AA’s
“standard” version with a perturbation budget value of 4/225
under o, norm and a value of 0.5 under £, norm for all at-
tacks. Moreover, we also used projected gradient descent with
20 steps (PGD-20) [30] under £, for analysis and experiment
purposes.

3[Online].
models

4[Online]. Available: https:/github.com/huggingface/peft

3[Online]. Available: https:/github.com/kuangliu/pytorch-cifar

Available:  https://github.com/huggingface/pytorch-image-
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TABLE 1. List of Attacks Deployed in AutoAttack

Attack Knowledge Goal
APGD-CE white-box untargeted
APGD-DLR white-box targeted
FAB white-box targeted
Square Attack  black-box untargeted

B. CLASSIFICATION ACCURACY

We fine-tuned pre-trained ViTs [64]: ViT-B/16 (ViT base
model with a patch size of 16), ViT-B/32 (ViT base model
with a patch size of 32), and ConvNeXt-tiny [70] (tiny ver-
sion) with key-based transformation under two fine-tuning
strategies: Full and LoRA.

Full: We fine-tuned the whole network (all learnable pa-
rameters) with training parameters described in [58] for 50
epochs for ViTs and 75 epochs for ConvNeXt [70]. We used
all default parameters for all models.

LoRA: In this strategy, we applied LoRA on the patch em-
bedding and gkv layers of all transformer blocks in ViTs.

We performed ImageNet-1 k classification on both clean
images and adversarial examples. Table 3 summarizes results
of both clean and robust accuracy compared to state-of-the-art
key-based methods [16], [67] and adversarial training (AT)
methods [71], [72]. In the table, (—) denotes “there are no re-
ported results” or “not applicable,” and both clean and robust
accuracies were calculated on the validation set of ImageNet-1
k (50,000) images as described in Section III-F. Although the
un-defended model (plain) achieved the highest accuracy, it
was most vulnerable to all attacks. In terms of clean accuracy,
our best model (fully fine-tuned) with block size (P = 4)
achieved 83.40%, which is about 1.7%-pts (percentage points)
lower compared to the plain model.

Non-Adaptive Attacks: Since the proposed defense is built
on top of the pre-trained model, it is natural to generate adver-
sarial examples directly on the pre-trained model. We refer to
this scenario as a non-adaptive attack. The results from Table
3 show that adversarial examples generated on the pre-trained
model were not effective on either fully fine-tuned or LoRA
models. In addition, we also carried out non-adaptive attacks
with £, adversary with different perturbation budget €. As
shown in Fig. 6, as we increased €, the accuracy gradually
dropped as expected.

In addition, we carried out additional experiments on the
CIFAR-10 datset. We observed block size P versus accuracy,
as shown in Fig. 7. As the block size is increased, the accuracy
decreases. A large block size causes higher visual distortion
(see Fig. 5). Therefore, the model loses plain visual features,
and the classification accuracy is dropped. Moreover, we also
observed robust accuracy when the perturbation budget is
increased in the CIFAR-10 dataset for defended models with
different block sizes in Fig. 8. Like ImageNet, the robust accu-
racy on CIFAR-10 also dropped as the noise budget increased.
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FIGURE 6. Accuracy (%) of key-based fine-tuned models under AA (¢,)

adversary with various perturbation budget ¢. The accuracy was calculated
over 50,000 images (whole ImageNet-1 k validation set).
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FIGURE 7. Accuracy (%) vs. block size P. Adversarial examples were

generated by using plain model with PGD-20 (¢, ¢ = 8/255) for CIFAR-10
(test set).
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FIGURE 8. Robust accuracy (%) vs. perturbation budget ¢. Adversarial
examples were generated by using plain model with PGD-20 (¢.) for
CIFAR-10 (test set).

However, the robust accuracy did not go to zero even on a
extremely large perturbation budget € = 128/255.

Adaptive Attacks: We assume the gray-box adversary as
described in Section III-B. Thus, the adversary has knowl-
edge of the key-based defense mechanism except the key. The
attacker may fine-tune the pre-trained model with a guessed
key and prepare a similar substitute model as the targeted
key-based model. By using the substitute key-based model,
the adversary may generate adversarial examples. We refer
to this scenario as an adaptive attack. From the results (Ta-
ble 3), our fully fine-tuned models were robust against such
attacks. Interestingly, adaptive attacks were even worse than
non-adaptive attacks on fully fine-tuned models. However,
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TABLE 2. Robust Accuracy (%) of EoT Attack

Block Size  Robust (EoT 4o PGD-20, ¢ = 8/255)
P=2 92.95
P=4 53.02
P=38 86.62
P =16 75.76

EoT was performed over 10 models with P =4 and different keys
for CIFAR-10.

adaptive attacks were successful on LoRA fine-tuned models,
especially for the models with P =8 and 16. We suspect
that the LoRA applied patch embedding layer in ViT-B/16
does not fully capture the key-based transformation. We shall
further investigate the reason and improve the robustness of
LoRA fine-tuned models in our future work.

We consider multiple surrogate models to increase the
chance of attack success further. We assume the attacker does
not know the correct secret key. However, the attacker can
train multiple surrogate models with different keys to get a
better approximation of the correct key. In this experiment,
we utilized the CIFAR-10 dataset for training efficiency. We
trained 10 models with P = 4 for 10 random keys. Similar
to estimation over transformation (EoT) [13], we consider the
sum of gradients for 10 models (i.e., Z}ﬁ, VMg, (x)).

Table 2 shows robust accuracy of different models with
different block size P against EoT attack. Notably, when the
block size P is the same for surrogate and targeted models,
the accuracy was reduced to ~ 53.02%. This shows that the
adaptive attack is effective if the approximation of the correct
key with multiple keys is effective. However, training many
models is expensive. The random permutation vector v gener-
ated by key K should be fully permuted (based on a random
orthogonal matrix) to harden the defense model. When v is
not fully permuted, adaptive attacks such as EoT will be more
successful.

Comparison with State-of-the-Art Methods: We compare
the proposed fine-tuned models with the previous key-based
models [16], [67], and the top 3 adversarially trained (AT)
models from RobustBench [73] in terms of clean and ro-
bust accuracy. Note that it is not fair to compare key-based
models directly with AT models because key-based models
have an information advantage (secret key) over attackers,
while AT models do not. The previous key-based meth-
ods utilized different model architectures, ConvMixer-768/32
and ResNet50, which are much smaller compared to ViT-
B/16. The ConvMixer one used partial fine-tuning (patch
embeddings and classifier head), and the ResNet50 one em-
ployed full-finetuning. In contrast, we utilized a larger model,
ViT-B/16, with the latest fine-tuning techniques for efficient
training in this paper. Our models achieved a superior perfor-
mance (more than a 10% increase) on both clean and robust
accuracy compared to the previous key-based models and AT
models.
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C. TRAINING EFFICIENCY

Training a model on the ImageNet-1 k dataset from scratch
requires a lot of resources and is not feasible for normal users
with limited resources. However, by using the latest fine-
tuning techniques like [58], [59], one can train a key-based
defended model in less than a day. Table 4 shows the trainable
parameters of a ViT-B/16 model on full fine-tuning and LoRA
fine-tuning. LoRA is no doubt efficient in fine-tuning because
it updates only a fraction of total trainable parameters. In our
experiments, we applied LoRA only on the patch embedding
layer and gkv layers of all transformer blocks in the ViT-
B/16. We utilized 4 NVIDIA A100 GPU cards on the full
fine-tuning and one A100 GPU card for LoRA fine-tuning.
Although LoRA is significantly efficient, adaptive attacks de-
feated LoRA fine-tuned models in our experiments. We shall
improve LoRA fine-tuned models to be more robust against
adversarial examples in our future work.

V. ANALYSIS AND DISCUSSION

A. ANALYSIS

Block Size: The block size P directly affects key space and
performance (clean and robust accuracy).

In theory, P controls the key space. For the transformation
used in this paper (block-wise pixel shuffling), the key space
is (P x P x 3)!. However, not all key keys are good for the
key-based defense. For example, a key that permutes only
50% or less of pixels in a block will be vulnerable to attacks.
Therefore, we encourage using a key that generates a full
permutation vector (based on a random orthogonal matrix).
The number of available keys for the key-based defense varies
based on P.

The main essence of a key-based defense is to embed secret
grid patterns on input images so that when training a model
with such images, the model learns secret features. When
using a small block size, transformed images still have a clear
content outline, and the model learns much of plain features,
thus having a high classification accuracy. In contrast, trans-
formation with a large block size distorts the content of the
image, and the models lose much of the plain features from
plain images. Therefore, the model heavily relies on secret
features and achieves a higher robust classification accuracy
at the expense of clean classification accuracy. Consequently,
there is a trade-off between secret and plain features for robust
and non-robust accuracy. In our future work, we shall further
investigate how to balance secret and plain features.

Key Diversity: To evaluate the performance of differ-
ent defended models with different keys, we trained 10
ResNet18 models with 10 keys for the CIFAR-10 dataset
Mk, ..., Mg,,). All defended models utilized a block size
value, P = 4. Then, we tested each model with 10 keys on the
CIFAR-10 test set (10,000 images). Table 5 summarizes the
clean classification accuracy of each model for test images
transformed by 10 keys. When using the correct keys, models
achieved a high, consistent accuracy. In contrast, accuracy
significantly dropped when using incorrect keys. Moreover,
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TABLE 3. Clean and Robust Accuracy (%) of Proposed Key-Based Models and State-of-the-Art Models

Block Size . Robust £ (€ = 4/255) Robust £2 (e = 0.5)
Model Defense Fine-tune  Clean . . . .
(P) (Non-Adaptive)  (Adaptive)  (Non-Adaptive)  (Adaptive)
ViT-B/16 Plain - No 85.10 0.00 - 0.32 -
ViT-B/16 (Ours) Key 4 Full 83.40 78.76 81.45 81.89 82.17
ViT-B/16 (Ours) Key 8 Full 82.62 78.84 80.68 81.60 81.46
ViT-B/16 (Ours) Key 16 Full 82.02 78.69 79.58 81.10 80.67
ViT-B/32 Plain - No 80.72 0.00 - 11.95 -
ViT-B/32 (Ours) Key 4 Full 76.79 72.58 74.27 77.14 76.75
ConvNeXt-tiny Plain - No 84.18 0.00 - 0.24 -
ConvNeXt-tiny (Ours) Key 4 Full 81.68 77.93 78.69 81.10 80.75
ViT-B/16 (Ours) Key 4 LoRA 81.12 78.44 51.56 80.04 53.26
ViT-B/16 (Ours) Key 8 LoRA 79.94 78.69 7.62 79.94 7.63
ViT-B/16 (Ours) Key 16 LoRA 79.71 78.96 0.73 79.42 0.72
ConvMixer-768/32 ( [67]) Key 7 Partial 71.98 64.74 70.65 70.16 71.47
ResNet50 ( [16]) Key 4 Full 75.69 66.95 - - -
Swin-L ( [71]) AT - - 78.92 59.56 - - -
ConvNeXt-L ( [71]) AT - - 78.02 58.48 - - -
ConvNeXt-L + ConvStem ( [72]) AT - - 77.00 57.70 - - -
TABLE 4. Trainable Parameters of ViT/B16 With or Without LoRA
Correct ‘Wrong Wrong Correct Wrong ‘Wrong

Model # Trainable Parameters (x 10°)
Full LoRA
ViT-B/16  86.57 1.38 (1.57%)

we also generated adversarial examples with PGD-20 on each
model and tested the generated adversarial examples across
10 models to observe adversarial transferability. The results
are captured in Table 6. When the source model of PGD-20
and the targeted model were the same, the attack was most
successful. Otherwise, the attack was not effective. This ex-
periment shows that adversarial examples are not transferable
with a high success rate in the key-based defense. However,
adversarial examples are transferable on LoRA fine-tuned
models.

LoRA Fine-Tuned Models: Although the LoRA fine-tuned
model with a larger block size achieved higher accuracy for
non-adaptive attacks, our experiments show that simple adap-
tive attacks can defeat LoRA fine-tuned models. Informed
by the previous study [25], adversarial examples have high
transferability within the same model architecture. Therefore,
our intuition is that if two models are highly similar in the fea-
ture space, there is a high chance of adversarial transferability
from one to the other.

We conducted a simple experiment to observe the classifi-
cation accuracy of plain images for full, and LoRA fine-tuned
models. Table 7 summarizes the performance of fine-tuned
ViT-B/16 (P = 4) with two keys K; and K, when giving
different input images. Plain image accuracies of two LoRA
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Key 1

Key Key 1 Key 2

Cat

Dog
Full

Cat

LoRA

Dog

FIGURE 9. Attention visualization of two models trained with encrypted
images with two keys under full fine-tuning and LoRA fine-tuning.
Attention maps were computed by using different inputs: plain images,
encrypted images with correct key, encrypted images with wrong key 1
and 2.

models are close (1.45% gap), while fully fine-tuned models
have a 4.65% plain image accuracy gap. This hints that two
LoRA models may be similar in the feature space. To get
further insights, we visualize attention maps of two models
under both fine-tuning strategies with different inputs (Fig. 9).
The figure shows that LoORA models are less attentive to the
class subjects and are inconsistent. This inconsistency hints
that it is easier to interfere with the attention of LoRA models
than fully fine-tuned ones.

In summary, we support our conjecture that two LoRA
models may be similar in some way, aiding adversarial trans-
ferability. However, further research is required to investigate
how the two models are similar and how much change is
needed for adversarial transferability.
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TABLE 5. Clean Accuracy (%) of Different Models With Different Keys (P = 4) for CIFAR-10

Clean ./\/l}(l MK2 MKg MK4 ./\/lK5 MKG ./V[K7 MKS MKQ MKlo
K 92.45 2243 22.17 22.66 23.59 26.71 25.16 24.17 21.36 21.93
K> 27.72 92.81 23.07 21.73 23.95 26.41 21.05 28.05 20.54 21.79
Ks 22.44 21.88 92.86 21.70 25.58 22.45 20.95 20.28 29.49 20.75
Ky 27.11 17.72 21.44 92.74 23.79 22.59 23.61 19.28 26.72 21.43
Ks 25.72 26.62 25.37 24.16 92.49 23.76 23.59 24.54 24.75 24.36
Ke 21.41 21.05 19.98 22.65 19.89 92.33 22.01 17.84 20.37 20.49
Ky 21.38 22.62 20.69 19.80 20.02 21.46 92.59 21.11 21.49 19.92
Ky 27.53 22.05 23.97 25.09 29.49 22.85 24.55 92.85 31.01 2343
Ky 28.22 18.49 24.59 20.18 25.20 19.92 20.99 22.02 92.48 25.52
Kio 22.19 18.40 22.89 18.79 21.25 19.26 18.38 21.46 19.88 92.36

TABLE 6. Robust Accuracy (%) of Different Models With Different Keys (P = 4) for CIFAR-10. Adversarial Examples Were Generated on One Model and

Tested Across 10 Models With 10 Keys

PGD-20 ./\/[K1 ./\/lK2 MKs MK4 MK5 MKG ./\/lK7 MKg MKQ ./\/le
Mg, 3.26 72.58 72.28 71.47 71.73 71.84 72.84 69.83 69.86 74.34
Mg, 73.37 4.86 72.07 73.82 72.50 72.63 72.33 71.92 71.55 70.61
M, 73.80 72.79 4.63 74.51 74.20 73.47 71.83 73.20 7391 72.60
M, 69.68 71.70 71.11 3.39 70.38 71.03 71.26 69.53 68.52 69.10
Mg, 71.55 72.13 72.47 71.92 1.95 71.53 71.79 69.92 70.05 69.86
Mg 72.52 72.42 72.50 73.62 72.26 2.18 72.41 71.56 73.79 72.74
Mg, 73.64 71.76 71.24 73.55 72.46 72.75 3.36 71.27 73.51 70.70
Mg 69.72 71.37 70.44 71.13 69.71 70.74 70.00 3.30 69.98 70.27
My 70.38 71.24 72.33 70.59 70.62 72.52 72.50 71.20 2.61 71.78
M, 72.48 70.37 71.38 71.67 70.58 72.75 70.29 71.43 71.52 3.61

TABLE 7. Classification Accuracy (%) of Fine-Tuned ViT-B/16 Models for
Input Images Transformed by Different Keys With P = 4

Model Plain  Correct K1 K K K}
E ViT-B/16 (Full) 76.29 83.40 58.15 53.68 40.06 53.49
~  ViT-B/16 (LoRA)  79.31 81.12 51.19  60.94 4480 49.50
@ ViT-B/16 (Full) 80.94 83.23 51.61 62.08 54.80 55.67
~  ViT-B/16 (LoRA) 80.76 80.99 48.53 60.43 5145 4935

The keys K and K5 are correctand K7, ..., K are incorrect.

Attention Visualization: To gain insights on ViT key-based
models, we employed attention visualization methods from
[74] to fully fine-tuned models and LoRA ones. We utilized
an image with a cat and a dog and visualized the attention of
models with different block sizes under two fine-tuning strate-
gies. Fig. 10 shows such attention visualization. Interestingly,
for this cat-dog test image, the plain model classifies the image
as a cat, and fine-tuned models predict it as a dog. Although
different modes have different attention, adversarial examples
are still transferable for LoRA models. Next, we visualize
decision boundaries.

Decision Boundary Visualization: In this analysis, we used
CIFAR-10 models for convenience. Inspired by mixup reg-
ularizer [75], the previous work plots decision boundaries
along the convex hull between data points and shows such
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visualizations capture on-manifold behavior [76]. We utilize
this decision boundary visualization technique to plot along
the plane spanned by three data points (“Airplane”, “Bird”,
and “Frog”) for the CIFAR-10 dataset based on our key-based
defended models. The figure shows the decision boundaries
of key-based models with different block sizes and the same
block size with different keys. The decision boundary of the
model with P = 2 is similar to the one of the plain model. This
justifies why P = 2 model achieves a high clean classification
accuracy. In contrast, the decision boundaries of P = 16 and
32 are very different. Moreover, on the same block size P = 4
with different keys, the decision boundaries also vary. This ex-
plains why adversarial examples generated on one key-based
model are not transferable with a high success rate except for
LoRA fine-tuned models.

B. DISCUSSION

Applicability: Without changing the model architecture, the
proposed key-based defense can easily train many different
models that yield a similar performance from a pre-trained
model by varying keys. Although we adopt block-wise pixel
shuffling as the key-based transformation in this paper,
other key-based transformations can be applied. We demon-
strate that we could train several key-based models even
on ImageNet with a limited amount of resources without
severely degrading the performance accuracy. With recent
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FIGURE 10. Attention visualization for fully fine-tuned models and LoRA fine-tuned models. In each pair, the left image is attention visualization for cat

and the right is for dog.
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FIGURE 11. Decision boundary visualization for fully fine-tuned models with different block sizes and keys on CIFAR-10.

hardware/platform availability, the one-key-one-model image
classification paradigm is feasible and has the potential to
defend against adversarial examples in real-world settings
(e.g., self-driving cars). Moreover, the previous works also
showed that key-based models are diverse and can be used
in an ensemble for traditional image classification scenarios
[23], [24].

Limitations: In this paper, we deployed p-norm bounded
adversaries (specifically AA strategy [66]), which is also used
in RobustBench [73]. However, in real-world settings, the
adversary is unknown. Another limitation is that we applied
a LoRA dimension, r = 16, and a value of scaling factor 16
only. It is our first attempt to use LoRA, and we showed
that key-based models can easily be obtained by using the
latest fine-tuning techniques. Although LoRA fine-tuning was
significantly efficient regarding computational cost, our em-
pirical experiments on LoRA models in the current limited
settings were not robust against adversarial examples. There-
fore, further improvements in LoRA models are required
for one-key-one-model adoption. In its current form, LoRA
models are not suitable for one-key-one-model applications
settings. However, LoORA models may be considered to form
an ensemble. Therefore, this may open up a new direction of
research.
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Future Work: We shall further investigate different attacks,
such as patch attacks and unrestricted adversarial examples, to
evaluate key-based models. We shall also improve adversarial
robustness in LoRA fine-tuned models in our future work.

VI. CONCLUSION

In this paper, we proposed to leverage pre-trained models and
use the latest fine-tuning techniques to a key-based defense
so that key-based defended models can be easily proliferated
even on the ImageNet scale. We stress that such defended
models can potentially be deployed on devices for one-key-
one-model application scenarios. Our proposed fine-tuned
models can easily be obtained even on limited computing
resources. Experiment results showed that our fine-tuned
models achieved a comparable clean accuracy compared to
a non-defended model. Moreover, given the condition that
attackers do not know the secret key, our fine-tuned models
outperformed state-of-the-art models in terms of both clean
and robust accuracy. We also carried out adaptive attacks to
further evaluate the proposed fine-tuned models. The results
confirmed that our fully fine-tuned models are resistant to
adaptive attacks, and LoRA fine-tuned models, in their current
form, are not robust against adaptive attacks.
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