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ABSTRACT This paper addresses the Direction-of-Arrival (DOA) estimation problem using a narrowband
polarimetric array sensing system. The considered receiving equipment is composed of two sub-arrays of
sensors with orthogonal polarizations. By suitably modeling the received signal via a sparse representa-
tion (accounting for the multiple snapshots and the polarimetric array manifold structure), two iterative
algorithms, namely Polarimetric Sparse Learning via Iterative Minimization (POL-SLIM) and Polarimetric
Sparse Iterative Covariance-based Estimation (POL-SPICE), are devised to accomplish the estimation task.
The proposed algorithms provide accurate DOA estimates while enjoying nice (rigorously proven) conver-
gence properties. Numerical analysis shows the effectiveness of POL-SLIM and POL-SPICE to successfully
locate signal sources in both passive sensing applications (with large numbers of collected snapshots) and
radar spatial processing, also in comparison with single-polarization counterparts as well as theoretical
benchmarks.

INDEX TERMS DOA estimation, high resolution, polarimetry, sparse methods.

I. INTRODUCTION
Direction-of-Arrival (DOA) estimation holds a paramount
significance across diverse domains encompassing radar sys-
tems, wireless communications, and sonar signal process-
ing [1], [2], [3]. The accurate localization of incident signals
is crucial for beamforming, source positioning, and interfer-
ence cancellation applications [4], [5]. Over the past decades,
a plethora of algorithms have been proposed to accomplish
the DOA estimation task, fulfilling constantly increasing re-
quirements, including high resolution, robustness to sources’
correlation, and low computational demands. In this regard,
the estimation strategies can be classified into spectral-based,
parametric, and compressed sensing methods.

Spectral-based techniques, like beamforming-based and
subspace-based methods, exploit the measurements of an
appropriate spatial spectrum, identifying spectral peaks to ob-
tain corresponding DOA estimates. The Conventional Beam-
former (CBF) is a standard technique to maximize the output
power in a specific direction where the signal of interest
is presumed to be present. However, it has limited angular

resolution and high sidelobes. To overcome its limitations,
different beamformers, like Capon Minimum Variance Dis-
tortionless Response (MVDR), have been proposed [6], al-
beit with operative limitations in high Signal-to-Noise Ratio
(SNR) scenarios, when the sample covariance matrix can be
ill-conditioned.

Subspace-based super-resolution methods, such as MUlti-
ple SIgnal Classification (MUSIC) and Estimation of Signal
Parameters Via Rotational Invariance Techniques (ESPRIT),
are computationally and statistically efficient (under some
technical conditions [3]) algorithms based on the covariance
matrix eigenvalue decomposition. While the MUSIC algo-
rithm utilizes the noise subspace in the estimation process,
ESPRIT leverages the rotational invariance property of spe-
cific subarrays, i.e., it calculates the eigenvalues of a matrix
that relates two signal subspaces [5], [7]. However, this kind
of methods experience severe performance degradation in
the presence of correlated or coherent sources (for instance
when some forms of signal multipath are present), i.e., when
the signal subspace becomes rank deficient [8], [9], [10].
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Two well-known strategies to address this issue are Forward-
Backward (FB) averaging and spatial smoothing [3], [11].

Different approaches to tackle the DOA estimation prob-
lem include parametric methods like Maximum Likelihood
(ML) [3]. In this regard, by considering different hypothe-
ses about the waveform model of the source signals, two
estimators have been proposed in the open literature, i.e.,
Stochastic Maximum Likelihood (SML) and Deterministic
Maximum Likelihood (DML) [12], [13]. In the former case,
source signals are modeled as Gaussian processes, while in
the latter, they are considered as unknown deterministic quan-
tities. Noteworthy algorithms in this context include Iterative
Quadratic Maximum Likelihood (IQML) [3], [14] and Root-
Weighting Subspace Fitting (WSF) [15].

Recently, sparse methods have gained significant attention
in the signal processing community due to their ability to
yield high-resolution and reliable estimates from a limited
number of noisy observations, as well as the capability to han-
dle coherent and correlated sources [16], [17]. They exploit
the inherent sparsity of the signal model, where only a few
sources contribute to the observed data. Therefore, under the
assumption that the DOAs of the sources lie on the assumed
dictionary grid, they can be actually retrieved as the support
of the sparse signal [18]. In this context, hyperparameter-free
algorithms are Sparse Learning via Iterative Minimization
(SLIM) [19], [20] and Sparse Iterative Covariance-based Esti-
mation (SPICE) [21] [18], [22]. The former is a regularized
minimization algorithm capable of providing accurate sig-
nal parameters estimates with a relatively low computational
burden [19]. Assuming Gaussian and uncorrelated sources
(although it is practically robust to these assumptions), the
latter relies on a covariance fitting criterion with global
convergence properties [21] (see also [18] and references
therein).

On a parallel track, several promising approaches involved
the joint exploitation of both spatial and polarization domains
to boost the DOA estimation performance. In fact, by lever-
aging the spatial information captured by multiple antennas
and the polarization characteristics of the incident waves,
enhanced accuracy and reliability of the DOA estimates can
be obtained [23], [24], [25], [26], [27]. As a matter of fact,
it is well known that diversely polarized arrays are capable
of providing better estimation accuracy than the correspond-
ing single polarized arrays [25], [28], [29], [30]. However,
in the open literature, the investigation of sparse estimation
techniques leveraging the polarimetric domain to provide high
resolution and robust DOA estimates has only received a
limited attention. To fill this gap, in this paper, the polari-
metric version of [19] and [21], referred to as Polarimetric
Sparse Learning via Iterative Minimization (POL-SLIM) and
Polarimetric Sparse Iterative Covariance-based Estimation
(POL-SPICE), respectively, are introduced for DOA estima-
tion in a polarimetric sensor array equipped with receive pairs
of elements with orthogonal polarizations (for instance, pairs
of crossed dipoles).

The main contributions of the present work can be summa-
rized as follows:1

1) the formulation of a sparse signal model accounting
for both polarizations and spatial characteristics of the
emitters;

2) the derivation of POL-SLIM and POL-SPICE algo-
rithms that capitalize on the sparsity of the signal model
to endow improved performance to the DOA estima-
tion process, which represents the main novelty of this
paper;

3) the study of the convergence properties for the devised
procedures in terms of achieving a stationary point of
the corresponding optimization problem;

4) an extensive numerical analysis including a passive
sensing scenario as well as a radar setup where the
active system operates in the presence of vertical mul-
tipath. To highlight the effectiveness of the devised
estimators, the results are compared with the single-
polarization counterparts already available in the open
literature and the Cramér-Rao Bound (CRB).

The remainder of this paper is organized as follows.
Section II presents the polarimetric signal model. In Sec-
tion III, the DOA estimation problem is introduced and the
proposed POL-SLIM and POL-SPICE solution strategies are
discussed. Section IV addresses the performance analysis. Fi-
nally, Section V concludes the paper and highlights potential
future research directions.

A. NOTATIONS
Boldface is used for vectors a (lower case), and matrices
A (upper case). IN and 0 denote respectively the N × N
identity matrix and the matrix with zero entries (its size is
determined from the context). The notation A(m) is used to
represent the m − th column of the matrix A. The transpose,
conjugate, and conjugate transpose operators are denoted by
the symbols (·)T, (·)�, and (·)†, respectively. The trace of
the matrix A ∈ CN×N is indicated with tr(A). The Kronecker
and the Hadamard (element-wise) products are denoted by ⊗
and �, respectively. RN and CN are respectively the sets of
N-dimensional column vectors of real and complex numbers.
The letter j represents the imaginary unit (i.e., j = √−1).
For any complex number x, Re(x), Im(x), and |x| are used
to denote the real part, imaginary part, and the modulus of x,
respectively. λmax(A) and λmin(A) are the maximum and the
minimum eigenvalue of A, respectively. For any x ∈ CN , ‖x‖
represents the Euclidean norm. Moreover, for any A ∈ CN×N ,
‖A‖F denotes the Frobenius norm of A. Let A, B be two
square matrices of arbitrary size, diag(A, B) represents the
block diagonal matrix with blocks A and B. Finally, let Z be
a generic finite set, #{Z} returns its cardinality.

1Part of this paper has been presented at the 2023 IEEE International
Workshop on Technologies for Defense and Security (TechDefense) [31].
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II. SIGNAL MODEL
Let us consider a sensor array equipped with N receive pairs
of crossed-dipoles (elements with orthogonal polarizations
which are referred to as horizontal and vertical from now on),
collecting data in the presence of K narrowband Radio Fre-
quency (RF) emitters and aimed at estimating their azimuth
angle. The source signals impinge on the array from unknown
angular directions θ̄1, . . . , θ̄K . The baseband discrete-time sig-
nal at the output of the receiving array for the l-th snapshot,
l = 1, . . . , L, can be modeled as [20]

yl =
[
y(H)T

l , y(V)T
l

]T =
K∑

m=1

S(θ̄m)x̄m,l + el ∈ C2 N , (1)

where
� y(P)

l ∈ CN is the vector of observations collected at the
l-th snapshot by the receiving elements with polarization
P ∈ {H,V };

� x̄m,l = [x̄(H)
m,l , x̄(V)

m,l ]T ∈ C2 is the complex polarimetric
vector associated with the m-th source amplitudes;

�

S(θ̄m) =
[

s(θ̄m) 0
0 s(θ̄m)

]
= I2 ⊗ s(θ̄m) ∈ C2N×2 (2)

is the polarimetric array matrix,2 with s(θ̄m) the unit-
norm spatial steering vector of the array at a given
polarization for the angular direction θ̄m;

� el ∈ C2 N , l = 1, . . . , L are independent and identically
distributed (IID) zero-mean circularly symmetric Gaus-
sian random vectors with mean square value η, assumed
statistically independent from the sources signals.

Let us now formulate (1) as a linear regression model,
whereby the regressors are N̄ polarimetric steering matrices
S(θi ) defined over a grid T = {θi}N̄

i=1 of the azimuth space.
It is worth pointing out that T is supposed dense enough,
i.e., N̄ � N , in order to consider an ideal on-grid scenario,
whereby the true DOAs are assumed to belong to T. Hence,
the following nonparametric model for the array’s output can
be considered [21]

yl = Hxl + el ∈ C2 N , l = 1, . . . , L (3)

where
� xl = [xT

1,l , . . . , xT
N̄,l

, ]T ∈ C2N̄ , is the sparse vector con-
taining the spatial polarimetric profile for the l-th snap-
shot, with xi,l = [x(H)

i,l , x(V)
i,l ]T ∈ C2, i = 1, . . . , N̄ ;

� H ∈ C2 N×2N̄ is the model matrix defined as

H = [
H1, H2, . . . , H N̄

]
, (4)

with H i = S(θi ) the i-th atom, i = 1, . . . , N̄ .
As a matter of fact, the signal model (3) is inherently

sparse, as only a few pairs of elements for each vector

2Without loss of generality, in (2) the same steering vectors are considered
for both polarizations. However, extensions to the case of different array
manifolds for the two polarimetric channels can also be conceived.

xl , l = 1, . . . , L, namely only those corresponding to the an-
gles θ̄1, . . . , θ̄K , are nonzero.

That said, by arranging in matrix form the data from all
the collected snapshots, the signal model can be conveniently
recast as

Y = HX + E, (5)

where

Y = [
y1, . . . , yL

] ∈ C2N×L,

X = [x1, . . . , xL] ∈ C2N̄×L,

E = [e1, . . . , eL] ∈ C2N×L. (6)

According to (5), the received signal is a linear combination of
the columns of H , representing the atoms, where the unknown
weights X are the sources polarimetric complex amplitudes.

Let us now partition the unknown polarimetric matrix pro-
file X as

X = [XT
1 , . . . , XT

N̄ ]T (7)

with X i = [xi,1, . . . , xi,L] ∈ C2×L the polarimetric signature
corresponding to the i-th atom θi. It is clear that the signal
model (5) presents a direct pathway to retrieve the DOAs as
the atoms corresponding to the weights X i with the strongest
norm. Otherwise stated, the space occupancy map recovery
process boils down to the determination of the active atoms.

This motivates the design of sparse recovery methods to
estimate the unknown profile X so as to get the DOAs, as
a by-product. Notably, the estimation process pursued in the
following relies on either SLIM or SPICE paradigm. In partic-
ular, while in the open literature the atoms in the dictionary are
vectors, in this work the signal model (5) demands to consider
a generalized atom in the form of a matrix, with the dictionary
given by the polarimetric array manifold matrix H . However,
it is also worth noting that the coherence of such dictionary
is the same as the corresponding single-polarization counter-
part.3

III. POLARIMETRIC SPARSE DOA ESTIMATION
In this section, the two approaches proposed to recover the
sources’ DOAs, i.e., POL-SLIM and POL-SPICE, are devel-
oped along with a thoroughly discussion on their convergence
features.

A. POL-SLIM
Motivated by the need to exploit multiple snapshots of obser-
vations to gather real-time space-frequency electromagnetic
awareness, the block version of the SLIM algorithm [19],
referred to as Block-Sparse Learning via Iterative Minimiza-
tion (B-SLIM), is proposed in [20]. Precisely, the approach
in [20] resorts to the regularized maximum likelihood esti-
mation paradigm and includes a specific term to promote the

3The proof is straightforward being the polarimetric atom structure S(θi ) =
I2 ⊗ s(θi ).
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inherent sparsity of the overall profile. Here, to account for
the polarimetric characteristics of the signals collected by the
array (5), the polarimetric version of the B-SLIM, referred to
as POL-SLIM, is developed to obtain the 1-D spatial spectrum
profile of the sensed environment. Precisely, the procedure
demands the Maximum a Posteriori (MAP) estimate of X , η

assuming

η ∼ U (ηL, ηU ) (8)

and

fX (X ) ∼
N̄∏

i=1

e− 2
q (‖X i‖2

F +ε)
q
2
, (9)

where 0 < q ≤ 1 rules the sparsity of X (a smaller value
of q shrinks toward a higher sparsity of the profile), ε > 0
is a smoothing factor [20], and ηL, ηU are respectively a
lower and an upper bound to the spectral level of the white
interference, with 0 < ηL ≤ ηU ; they could be experimen-
tally evaluated in quasi-ideal (isolated receivers) and stressing
(e.g., under peak operating temperature) conditions, respec-
tively [20].

This leads to the formulation of the following minimiza-
tion problem for block-sparse (with block size 2 × L) signal
reconstruction4 [20]

P
{

minX ,η 2NL log(η) + η−1 ‖HX − Y‖2
F + f1(X )

s.t. ηL ≤ η ≤ ηU
,

(10)

where

f1(X ) = 2

q

N̄∑
i=1

(‖X i‖2
F + ε)

q
2 (11)

represents the penalty term promoting sparsity.
The optimization problem (10) may be effectively han-

dled through an iterative procedure based on the block
Majorization-Minimization (MM) method [32], [33], [34],
wherein the variables X and η are individually optimized by
solving (possibly surrogate) minimization problems. Hence,
at a given iteration of the algorithm, the optimization of each
variable block is performed keeping the other parameters
fixed, with their values set to the estimates computed at the
previous iteration. Formally, the n-th iteration of the procedure
demands solutions to the following optimization problems:

1) Keeping η fixed, with its value set to η(n), the optimiza-
tion of (10) over the block X yields

min
X

‖HX − Y‖2
F

η(n)
+ f1(X ). (12)

Exploiting the majorization [20, Appendix A]

f1(X ) ≤ f1(X̄ ) + ‖DP
X̄ X‖2

F − ‖DP
X̄ X̄‖2

F , (13)

4The sensing model and the corresponding sources state inference prob-
lem can be extended to accomplish a space-frequency map recovery task,
capitalizing also on polarimetric features so as to endow robustness to the
environmental state surveillance to the actual unknown sources polarization.

where
� X̄ is a problem parameter (set to X (n)),
� DP

X̄
= DX̄ ⊗ I2

� DX̄ = diag(d̄1, . . . , d̄N̄ )
� d̄i = (‖X̄ i‖2

F + ε)
q
4 − 1

2 , i = 1, . . . , N̄ , a solution at the
n-th iteration can be obtained by solving the corre-
sponding surrogate minimization problem, namely (see
Appendix A for the detailed derivation)

X (n+1) = arg min
X

‖HX − Y‖2
F

η(n)
+ ‖DP

X̄ X‖2
F

=
(

H†H + η̄DP†
X̄

DP
X̄

)−1
H†Y . (14)

2) Setting X to X (n+1), and η as the optimization variable,
the problem at hand becomes

min
η

2NL log(η) + η−1
∥∥HX (n+1) − Y

∥∥2
F

s.t. ηL ≤ η ≤ ηU

(15)

whose optimal solution is given by

η(n+1) = min (max (ηL, η̌) , ηU ) , (16)

where

η̌ = 1

2NL

∥∥HX (n+1) − Y
∥∥2

F (17)

Finally, once the estimate X̂ of the matrix profile X is
obtained, the mean (over the two polarizations) Spatial Power
Spectrum (SPS) can be computed as

P̄i = 1

2 L
‖X̂ i‖2

F , i = 1, . . . , N̄ (18)

and the DOAs, namely the spatial activation map, can be
retrieved from the atoms corresponding to the peaks of the
SPS.

As to the selection of the parameter q, several approaches
could be considered. One viable method is resorting to a
model order selector, such as the Bayesian Information Cri-
terion (BIC) to adaptively choose the appropriate value from
a discrete set of points [20], [35]. Alternatively, the value of
q can be tuned empirically possibly leveraging some prior
knowledge.

That said, an appropriate initialization of the unknowns is
also demanded. A wise approach is to employ the matched
filter output as the starting point, i.e.,

X (0)
i = H†

i Y , i = 1, . . . , N̄ (19)

The overall procedure is summarized in Algorithm 1, where
the exit condition is set as

g
(
X (n−1), η(n−1)) − g

(
X (n), η(n)) ≤ δ (20)

with δ > 0 a user-defined parameter and

g (X , η) = 2NL log(η) + η−1 ‖HX − Y‖2
F + f1(X ) (21)

the objective function evaluated at (X , η).
Remarkably, by invoking [20, Proposition 3.1], two impor-

tant convergence properties of Algorithm 1 can be claimed:
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Algorithm 1: POL-SLIM.
Input: Y , H , ηL, ηU , ε > 0, δ > 0, and q ∈ [0, 1].
Initialization. Set n = 0, η(0) = ηL, and
X (0)

i = H†
i Y , i = 1, . . . , N̄

repeat
1) n = n + 1
2) DP

X̄
= DX̄ ⊗ I2 with

DX̄ = diag
(
‖X (n−1)

1 ‖2
F + ε)

q−2
4 , . . . ,

‖X (n−1)
N̄

‖2
F + ε)

q−2
4

)
3) X (n) = (H†H + η(n−1)DP†

X̄
DP

X̄
)−1H†Y

4) η(n) = min(max(ηL, η̌), ηU ) with
η̌ = 1

2NL ‖HX (n) − Y‖2
F

until g(X (n−1), η(n−1)) − g(X (n), η(n) ) ≤ δ

Output. X̂ = X (n).

1) the sequence of points (X (n), η(n) ) generated by
Algorithm 1 decreases the objective function in P;

2) any cluster point of the sequence is a Karush-Kuhn-
Tucker (KKT) point of P .

B. POL-SPICE
In the previous subsection, the problem of estimating the
sparse DOAs has been addressed by directly recovering
the signal matrix X , an approach extensively explored in
the existing literature (e.g., see [36], [37]). However, un-
der the assumption of Gaussian and uncorrelated sources, a
statistical learning formulation in terms of covariance ma-
trix estimation could also be pursued [21]. This tailored
formulation led (for the single-polarization case) to the de-
velopment of a practically robust (with respect to (wrt) the
sources model assumption) estimator with desirable global
convergence properties [21]. For the above reasons, in this
subsection the polarimetric version of [21] is derived. To begin
with, let us express the data covariance matrix as5

R(P, η) = E
[
YY †] = HPH† + ηI2 N = H̄P̄H̄†

, (22)

where

H̄ = [H, I2 N ] ∈ C2N×(2N̄+2 N ), (23)

and

P̄ = diag(P, ηI2 N ) ∈ R(2N̄+2 N )×(2N̄+2 N ), (24)

with P = diag([P1, . . . , PN̄ ]) = E[XX†] ∈ R2N̄×2N̄ and Pi ∈
R2×2 the polarimetric covariance matrix of the i-th source
related to the i-th atom.

Using the SPICE criterion, the estimation problem at hand
could be addressed by minimizing the following covariance

5For ease of notation, the matrix R(P, η) is referred to in the following as
R.

fitting performance metric [21]⎧⎪⎪⎨
⎪⎪⎩

∥∥∥R− 1
2 (RSCM − R)

∥∥∥2

F
L < 2 N∥∥∥∥R− 1

2 (RSCM − R) R
− 1

2
SCM

∥∥∥∥
2

F
L ≥ 2N

, (25)

where RSCM = 1
LYY † is the sample covariance matrix. How-

ever, if (25) is adopted as objective function, then two remarks
are necessary. First, it involves distinction between the cases
L < 2 N and L ≥ 2 N like in [18] for the single-polarization
scenario. Second, the resulting optimization problem can pos-
sibly be not well-posed for the L = 1 (see Appendix B), which
is a crucial scenario for radar applications. Therefore, in or-
der to work with only one objective function which would
guarantee that the covariance matrix estimation problem is
well-posed, regardless of the number of snapshots (with L ≥
1), along with a unifying treatment, the Fast Maximum Like-
lihood (FML) estimate of the covariance matrix is employed
in lieu of RSCM . Precisely, the FML procedure [38], [39]
provides the Maximum Likelihood Estimation (MLE) when
R belongs to the uncertainty set of positive definite matrices
whose eigenvalues are greater than or equal to a specific value,
that is, under the assumption that a lower bound ηL on the
thermal noise power level is a-priori available. Therefore,
denoting by U�U† the Eigenvalue Decomposition (EVD)
of RSCM and by λ̃v, v = 1, . . . , N its eigenvalues, the FML
estimate is given by

R̃ = U�FMLU†, (26)

where

�FML = diag(λ1,FML, . . . , λN,FML ) (27)

with λv,FML = max(λ̃v, ηL ), v = 1, . . . , N .
This technique ensures that all the eigenvalues of R̃ are

greater than or equal to the lower bound on the power noise
level. Notably, this estimation process is equivalent to perform
the projection (in terms of Frobenius norm) of RSCM onto the
set of the positive definite matrices greater than or equal to
ηLI [40].

Leveraging (26), the considered objective function is given
by ∥∥∥∥R− 1

2
(
R̃ − R

)
R̃− 1

2

∥∥∥∥
2

F
(28)

which, after algebraic manipulation, can be rewritten as

P1

⎧⎨
⎩

min
P�0,ηL≤η≤ηU

tr(R−1R̃) + ∑N̄
i=1 tr(H†

i R̃−1H iPi )

+ η tr(R̃−1
)

.

(29)

Remarkably, P1 is jointly convex wrt Pi and η; thus, it
can be solved via any Semi-Definite Program (SDP) solver,
with the drawback (due to the high dimensionality of the
problem) of a high computational complexity [41]. Therefore,
an efficient and iterative optimization procedure is devised
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as follows. First of all, let us equivalently6 reformulate (29)
as [21]

P2

⎧⎨
⎩

min
C,P�0,ηL≤η≤ηU

f (C, P, η)

s.t. H̄C = R̃
1
2

(30)

with C ∈ C(2N̄+2 N )×2 N a slack variable and

f (C, P, η) = tr(C†P̄−1C) +
N̄∑

i=1

tr(H†
i R̃−1H iPi )

+ η tr(R̃−1
) (31)

the objective function to optimize. Hence, resorting to the
Coordinate Descent (CD) framework, at the n-th iteration,
each block variable, i.e., C, P, and η, is optimized at a time
while keeping the others fixed. Notably, each sub-problem can
be solved in closed-form, yielding the following CD updating
rules (see Appendix C)

C(n) = P̄(n)H̄†(R(n) )−1R̃
1
2 , (32)

P(n) = diag([P(n)
1 , . . . , P(n)

N̄
]), (33)

and

η(n) = min (max (ηL, η̌) , ηU ) , (34)

where

η̌ =

√√√√√∑N̄+N
i=N̄+1

∥∥∥C(n)
i

∥∥∥2

F

tr(R̃−1
)

(35)

and, for i = 1, . . . , N̄ ,

P(n)
i = Zi

[
Z−1

i

(
H†

i R̃−1H i

)−1
Z−1

i

] 1
2

Zi, (36)

with

Zi =
(
C(n)

i C(n)†
i

) 1
2
. (37)

and Ci ∈ C2×2 N obtained by extracting the (2i − 1)-th and
(2i)-th rows of C. The devised POL-SPICE procedure
is reported in Algorithm 2 whereby the polarimetric co-
variance matrix is initialized as P(0)

i = X̃ iX̃
†
i with X̃ i =

H†
i Y/

√
L, i = 1, . . . , N̄ , while the exit condition is set as

‖P(n) − P(n−1)‖F

‖P(n−1)‖F
≤ δ. (38)

As a final remark, the convergence properties of
Algorithm 2 is analyzed. To begin with, observe that the
following conditions are satisfied

C1) f (C, P, η) is continuously differentiable over the fea-
sible set;

6Denoting by Ĉ, P̂, and η̂ the optimal solution to P2, it is straightforward
to prove that (P̂, η̂) is the optimal solution to P1 as well [21].

Algorithm 2: POL-SPICE.

Input: Y , H , R̃−1
, R̃

1
2 , ηL, ηU , and δ > 0.

Initialization. Set n = 0, η(0) = ηL, H̄ = [H, I2 N ] and
P(0)

i = X̃ iX̃
†
i with X̃ i = H†

i Y/
√

L, i = 1, . . . , N̄
repeat
1) n = n + 1
2) P̄(n) = diag(P(n−1), η(n−1)I2 N )
3) R(n) = H̄P̄(n)H̄†

4) C(n) = P̄(n)H̄†(R(n) )−1R̃
1
2

5) η(n) = min(max(ηL, η̌), ηU ) with

η̌ =
√∑N̄+N

i=N̄+1
‖C(n)

i ‖2
F

tr(R̃−1)

6) P(n) = diag([P(n)
1 , . . . , P(n)

N̄
]) where, for i = 1, . . . , N̄

P(n)
i = Zi[Z−1

i (H†
i R̃−1H i )−1Z−1

i ]
1
2 Zi,

with
Zi = (C(n)

i C(n)†
i )

1
2 .

until ‖P(n) − P(n−1)‖F /‖P(n−1)‖F ≤ δ

Output. P̄i = ‖P(n)
i ‖F , i = 1, . . . , N̄ .

C2) each subproblem has an unique solution (which is
computed in closed-form);

C3) each block variable is optimized over a compact set
(see Appendix D);

C4) f (C, P, η) is jointly convex over its block compo-
nents.

As a consequence, due to [33, Theorem 2], any limit point
of the iterates generated by Algorithm 2 is a stationary point
of P2 and, due to C4), it is also a global minimum of
f (C, P, η) [42].

IV. PERFORMANCE ANALYSIS
In order to evaluate the performance of the proposed esti-
mation procedures, two scenarios of practical relevance are
considered in the following. The former refers to a passive
sensing configuration, whereas the latter investigates the per-
formance of an active polarimetric radar operating in the
presence of multipath. In the simulations, unless otherwise
specified, the dictionary is built as a discretization of the
azimuth domain [−π/2, π/2] with N̄ = 1000 equally spaced
points.

A. PASSIVE SENSING SCENARIO
Let us consider a passive sensor equipped with N = 35
crossed dipoles, arranged in a standard Uniform Linear Array
(ULA) configuration, receiving data in both horizontal and
vertical polarizations. It is assumed that the system collects
L = 200 snapshots in the presence of K = 3 uncorrelated
Gaussian sources impinging on the sensor from azimuth direc-
tions θ̄ = [−18.11,−14.50, 17.93]◦, which correspond to the
positions [400, 420, 600] of the atoms within the dictionary.
Precisely, at the l-th snapshot, the received signal is given
by (1), with the emitters (independent of each other) complex

VOLUME 5, 2024 891



AUBRY ET AL.: SPARSE DOA ESTIMATION WITH POLARIMETRIC ARRAYS

amplitudes on the two polarizations modeled as

x̄m,l ∼ CN (0, |α|2Mm), l = 1, . . . , L, m = 1, . . . , K (39)

where

Mm = Pm� j (40)

with P1 = 1, P2 = 9, P3 = 4, and

� j =
[

1 − ρ σc
√

ρ(1 − ρ)
σc

√
ρ(1 − ρ) ρ

]
, (41)

while ρ represents the polarimetric power imbalance coeffi-
cient, and σc is the polarimetric correlation coefficient.

The SNR is defined as

SNR = |α|2
η

1

K
tr(P), (42)

where η is assumed, without loss of generality, equal to 0 dB
and

P = diag([P1, P2, P3]T). (43)

The CRB for either unknown nonrandom sources or for un-
known Gaussian sources (referred to as CRBG), whose deriva-
tions are provided in Appendix E, is reported as benchmark
while the following counterparts are included for comparison
purposes:
� the CBF using a single-polarization subarray (either

working in H or V polarization) [3];
� the block-sparse single-polarization SLIM and SPICE

algorithms [18], [20], [21];
� an extension of the MUSIC algorithm (referred to in the

following as POL-MUSIC) for crossed-dipoles arrays
(see Appendix F).

The angular estimation performance of the considered
methods is assessed using two figures of merit, i.e.,
� the Root Mean Square Error (RMSE) computed as

R̂MSE =
√√√√ 1

MC

MC∑
l=1

1

K

K∑
m=1

|θ̂m,l − θ̄m|2, (44)

where θ̂m,l is the m-th source DOA estimate at the l-th
trial with MC = 1000 the number of Monte Carlo trials;

� the probability of detecting the sources within 1.8 de-
grees from the true DOAs (denoted as Pd).

Furthermore, the POL-SLIM has been implemented as
a two-step procedure. First, a spatial spectrum is inferred
adopting q = 1; then, the estimated sparse profile is used to
initialize a second POL-SLIM process with q = 0.5, aimed at
further promoting the sparsity of the results and refining the
DOA inference process.

The simulation results, reported in Figs. 1 and 2 for ρ = 0.5
and σc = 0.9, show that POL-SLIM and POL-SPICE out-
perform the corresponding single-polarization algorithms, the
CBF as well as POL-MUSIC, in terms of both RMSE and
Pd. Precisely, for SNR = 5 dB, the devised techniques are
capable of providing RMSE values in the order of 1 ◦, with an

FIGURE 1. RMSE vs SNR for L = 200, ρ = 0.5, and σc = 0.9. (a) SLIM-based
procedures vs counterparts. (b) SPICE-based procedures vs counterparts.

appreciable improvement (of approximately 2 degrees) com-
pared to their single-polarization counterparts. Moreover, they
approach the CRB at lower SNR values than all the other con-
sidered estimators. Under low/medium SNR regime (and in
particular for SNR values smaller than 15 dB), POL-MUSIC
achieves lower estimation performance than the counterparts
(even those working in single polarization). However, in the
high SNR regime, it is able to attain the CRB as well as
Pd = 1.

Additionally, Fig. 2 highlights that POL-SLIM and POL-
SPICE are capable of providing higher Pd than the other
methods. In particular, at Pd = 0.9, there is a performance
gain of approximately 1 dB for POL-SLIM and 2 dB for
POL-SPICE when compared to the single-polarization coun-
terparts.

Notably, for the employed simulation parameters, a direct
comparison between the two polarimetric methods reveals
that, for a given SNR, POL-SPICE consistently provides more
accurate DOA estimates as well as higher Pd values than
POL-SLIM. The observed superiority is likely a consequence
of the fact that POL-SPICE operates under a model matching
condition of the procedure, as the analyzed case is character-
ized by the presence of uncorrelated Gaussian sources.
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FIGURE 2. Pd vs SNR for L = 200, ρ = 0.5, and σc = 0.9. (a) SLIM-based
procedures vs counterparts. (b) SPICE-based procedures vs counterparts.

Aimed at providing a further insight into the effectiveness
of the developed approaches, Figs. 3 and 4 report, for a spe-
cific trial instance and for SNR = 7 dB and SNR = 15 dB,
respectively, the estimated single-polarization spectra x̌(P),
normalized to its maximum. Precisely, the i-th element of x̌(P),
corresponding to the spectrum at the angle θi, is estimated by
the Capon formula

x̌(P)(i) = 1

L

L∑
l=1

∣∣∣∣∣ s(θi )†Ř
−1
P y(P)

l

s(θi )†Ř
−1
P s(θi )

∣∣∣∣∣ , i = 1, . . . , N̄

P ∈ {H,V } (45)

where, ŘP = ĀP̄(P)Ā† is the estimated covariance matrix at
the given polarization P, with Ā = [s(θ1), . . . , s(θN̄ ), IN ] the
extended single-polarization dictionary and P̄(P) the corre-
sponding power estimated by either POL-SLIM or POL-
SPICE. In the figures, the estimated profile is compared with
the true one, i.e., the Capon spectrum (45) computed using
the true single-polarization covariance matrices. The results
highlight that the estimated profiles achieve a good match with
the theoretical counterparts at both SNR equal to 7 dB and
15 dB.

Figs. 5 and 6 report the RMSE and Pd versus SNR curves,
respectively, for the case of ρ = 0.6 and σc = 0.4. Unlike
the previous case study, characterized by equal signal power

distribution among the two polarimetric channels, this sce-
nario reveals a noticeable performance gap between the
performance of single polarization methods operating on H
and V polarization data. In fact, at SNR = 5 dB, it is possible
to observe a RMSE difference of about 1.5 degrees between
SLIM-H and SLIM-V and similarly of 2 degrees between
SPICE-H and SPICE-V. On the other hand, the proposed
polarimetric estimation strategies yield the best performance
among all the considered counterparts, thus demonstrating
their effectiveness in exploiting the polarimetric charac-
teristics of the received signals. As a consequence, such
methods endow robustness to the environmental awareness
process against possible power mismatches and/or correlation
among the polarimetric channels. It is worth noting that, in
a typical passive sensing scenario, the received power dis-
tribution among the two polarization channels is generally
unknown; therefore, single-polarization methods using data
from the weak polarimetric channel may experience a consid-
erable performance degradation. In contrast, POL-SLIM and
POL-SPICE consistently maintain satisfactory performance
without requiring prior information about signal power dis-
tribution on the two polarimetric channels.

Finally, Figs. 7 and 8 illustrate the results, in terms of
RMSE vs ρ and Pd vs ρ, respectively, achieved by the SLIM-
based and SPICE-based procedures for SNR = 10 dB, L =
200, and σc = 0.9. Inspection of the curves highlights that
when ρ = 0, i.e., the returns on the H polarization are dom-
inant, the methods that exploit the data collected on the H
channel are capable of providing Pd close to 1 and estimation
accuracy in the order of 0.5◦. On the other hand, the single po-
larization methods employing data obtained on the V channel
fail to accomplish the detection task (with Pd approximately
0). However, the performance of such data processors em-
ploying H (V ) polarization data is degraded (improved) as ρ

increases. Moreover, regardless of the employed polarimetric
channel, all the single-pol methods achieve similar results (in
terms of comparing each H-pol method with the correspond-
ing V -pol counterpart) in the case of ρ = 0.5. Notably, the
proposed POL-SLIM and POL-SPICE consistently exhibit the
best performance among all the reported methods, regard-
less of the value of ρ. This behavior further corroborates
the advantage of the devised techniques toward an effective
exploitation of the polarimetric domain and thus providing
robust performance with respect to any unknown polarimetric
power imbalance.

B. RADAR SCENARIO
In this subsection, a typical radar application is considered,
wherein a radar aims at estimating the elevation of a prospec-
tive target in the presence of a vertical multipath. In this
context, considering the radar transmitting a single pulse (i.e.,
L = 1) on polarization H and assuming a rather smooth reflec-
tion surface [43], at the listening stage it receives two useful
signal contributions on each polarization channel, namely the
target echo from the direct path as well as the multipath [1],
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FIGURE 3. Capon spectrum (45), normalized to the maximum, computed for ρ = 0.5, σc = 0.9, and SNR = 7 dB, using the single-polarization covariance
matrix estimated by either POL-SLIM or POL-SPICE method. (a) and (b) report the spectra in H polarization, whereas the curves in (c) and (d) refer to V
polarization.

FIGURE 4. Capon spectrum (45), normalized to the maximum, computed for ρ = 0.5, σc = 0.9, and SNR = 15 dB, using the single-polarization covariance
matrix estimated by either POL-SLIM or POL-SPICE method. (a) and (b) report the spectra in H polarization, whereas the curves in (c) and (d) refer to V
polarization.

as shown in Fig. 9 (with the array elements arranged along the
y-axis), where
� θ̄d is target elevation;
� θ̄s is reflection angle;
� Rd = [R2 + (ht − hr )2]

1
2 and Rs = [R2 + (ht + hr )2]

1
2

are the direct (slant range) and reflected path distance,
respectively;

� ht and hr are the receiver and the target height, respec-
tively,

with R the ground distance between the target and the receiver.
In this regard, the following relationship holds true [43]

θ̄s = − arctan

(
tan(θ̄d ) + 2hr

R

)
. (46)
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FIGURE 5. RMSE vs SNR for L = 200, ρ = 0.6, and σc = 0.4. (a) SLIM-based
procedures vs counterparts. (b) SPICE-based procedures vs counterparts.

Within the aforementioned geometry, the received signal
can be modeled as

y = [
y(H)T, y(V)T]T

= [
S(θ̄d ), S(θ̄s)

] [
xH , xV , ρH xH e− jφ, ρV xV e− jφ]T

+ e ∈ C2 N , (47)

where
� x = [xH , xV ]T ∈ C2 is the polarimetric complex target

echo amplitude, modeled as a zero-mean complex cir-
cular Gaussian random vector with covariance matrix
γ MT , whereas MT is given by [44]

MT = σP

[
1 ρP

√
γP

ρ�
P
√

γP γP

]
(48)

and the values of σP, ρP, and γP, namely the target
polarimetric parameters, are reported in Table 1;

� ρH and ρV are the ground reflection coefficients in po-
larization H and V, respectively;

� φ = 2π�R/λ is the phase shift induced by the additional
path (i.e., �R) traveled by the reflected signal wrt the
direct one;

� e is a zero-mean circularly symmetric Gaussian random
vector with mean square value η, independent from x,

FIGURE 6. Pd vs SNR for L = 200, ρ = 0.6, and σc = 0.4. (a) SLIM-based
procedures vs counterparts. (b) SPICE-based procedures vs counterparts.

TABLE 1. Simulation Parameters for Section IV-B

whereas the SNR is modeled as SNR = γ /η.
In the considered case study characterized by an approxi-

mately flat surface, the ground reflection coefficients can be
modeled according to [43] as

ρH = sin(−θ̄s)−
√

ε−(cos(θ̄s))2

sin(−θ̄s)+
√

ε−(cos(θ̄s))2

ρV = ε sin(−θ̄s)−
√

ε−(cos(θ̄s))2

ε sin(−θ̄s)+
√

ε−(cos(θ̄s))2

(49)

where

ε = εr − j60λσe (50)

is the complex permittivity, with εr and σe the relative permit-
tivity and the surface conductivity, respectively.
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FIGURE 7. RMSE vs ρ for SNR = 10 dB, L = 200, and σc = 0.9.
(a) SLIM-based procedures vs counterparts. (b) SPICE-based procedures vs
counterparts.

The simulation parameters are provided in Table 1 whereby,
for the ground model, it is assumed a typical ordinary soil
surface [43]. In particular, θ̄d = 3◦ and θ̄s = −3.76◦, with an
angular separation between the two paths of 6.76◦.

In this case study, the RMSE of the target DOA θ̄d is
considered as a figure of merit, i.e.,

R̂MSE =
√√√√ 1

MC

MC∑
l=1

|θ̂l − θ̄d |2, (51)

where θ̂l is the estimated target DOA (obtained as the peak
of the spatial spectra obtained by the considered SLIM-based
and SPICE-based procedures) at the l-th trial. Moreover, it is
worth noting that, since the modulus of the reflection coeffi-
cients are |ρH | = 0.97 and |ρV | = 0.58, in V polarization the
direct return is significantly stronger than the reflected return,
whereas in H polarization the two contributions have similar
amplitudes.

The estimation performance for the aforementioned radar
scenario is reported in Fig. 10 in terms of RMSE versus SNR.
Inspection of the curves reveals that, under a low/medium
SNR regime (SNR < 10 dB), SLIM and SPICE methods
perform better in H polarization than the V one, as the re-
turns in the former channel are stronger than in the latter

FIGURE 8. Pd vs ρ for SNR = 10 dB, L = 200, and σc = 0.9. (a) SLIM-based
procedures vs counterparts. (b) SPICE-based procedures vs counterparts.

FIGURE 9. Setup geometry for the simulation scenario considered in
Section IV-B.

(recall that γP = 0.1). Conversely, at high SNR, it is more
advantageous to employ the data collected in V polarization
to better distinguish the two returns. Indeed, in H polarization,
being |ρH |=0.97, the two returns (direct and multipath) have
similar values, whereas in V polarization, being |ρV | = 0.58,
the echo from the direct path is much stronger than the multi-
path one, making the actual target DOA estimation process
easier. However, the POL-SPICE and POL-SLIM methods
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FIGURE 10. RMSE vs SNR for the radar scenario with L = 1. (a) SLIM-based
procedures vs counterparts. (b) SPICE-based procedures vs counterparts.

provide substantially better performance regardless of the
SNR value, with a noticeable advantage of the POL-SPICE
over the counterparts, corroborating again its effectiveness
also in this challenging scenario characterized by a single
data snapshot and two closely-located and correlated returns
(direct contribution and multipath).

V. CONCLUSION
In this paper, two iterative algorithms, POL-SLIM and POL-
SPICE, have been proposed for DOA estimation in a sensor
array with crossed dipole receive pairs. The devised estima-
tors can be framed as extensions of the conventional sparse
methods, i.e., SLIM and SPICE, to the polarimetric domain.
Toward this goal, a tailored polarimetric dictionary, composed
of generalized matrix atoms (given by the polarimetric array
manifolds), has been considered to model the sparse signal.
Therefore, bespoke solutions to the optimization problems
involved in the SLIM and SPICE-based estimation processes
have been derived (also capitalizing on prior knowledge on
the noise variance), which, together with the sparse model
formulation, represent the main technical contributions of
this paper. Hence, by leveraging the sparsity of the signal
model and capitalizing on its polarimetric characteristic, POL-
SLIM and POL-SPICE proved able to yield high-resolution
DOA estimates. Precisely, their RMSE performance has been

numerically assessed in several practical scenarios, includ-
ing a typical passive sensing case and a radar operating in
a multipath context. Moreover, comparison with the CRB
and single-polarization counterparts available in the open
literature has also been thoroughly considered. The results
have clearly highlighted the effectiveness of the synthesized
estimation architectures and their advantages over the coun-
terparts.

Future developments may include the application of the de-
vised framework to the case of different subarrays in H and V
polarizations, in terms of number of elements and/or antennas
characteristics, i.e., having distinct array manifold expres-
sions. Other possible extensions may be aimed at taking into
account, at the design stage, the presence of non-idealities,
e.g., due to mutual coupling effects, that could lead to consid-
erable performance loss if not adequately compensated [45]
as well as off grid sources returns. Finally, it deserves fur-
ther analysis the limiting DOA estimation performance using
crossed-dipoles array via the Ziv-Zakai bound [46] in the
polarimetric domain.

APPENDIX A
SOLUTION TO PROBLEM IN (14)
Let us write the objective function in (14) as

‖HX − Y‖2
F

η(n)
+ ‖DP

X̄ X‖2
F

= tr

(
(HX − Y )†(HX − Y )

η(n)

)
+ tr

(
X†DP†

X̄
DP

X̄ X
)

= tr

(
X†H†HX − X†H†Y − Y †HX + Y †Y

η(n)

)

+ tr
(

X†DP†
X̄

DP
X̄ X

)

= tr

(
X†

(
H†H
η(n)

+ DP†
X̄

DP
X̄

)
X
)

− tr

(
X†H†Y − Y †HX

η(n)

)
+ K1 (52)

with K1 functionally independent of X . Now, computing and
nulling the gradient of (52) wrt X yields(

H†H
η(n)

+ DP†
X̄

DP
X̄

)
X − H†Y

η(n)
= 0. (53)

Thus, a stationary point of (14) is given by

X̂ =
(

H†H + η(n)DP†
X̄

DP
X̄

)−1
H†Y . (54)

APPENDIX B
PROOF THAT FOR L = 1 THE SPICE CRITERION (25) CAN
POSSIBLY YIELD TO A ILL-POSED OPTIMIZATION
PROBLEM
To begin with, let us notice that the SPICE fitting crite-
rion (25), for the case of L = 1, can be equivalently written
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as ∥∥∥R− 1
2 (RSCM − R)

∥∥∥2

F

= tr((RSCM − R) R−1 (RSCM − R))

= tr(RSCMR−1RSCM ) + tr(R) − 2 tr(RSCM ). (55)

In this case the sample covariance can be rewritten as RSCM =
aa†, so (55) is given by

tr(aa†R−1aa†) + tr(R) − 2‖a‖2

= ‖a‖2a†R−1a + tr(R)

≥ ‖a‖4λmin(R−1) +
N∑

i=1

λi(R)

= ‖a‖4 1

λmax(R)
+ λmax(R) +

N∑
i=2

λi(R)

≥ ‖a‖4 1√
‖a‖4

+
√

‖a‖4 +
N∑

i=2

λi(R)

≥ 2‖a‖2, (56)

whereby the infimum 2‖a‖2 can be only achieved when the
covariance matrix is semidefinite, i.e.,

R = aa† + lim
n→∞

1

n
I � 0, (57)

which means that the unconstrained optimal solution lies on
the boundaries of the feasible set.

APPENDIX C
POL-SPICE UPDATING RULES
In the following, the optimization of the objective function
in (30) wrt C is studied. Then, fixing C, the estimates of P and
η are derived.

Assuming P and η fixed parameters, by denoting P̄ =
diag(P, ηI2 N ), the solution for C is given by [18]

Ĉ = P̄H̄†(H̄P̄H̄†)−1R̃
1
2 . (58)

Let us now analyze the optimization problem when C is
held fixed, with its value set to Ĉ. To begin with, it is worth
noting that

tr(Ĉ
†
P̄−1Ĉ) =

N̄∑
i=1

tr(Ĉ
†
i P−1

i Ĉi ) + 1

η

N̄+N∑
i=N̄+1

‖Ĉi‖2
F . (59)

Thus, the optimization problem (30) wrt P and η is tantamount
to considering

min
P�0,η>0

h(P, η) (60)

with

h(P, η) =
N̄∑

i=1

tr(Ĉ
†
i P−1

i Ĉi ) + 1

η

N̄+N∑
i=N̄+1

‖Ĉi‖2
F

+
N̄∑

i=1

tr(H†
i R̃−1H iPi ) + η tr(R̃−1

) (61)

Therefore, the optimal solution wrt P = [P1, . . . , PN̄ ] is ob-
tained as the point satisfying

∇h(P, η)

∇Pi
= 0 (62)

leading to the expressions

P̂
−1
i ĈiĈ

†
i P̂

−1
i = H†

i R̃−1H i, i = 1, . . . , N̄ . (63)

By defining Zi = (ĈiĈ
†
i )

1
2 , (63) can be equivalently written as

ZiP̂
−1
i ZiZiP̂

−1
i Zi = ZiH

†
i R̃−1H iZi (64)

which, by letting Qi = Z−1
i P̂iZ−1

i , yields

Q−2
i = ZiH

†
i R̃−1H iZi (65)

that leads to

Qi = Z−1
i P̂iZ−1

i =
[

Z−1
i

(
H†

i R̃−1H i

)−1
Z−1

i

] 1
2

. (66)

Therefore

P̂i = Zi

[
Z−1

i

(
H†

i R̃−1H i

)−1
Z−1

i

] 1
2

Zi, i = 1, . . . , N̄,

(67)
Finally, regarding η, it is straightforward to prove that

η̂ = min (max (ηL, η̌) , ηU ) , (68)

where

η̌ =

√√√√√∑N̄+N
i=N̄+1

∥∥∥C(n)
i

∥∥∥2

F

tr(R̃−1
)

(69)

is the corresponding unconstrained estimate, obtained by
computing and nulling the partial derivative of the objective
function in (60) wrt η.

APPENDIX D
PROOF THAT EACH BLOCK VARIABLE OF P2 IS
OPTIMIZED OVER A COMPACT CONVEX SET
In the following, the feasible sets, related to each block vari-
able optimization in Algorithm 2, are proven to be compact
convex sets. To begin with, notice that due to considered prior
knowledge on the white noise power, η is bounded by lower
and upper bounds, i.e., so η is optimized over S1 = [ηL, ηU ].
Then, being H†

i R̃−1H i � 0, it follows that
� f (C, P, η) diverges for ‖Pi‖F → ∞, so ∃ζP ∈ R+ such

that the optimization of Pi can be performed focusing on
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the non-empty compact and convex set Si
2 = {‖Pi‖F ≤

ζP}, i = 1, . . . , N̄ ;
� f (C, P, η) diverges for ‖C‖F → ∞ being

f (C, P, η) ≥ tr(C†P̄−1C) ≥ ‖C‖2
F λmax(P̄), (70)

with λmax(P̄) ≤ max(ζP, ηU ), so ∃ζC ∈ R+ such that the
search space can be restricted to the non-empty compact
and convex set S3 = {‖C‖F } ≤ ζC .

Therefore, the optimization process can be focused on the
non-empty compact and convex set given by S1 × S2 × S3,
where S2 = S1

2 × S2
2 × · · · × SN̄

2 .

APPENDIX E
CRB
Aimed at a proper understanding of the statistical efficiency of
the devised signal processing strategies, in the following, the
CRB for sources DOA estimation is devised, which represents
a lower bound on the accuracy of any unbiased estimators [3].

A. UNKNOWN NONRANDOM SOURCES
With reference to the signal model (1), assuming the sources
amplitude be unknown nonrandom complex terms, the vector
whose entries are the unknown parameters is given by

θ = [θ̄
T
, FT, η]T ∈ RK+4KL+1 (71)

with

θ̄ = [θ̄1, . . . , θ̄K ]T ∈ RK (72)

and

F = [FT
1 , . . . , FT

L ] ∈ R4KL (73)

where, for l = 1, . . . , L,

F l =
[
Re

{
x̄(H)

1,l

}
,Im

{
x̄(H)

1,l

}
,Re

{
x̄(V)

1,l

}
,Im

{
x̄(V)

1,l

}
, . . . ,

Re
{
x̄(H)

K,l

}
,Im

{
x̄(H)

K,l

}
,Re

{
x̄(V)

K,l

}
,Im

{
x̄(V)

K,l

}]T ∈ R4 K .

(74)

Therefore, the CRB on θ̄ is [3]

CRBθ =
(

2

η

L∑
l=1

Re{Z†
l D†Po

SDZl}
)−1

(75)

where

Zl = diag(x̄1,l , x̄2,l , . . . , x̄K,l ) ∈ C2 K×K (76)

D = [Ṡ(θ̄1), Ṡ(θ̄2), . . . , Ṡ(θ̄K )] ∈ C2 N×2 K (77)

Po
S = I − PS ∈ C2 N×2 N (78)

with

PS = S̃
(

S̃†S̃
)−1

S̃† ∈ C2 N×2 N (79)

S̃ = [
S(θ̄1), S(θ̄2), . . . , S(θ̄K )

] ∈ C2 N×2 K (80)

while

Ṡ(θ̄m) =
[

ṡ(θ̄m) 0
0 ṡ(θ̄m)

]
= I2 ⊗ ṡ(θ̄m) ∈ C2N×2 (81)

with ṡ(θ̄m) = ∂s(θ̄m )
∂θm

, which, for a ULA, becomes

ṡ(θ̄m) = s(θ̄m) � [0, jπ, . . . , jπ (N − 1)]T. (82)

Finally, the mean CRB on DOA estimation (averaging (75)
over the number of sources) is computed as

CRB = 1

K
tr (CRBθ ) . (83)

B. UNKNOWN GAUSSIAN SOURCES
Under the assumption of Gaussian sources, the unknown spec-
tral matrix is

R̃ =
K∑

m=1

S(θ̄m)P̃iS(θ̄m) + ηI = S̃P̃S̃† + ηI2 N (84)

where S̃ = [S(θ̄1), . . . , S(θ̄K )] ∈ C2N×2 K and P̃ =
diag([P̃1, . . . , P̃K ]) ∈ R2K×2 K with

P̃i =
[

Pi,H Pi,HV

Pi,HV Pi,V

]
= E[x̄m,1x̄†

m,1]

= · · · = E[x̄m,L x̄†
m,L] ∈ R2×2

the polarimetric covariance matrix of the i-th source. There-
fore, with reference to (84), the unknown vector of parameters
is

θ = [θ̄
T
, P̄T

, η]T ∈ R4K+1 (85)

with

θ̄ = [θ̄1, . . . , θ̄K ]T ∈ RK (86)

and

P̄ = [P1,H , P1,HV , P1,V , P2,H , P2,HV , P2,V ,

. . . , PK,H , PK,HV , PK,V ] ∈ R3 K . (87)

Under this scenario, the mean CRB on DOA estimation is
computed as

CRB = 1

K
tr
(
CRBθ,G

)
(88)

where the CRB for θ̄ estimation is given by [3]

CRBθ,G = η

2 L

(
Re{[P̃S̃†R̃−1S̃P̃] � [D̃†P⊥

S̃ D̃]T}
)−1

(89)

with

D̃ = [Ṡ(θ̄1), . . . , Ṡ(θ̄K )] ∈ C2 N×2 K (90)

and

P⊥
S̃ = I2 N − S̃

(
S̃†S̃

)−1
S̃† ∈ C2 N×2 N (91)
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APPENDIX F
IMPLEMENTATION OF POLARIMETRIC MUSIC
This subsection describes the implementation of a polarimet-
ric version of the MUSIC algorithm.

1) Compute the sample covariance matrix RSCM = 1
LYY †;

2) Perform the eigendecomposition of RSCM as

RSCM = U�UH , (92)

where � is the diagonal matrix of eigenvalues arranged
in descending order and U is the matrix of the corre-
sponding eigenvectors;

3) Partition U as

U =
[
U signal Unoise

]
, (93)

where U signal contains the eigenvectors corresponding
to the 2 K largest eigenvalues (assuming K sources),
and Unoise contains the remaining 2(N − K ) eigenvec-
tors spanning the noise subspace;

4) Evaluate the polarimetric spatial power spectrum for the
angle θi as

SPS(θi ) = 1

‖U†
noiseH i‖2

F

; (94)

5) Estimate the DOAs as the angles θi corresponding to the
K highest peaks in the SPS.
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