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ABSTRACT The integration of Digital Twin (DT) technology into the photovoltaic (PV) sector represents
a significant advancement in energy management, optimization, servicing, and maintenance. This compre-
hensive literature review aims to enhance understanding, categorization, and adoption of DT and data fusion
technologies within the PV industry to guide future research endeavors. The review categorizes PV models
into three types: digital models, digital shadows, and digital twins, based on their data connection and integra-
tion attributes. It recognizes data fusion as the critical enabling technology for the development of complex
DT models and proposes a framework for integrating data fusion with DT systems. A detailed examination
of prevalent PV modeling methodologies is conducted to delineate their advantages and limitations, serving
as a valuable resource for industry practitioners. The paper concludes that digital models and digital shadows
are effective for initial PV system forecast and monitoring, while fully integrated DT models offer significant
advantages, including real-time analysis, predictive capabilities, and active system optimization. However,
implementing and maintaining DT models require advanced data analytics, high computational costs, and
robust system security, presenting important challenges to be addressed in future research endeavors.

INDEX TERMS Control systems, modeling, photovoltaic power systems, solar energy.

I. INTRODUCTION
Over the past several decades, the challenges posed by global
warming and the energy crisis have spurred the advance-
ment and adoption of alternative, sustainable, and eco-friendly
energy sources [1]. Solar energy, an inexhaustible resource,
is widely regarded as one of the most promising renewable
for power generation[2]. Photovoltaic (PV) cells represent
the principal technology for the conversion of solar energy
into electrical power [3]. The implementation of PV power
generation has fostered considerable economic and environ-
mental benefits, including the reduction of CO2 emissions
and the generation of employment opportunities, thereby
heightening public awareness and social engagement on these
matters [4].

A. THE PV SYSTEM CHALLENGES
PV cells harness energy from sunlight by utilizing photons
to displace electrons within silicon semiconductors, thereby
generating an electrical current [5]. Consequently, the
power output of PV cells is intrinsically linked to solar
irradiance. Moreover, various environmental factors, such as
temperature, cloud cover, particulate matter, relative humidity,
and others, impact the efficiency of energy generation in PV
cells [6], [7]. The meteorological variables that influence
the performance of PV cells are inherently unpredictable
and subject to constant fluctuations [8]. Additionally,
certain PV systems exhibit non-stationary characteristics,
wherein PV panels undergo continual movement [9]. This
dynamic behavior results in fluctuations and unpredictability
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FIGURE 1. Overview of the concept of DT system.

FIGURE 2. DT system interface [16].

in the irradiance levels captured by the PV panels. The
intricate and dynamic nature of weather systems, coupled
with the uncertainties surrounding conditions, renders the
precise control and maintenance of PV modules a complex
endeavor [10].

One potential solution to effectively manage these intricate
and volatile PV systems is the implementation of Digital
Twin (DT) technology [11]. The concept of DT technology
involves the creation of an advanced data-driven virtual model
that mirrors a physical entity, and its purpose is to refine,
optimize, and sustain real-world operation [12]. Fig. 1 shows
an overview of the DT system of a large scale floating PV
installation and displays relevant technologies that could be
implemented at real-world and virtual sides.

A DT system commonly incorporates an interface that
facilitates various functionalities. This interface serves as a
means to visually represent the DT model, providing users
with the ability to observe its constituent elements and ma-
nipulate relevant parameters [13]. Moreover, it encompasses
real-time data monitoring capabilities, analytics tools, and
simulation functionalities, thereby empowering users to an-
alyze and optimize the behavior of the DT model [14]. In
addition, the interface offers alerts and notifications based on
predefined conditions, supports collaborative efforts among
users, and seamlessly integrates with other software systems.
Through the DT interface, users gain the ability to diligently
monitor, exercise control, and make well-informed decisions
pertaining to the physical object or system that the DT model
represents [15]. To illustrate, Fig. 2 showcases a prime exam-
ple of a DT interface showcasing a PV system, which was

developed using the specialized solar PV design software tool
known as Aurora [16].

The application of DT technology can address the chal-
lenges posed by PV systems, offering several advantages over
conventional simulation methods:
� A DT model is inherently dynamic, capable of adapting

to evolving environmental conditions in real-time [17].
� Access to extensive data sets enables DT models to

leverage machine learning algorithms for improved per-
formance and results [18].

� By integrating data from multiple sources, a DT model
generates a more comprehensive and robust representa-
tion [19].

By incorporating these advantages, DT technology presents
a promising avenue for overcoming the complexities associ-
ated with PV system management.

B. BRIEF HISTORY OF DT TECHNOLOGY
Although the term “Digital Twin” was recently coined in
2011, the underlying concept can be traced back to the 1960s
[20]. One notable example is NASA’s ground-based engineer-
ing team, who successfully resolved Apollo 13’s oxygen tank
explosion problem in 1970 by testing potential solutions in a
virtual simulation [21]. In 2003, Michael Grieves was credited
with first publicly introducing the concept and model of the
DT during a specialized meeting on product life-cycle man-
agement at the University of Michigan’s Lurie Engineering
Center [22]. In a subsequent publication, Grieves delineated
the three primary components of a DT:

1) A virtual twin that emulates the behavior of the cor-
responding physical counterpart, generating identical
outputs in response to the same input values.

2) The physical twin, which represents the real-world
entity that the virtual twin seeks to emulate, may encom-
pass a product, system, model, or other physical entity.

3) A data flow cycle that facilitates the exchange of infor-
mation between the physical and virtual twins, enabling
each to inform and influence the other.

NASA employed the term “Digital Twin” in 2011 to
describe the digital replication of an aircraft’s structural be-
havior [23]. Initially, DT models were utilized as maintenance
tools for continuous structural monitoring. Subsequently, they
evolved into comprehensive replicas that could simulate the
entire life cycle of an aircraft and predict its performance
[24]. Over time, DT technology has played an important
part in Industry 4.0 and gained widespread adoption across
various sectors, including construction, education, business,
transportation, power and electronics, human and healthcare,
sports, and networking and communications [25]. The tech-
nology has garnered increased popularity among industries
striving to make their processes more intelligent, adapt-
able, and optimally responsive to operational conditions.
DT systems are highly sought after for their capacity to
identify product defects [26], reduce production costs [27],
enable real-time monitoring [28], and extend product lifes-
pans through the prediction of product failure [29]. Fig. 3
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FIGURE 3. A brief history of developments in DT technology.

shows a timeline that catalogs notable developments in DT
technology.

DT technology also revolutionized the power electronics
field by enabling the creation of highly accurate virtual models
of physical systems and components. For example, ABB Ltd.
used DT models to monitor and optimize the performance
of their electromagnetic flowmeters, leading to enhanced effi-
ciency and reduced energy losses [30]. Engineers at General
Electric leveraged digital twins to predict and mitigate poten-
tial issues in their power converters before they occurred, op-
timizing system designs and conducting virtual testing under
various operating conditions [31]. This technology also facil-
itated predictive maintenance, as seen in Siemens’ implemen-
tation, which reduced downtime and extended the lifespan of
critical components in their power management systems [32].

C. RESEARCH AND REVIEW GAP
In recent years, academic literature concerning DT technol-
ogy has seen a marked increase, though research activities
in various fields are not uniformly distributed. The most
prevalent areas of focus include manufacturing DT, with over

1,000 papers published since 2010, and architectural DT, with
over 400 papers published since 2010. In contrast, there is a
relative scarcity of published research on solar energy DT.
Consequently, the development of solar energy DT systems
represents an emerging domain in the realm of digitization
that warrants increased attention, given the pressing need
for clean, renewable energy solutions in response to global
environmental challenges. Considering the emerging status
of solar DT systems, it is essential for researchers to coor-
dinate their efforts to produce meaningful research outputs
that directly impact the solar industry and contribute to the
urgent demand for clean energy. Therefore, a systematic re-
view of solar DT technology is both timely and necessary
to guide future research and development in this critical
field.

Numerous review papers have explored the concept of DT
modeling. Liu et al. provided a comprehensive analysis of
industrial applications, comparing DT models to digital mod-
els and digital shadows, and emphasizing the significance of
data fusion in DT modeling [33]. However, their focus was
on industrial rather than energy applications. The criteria for
effective DT modeling in industrial manufacturing differ sig-
nificantly from those in the energy sector, where predictive
analysis is crucial due to the variability in energy availability
and consumption [34]. In their review of energy DT models,
Amaral et al. categorized these twins by their applications
in energy generation, storage, transmission, and consump-
tion, but minimal references to solar energy DT models are
distinguished by their unique and complex energy genera-
tion methods. Researchers aiming to design solar energy DT
systems may find this review less useful due to the lack of
specific insights into solar applications. Ghenai et al.’s review
discusses some modeling methods for solar energy DT models
but offers a limited analysis, primarily highlighting the bene-
fits without addressing the limitations or comparing different
methods to understand their underlying mechanisms [35].
Lastly, Kavousi-Fard et al.’s review analyzes DT technology
for solar energy, highlighting its applications in optimization,
maintenance, security, and resiliency, but fails to compare
different DT models within each category [36]. It is crucial to
note that DT models utilizing high volumes of diverse data can
be structurally different and perform differently from those
that do not, highlighting the need for comparative analysis
within application categories.

D. REVIEW AIMS AND CONTRIBUTIONS
This review aims to categorize and explore the design and
application of DT systems to enhance the efficiency of PV
solar energy generation. To accomplish this objective, the
paper presents an exhaustive literature review centered around
addressing the following research questions:
� How do academic publications define DT technology

and classify its various types?
� How do DT systems leverage the data fusion techniques

to benefit solar energy generation?
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FIGURE 4. Classifying DT models based on data connectivity and data
integration.

� What are the advantages and limitations of various PV
models?

This review offers the following original contributions to
the existing body of literature:
� Identification of the implementation methods for data

fusion in solar DT systems.
� Recognition of current limitations in the utilization of

DT technology for PV management.
The subsequent sections of this paper follow a structured

layout. In Section II, a novel classification framework for DT
systems is introduced, utilizing data connectivity and data
integration concepts drawn from existing literature. Section III
conducts an in-depth analysis of prevalent modeling methods
applied in PV systems across various DT categories, care-
fully evaluating their respective advantages and limitations.
Section IV highlights critical challenges encountered by DT
systems within the context of the PV industry, while also
proposing prospective research directions aimed at surmount-
ing these challenges. Finally, Section V provides a conclusive
summary to the paper.

II. DT DEFINITION AND CLASSIFICATION
Numerous academic and industrial publications have sought
to define “Digital Twin”, resulting in a multitude of ambigu-
ous definitions that provide limited clarity without further
elaboration. Examples of these definitions include terms such
as “digital replica [37],” “digital counterpart [38],” “virtual
counterpart [39],” and “virtual representation [40].” Without
specifying the meaning of replica, counterpart, or representa-
tion within these definitions, they offer minimal explanatory
value. This section defines and classifies DT systems by ex-
amining their data connectivity and data integration attributes.
Fig. 4 shows the classification framework that categorizes
different types of DT systems as Digital Model (DM), Digital
Shadow (DS), and Digital Twin [41].

A. DATA CONNECTIVITY ATTRIBUTE
PV models exhibit diverse levels of data connection between
their physical and virtual parts. Simple digital simulations are

FIGURE 5. Rooftop PV installation model using PVsyst [44].

created without linkage to a physical entity, whereas more
complex ones possess total fusion with instantaneous data
transfer [42]. The types of data connections present within
a DT model can be classified into three distinct categories:
non-automated, direct, and recursive data flow.

Non-automated data flow excludes any sort of automated
data interchange between physical and virtual components.
Such digital representations may encompass comprehensive
descriptions of the physical object, including simulation mod-
els of proposed manufacturing facilities, mathematical models
of innovative products, or other representations of physical
objects that do not rely on automatic data integration [41]. For
example, software programs are utilized to create 3D models
of rooftop PV installation, incorporating the layout of panel,
tilt angle, and other physical attributes [43]. An example of
rooftop PV installation model is shown in Fig. 5. However,
this model does not reflect real-time changes in the environ-
ment, such as the rising and falling of the sun or blocking of
clouds. Though digital information from real-world systems
might be utilized in developing these models, all data transfer
is conducted manually. Consequently, changes in the condi-
tion of the physical object do not immediately affect its virtual
model. Non-automated data flow is used in DM for conducting
steady-state analysis of PV systems and is not responsive to
real-time changes in environmental data.

Direct data flow is distinguished by the existence of a one-
way data flow between an extant physical object and its digital
counterpart [45]. Alterations in the state of the physical entity
lead to corresponding changes in the digital entity; however,
the inverse does not transpire. To illustrate, consider a PV unit
within a solar farm. Sensors are strategically placed through-
out the unit to collect data such as panel temperature, incident
irradiance, or produced power. These data are utilized to cre-
ate a DS model, which provides a real-time representation of
the current status of the PV unit [46]. However, a DS model
lacks the ability to respond to changes in the environment.
A DS model demonstrates the capability to react in real-time
to environmental fluctuations, enabling dynamic analysis of
PV systems [47]. While DS models that incorporate direct
data flow offer considerable value for dynamic simulation and
data acquisition, they do not possess the ability to deliver
decision-level control over PV systems.

Recursive data flow is characterized by the complete bidi-
rectional integration of data exchange between an existing
physical and digital object [48]. In this arrangement, the dig-
ital entity serves as a controlling instance for the physical
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entity. A change in the condition of the physical object imme-
diately leads to a transformation in the condition of the virtual
model, and vice versa. Suppose an electrical company designs
a DT model for a grid connected PV system. This model
collects real-time data from sensors embedded in the solar
panel, such as voltage, current, and temperature levels [49].
If the DT model predicts a short circuit failure based on these
data, it can suggest preventative maintenance. Also, engineers
can simulate different scenarios in the DT model to see how
the physical PV panel might react, helping them to improve
the panel’s design or operational protocols. The DT model
with recursive data flow is proficient at adapting to environ-
mental conditions by adjusting specific physical attributes of
the PV system [11], such as the orientation of sensors, tilt
angle of solar panels, and input voltage of solar cells, etc. By
recursively optimizing the best solution to maximize power
output, a DT model can provide decision-level control for the
PV system.

B. DATA INTEGRATION ATTRIBUTE
The pivotal technology driving a DT system is data fusion,
enabling the seamless transition of information from raw nu-
meric input to a comprehensive understanding and actionable
information [50]. Data fusion in DT systems can be imple-
mented at three different levels: raw-data level, feature level,
and decision level fusion [51].

Raw-data level data fusion is the process of combining un-
sorted data from multiple sources, typically sensors, to create
a more comprehensive and accurate representation of a given
environment or situation [52]. For example, consider a pho-
tovoltaic simulation system that synthesizes historical power
data, meteorological information, and statistical analyses into
a unified model [53]. This integration effectively addresses
the challenges associated with the limited availability and
incompleteness of historical photovoltaic output power and
meteorological data. This fusion technique proves particularly
advantageous in scenarios where visibility is compromised
under low light conditions or bad weather conditions [54]. The
primary objective of this fusion process is to enhance the over-
all quality and dependability of the data gathered by reducing
ambiguity, redundancy, and interference [55]. Through the
amalgamation of information at the raw-data level, the ensu-
ing combined data offers a fuller and more precise portrayal of
the physical object. Consequently, the fusion process enables
enhanced situational awareness, improved decision-making,
and a deeper understanding of the observed phenomena. By
employing raw-data level data fusion, DT systems can harness
the collective power of multiple sources to generate more
reliable and informative representations.

In feature-level data fusion, the data from different sources
are first preprocessed and transformed into a set of features,
which are characteristic attributes or patterns that can be used
for further analysis [56]. This fusion technique plays a crucial
role in generating a unified feature set that encompasses the
relevant information from diverse sources. For instance, con-
sider a PV simulation that incorporates both light model and

thermal model [57]. Each of these models extracts distinct fea-
tures, such as irradiance from the light model and temperature
from the thermal model. By combining the extracted features,
a more comprehensive and representative simulation of PV
working conditions can be created, exemplifying feature-level
fusion [58]. The integration of these features has the potential
to enhance the accuracy, reliability, and robustness of the
PV simulation. The amalgamation of features enables a more
holistic representation of the underlying data, allowing for a
deeper understanding and analysis of the observed phenom-
ena. The integration of an extensive set of features derived
from various sources not only contributes to creating a simu-
lation that mirrors a broader range of aspects found in reality,
but also facilitates more accurate modeling and simulation
outcomes.

Decision-level data fusion combines the output from multi-
ple sources, models, or classifiers to arrive at a final decision
or result [59]. In decision-level data fusion, each source,
model, or classifier first processes the input data indepen-
dently and produces its own decision or output. Then, these
individual decisions are combined or fused to reach a final,
more reliable decision [60]. Decision-level fusion is exempli-
fied by an automated system designed for PV fault diagnosis,
which utilizes results from multiple distinct classifiers [61].
Each of these classifier undergo separate processing, leading
to preliminary diagnoses based on each one. By combining
these preliminary diagnoses through decision-level fusion,
a final diagnosis can be determined. This fusion technique
boosts the precision and dependability of the diagnostic pro-
cedure by utilizing the advantages of various information
sources [62]. The main goal of decision-level data fusion is
to elevate the collective accuracy, reliability, and resilience of
the decision-making mechanism, harnessing the synergistic
strengths of different models. By integrating outputs from
various sources, decision-level reduces the impact of uncer-
tainties and errors associated with individual classifiers [63].
By employing decision-level data fusion, DT systems can
harness the collective output of multiple models, leading to
improved decision-making processes.

III. COMPARISON OF MODELS, SHADOWS, AND TWINS
This section provides an in-depth analysis of contemporary
modeling methodologies relevant to the application and im-
plementation of PV system models. PV models are divided
into three categories based on data connectivity: DM, DS,
and DT. These categories are arranged hierarchically, with
the DS comprising multiple instances of DM, and the DT
incorporating multiple instances of DS.

This paper concentrates on the most advanced level of
modeling, the DT, exploring its role in enhancing our un-
derstanding of PV systems. An examination of DT models
in existing literature highlights data fusion as a key element
in their development. The integration of DT technology and
data fusion techniques significantly enhances the monitoring,
analysis, and optimization of the performance of physical
assets, systems, or processes. Fig. 6 shows a framework of
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FIGURE 6. Application of data fusion in DT framework.

how different types of data fusion can be implemented in the
DT structure.

Differentiation among DT models is based on the type of
data fusion employed, categorized into three subdivisions:
data acquisition DT, data-driven simulation DT, and data-
driven control DT. These correspond to raw-data level data
fusion, feature level data fusion, and decision level data
fusion, respectively. Furthermore, the full data cycle DT in-
tegrates these various levels of data fusion, encapsulating the
entire process from raw sensor inputs to system control deci-
sions. This hierarchical and integrated classification approach
based on data connectivity and integration attributes enables
a more structured and comprehensive analysis and control of
solar energy systems. This paper seeks to provide insights into
the current applications of DT and data fusion technologies
in PV systems, identifying both challenges and opportunities
associated with these advancements.

A. DIGITAL MODEL
The DM encapsulates a discrete component of a PV system,
isolating it from temporal fluctuations. These components
may include the physical architecture, interactions with light,
and the thermal and electrical properties of the PV system
[64]. The primary attribute of the DM is its static nature,
characterized by a set of equations that represent the physical
properties of the object it models. The primary aim of DM
models is to perform simple PV performance forecasts, which
represent 83% of the reviewed DM models. These models
focus on how a single environmental change over time affects
system performance. Table 1 presents an assortment of DMs
used for PV simulation which have been documented exten-
sively in academic research.

DM has proven beneficial for estimating energy gain from
FPV (Floating Photovoltaic) systems. The cooling effects
of water within these FPV systems were used to project
power output prediction contrasting ground-based and FPV

systems [65]. The parameters of the model include irradiance-
weighted average temperatures, heat loss coefficients, and
wind-dependent heat loss coefficients. This weighted tem-
perature takes into account the higher impact of hours with
increased irradiance, due to the significantly higher energy
yields that PV panels produce under such conditions. There-
fore, temperature data under high irradiance settings are
of greater significance. The yearly outputs of the PV sys-
tems were inferred from the assessed temperature disparity
weighted by irradiance and PVsyst model. The model is used
to improve energy yield from the cooling effect of FPV sys-
tems compared to the reference PV systems by up to 6%.

DMs help in simulating various configurations and envi-
ronmental conditions to determine the most efficient setup for
solar panels. This can significantly enhance energy output and
reduce wastage by predicting how different angles, spacing,
and types of solar cells will perform under varying conditions
[43]. However, the limitation of the DM lies in their static
nature; they aren’t typically updated with real-time data. As
a result, they might not account for ongoing changes in envi-
ronmental conditions or degradation of solar panel efficiency
over time, which can lead to discrepancies between predicted
and actual system performance [66].

B. DIGITAL SHADOW
The DS demonstrates direct data connectivity and provides a
real-time representation of the system through the aggregation
of multiple DMs. The defining feature of the DS is its ability
to reflect the real-time status of a physical object by automati-
cally gathering and analyzing data. DS models employ sensors
to establish a direct link between the physical and digital enti-
ties, facilitating the transmission of real-time parameters. DS
models primarily aim for real-time monitoring, representing
54% of the reviewed DS models. They leverage their direct
data connection to facilitate autonomous monitoring and inte-
gration with other IoT technologies. Table 1 exhibits a variety
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TABLE 1. Overview of PV Digital Models and Digital Shadows

of DS models used for PV simulation and prediction, widely
cited in academic literature.

The DS framework facilitates real-time PV monitoring
through dynamic alternating current equivalent electric cir-
cuit (AC-EEC) modeling of PV modules using impedance
spectroscopy [72]. The parameters of the model include se-
ries resistance, junction resistance, capacitance, and minority
carrier lifetime. This technique allows for detailed char-
acterization of the cells under various conditions such as
illumination, shading, and faults, by observing changes in
impedance. A key feature is the ability to extract and mon-
itor various parameters such as resistance and capacitance
changes that reflect different operational and fault states. This
method provides significant insights into internal processes
of the photovoltaic cells, which are crucial for improving
design, diagnostic processes, and ensuring efficient perfor-
mance. Moreover, it can be adapted for real-time condition
monitoring, offering a non-destructive, insightful tool for on-
going assessment of PV systems.

For PV systems, a DS model offers the advantage of real-
time monitoring and performance analysis. By maintaining an
ongoing data stream from the physical PV system, a DS model
can track energy production, identify panels that are under-
performing, and monitor the health of the system [46]. This
enables operators to make informed maintenance decisions
and quickly address issues like shading or dirt accumulation
that can reduce efficiency [73]. The limitation, however, is
that a DS model typically does not interact with the system
to initiate corrective measures. The DS serves as a passive
observer, limiting its utility to monitoring and diagnostic func-
tions without direct intervention capabilities.

C. DIGITAL TWIN
The DT model encompasses multiple instances of DS, each
representing a potential future process outcome. The DT
model evaluates each DS prediction to identify the most
advantageous outcome, thereby optimizing the system to-
wards an optimal state. The fundamental attribute of the
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TABLE 2. Overview of PV Digital Twins

DT is its capability for continuous optimization, either by
manipulating real-world objects or by refining its modeling
strategies. Within a DT framework, the virtual entity imple-
ments modifications that influence the state of the physical
entity. Subsequently, changes in the physical entity are re-
flected by the virtual counterpart, creating a recursive data
connection loop. The DT represents the pinnacle of sophisti-
cated simulation, harnessing data from diverse sources to lead
the trend towards more intelligent simulations. DT models are
mainly used for fault diagnosis, representing 36% of the re-
viewed DT models, and PV system control, representing 32%
of the reviewed DT models. These models require optimiza-
tion through various potential actions. While DT models also
predict PV performance, representing 29% of the reviewed
DT models, they differ significantly from DM models by fore-
casting performance in entirely new environments rather than
just temporal variations in the same environment. These new
environments introduce a set of compounding environmental
factors, making accurate PV performance predictions more
complex. Table 2 introduces an array of DT models in the

field of PV control, extensively cited in scholarly literature.
To enhance comprehension of DT modeling for PV systems,
this paper will categorize DT models based on their approach
to data fusion, identified as the data integration attribute of the
DT.

1) DATA ACQUISITION DIGITAL TWIN
Data acquisition DT models employ raw-data level fusion, in-
tegrating data from multiple sources such as sensors, external
databases, historical records, and other online resources. In
the context of PV systems, Complex conditions such as fluc-
tuating irradiance, partial shading, and low lighting can render
some data inaccurate or unavailable. Additionally, Sensors are
susceptible to magnetic interference and degradation associ-
ated with aging, factors which may compromise the precision
and reliability of data acquisition [85]. The data acquisition
DT’s key characteristic is its ability to process raw data from
various sources, which may be unreliable, incomplete, or con-
tradictory, and to optimize a set of features for dependable
modeling.
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Pirayawaraporn and colleagues proposed a two axis solar
tracking system without sensors that embodies recursive data
connectivity at the raw-data level, by merging model predic-
tions with actual measurements [78].The parameters of the
model include daily angle, elevation angle, number of par-
ticles, mean values of daily and elevation angles, variance
values of daily and elevation angles, weights of particles,
and normalized weights of particles. The model addresses the
challenge posed by the absence of sensor information through
the implementation of a robust sampling-based tracking algo-
rithm, known as the particle filter, which is utilized to develop
a novel solar tracking strategy. Initially, particles correlat-
ing with various orientation angles of the proposed tracking
system are generated as inputs. Subsequently, PV power is
captured for each particle, and a corresponding weight is
calculated to denote each particle’s relative importance. Each
particle’s alignment is successively calculated and revised,
incorporating its measurement to determine the likely location
of the sun. The tracking approach concludes once every parti-
cle aligns to a uniform direction, indicative of the attainment
of the optimal PV angle. This method necessitates the physical
PV module to recursively explore different potential solutions
to arrive at an optimal tracking angle, which improved PV
energy generation by 20.1% compared to a fixed flat-plate
system.

2) DATA-DRIVEN SIMULATION DIGITAL TWIN
Data-driven simulation DT models utilize feature-level data
fusion, where information from various sources is processed
and transformed into a set of distinct features displaying
unique attributes or patterns. These features are then merged
to form a unified set, which is analyzed to understand rela-
tionships and correlations among different attributes such as
physical structure, lighting, heat, and electrical characteristics
of the PV system. The fundamental trait of the data-driven
simulation DT is its use of preprocessed data to refine a sim-
ulation model or multiple component models, continuously
aligning model outputs with actual world data and revising
feature connections to better represent the real-world object.
An example of data driven simulation DT is shown in Fig. 7.

Qadir et al. applied a recursive feature selection technique
to remove the least effective features and choose the best
features to estimate the power yield of a combined PV-wind
power system [79]. The parameters of the model include solar
irradiation, wind speed, ambient temperature, humidity, pre-
cipitation, atmospheric pressure, and wind direction. At first,
meteorological information is gathered from instruments and
refined to eliminate any inaccurate figures that might weaken
the framework. Subsequently, feature selection is executed
through iterative feature removal employing cross-validation
techniques. The dataset undergoes training with artificial neu-
ral network predictors, and interconnections among various
attributes in the collection are identified. In each iteration,
the estimator uses all the features in the data to generate

FIGURE 7. Interface of a data-driven simulation digital twin model of a
solar farm [86].

a set of scores at the iteration’s conclusion. Each score is
associated with a particular feature. For instance, consider a
scenario where the goal is to identify the top five features
which contribute most significantly to model accuracy from
a total of 20 features. In this case, the algorithm begins by
recursively eliminating features at each iteration, provided
their corresponding scores are below the algorithm’s thresh-
old. The primary objective is to identify meaningful patterns
among features to enhance performance having MSE (Mean
Squared Error) of 0.000000104, MAE (Mean Absolute Error)
of 0.00083, R2 (Coefficient of Determination) of 99.6%, and
computation time of 0.02s, significantly outperforming all
other models.

3) DATA-DRIVEN CONTROL DIGITAL TWIN
Data-driven Control DT models utilize decision-level data
fusion, amalgamating outputs from diverse sources, models,
or classifiers to formulate a comprehensive control scheme.
Each source or model independently processes input data,
producing individual decisions that are then synthesized into
a final, robust control strategy.The primary characteristic of
a data-driven control digital twin is its ability to leverage
outputs and predictions from multiple models to formulate
an optimal control strategy that aims to achieve the best pos-
sible results in real-world applications. Within the context
of PV systems, this DT model considers numerous control
variables that affect different aspects of system performance,
including adjustments to panel tilt angles, voltage control,
and power stability. The Decision-making DT focuses on
identifying the optimal control decision to maximize system
performance.

Gugulothu et al. adopted bayesian fusion for Maximum
Power Point Tracking (MPPT) in PV systems [82]. The pa-
rameters of the model include solar irradiance, temperature,
voltage, and current of the PV modules. Their approach com-
bined the conventional incremental conductance algorithm
with the jaya optimization algorithm, resulting in individual
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MPP estimates. These estimates were assigned prior proba-
bilities based on factors such as historical performance and
reliability. The likelihoods of observing the actual system
output given the MPP estimates were calculated, and bayes’
theorem was employed to update the posterior probabili-
ties. The final MPP estimate was obtained by calculating a
weighted average of the individual MPP estimates, where
the weights were determined by their corresponding posterior
probabilities. This methodology enhances the accuracy and
robustness of the MPP estimation with tracking speed less
than 0.1 s and achieving 99.8% tracking efficiency.

4) FULL DATA CYCLE DIGITAL TWIN
Full data cycle DT models integrates multiple levels of data
fusion, managing data from raw sensor signals to the final con-
trol decision. Within this comprehensive framework, several
simpler models are interconnected to create a data pipeline
that streamlines and automates a series of computational pro-
cesses. These processes typically include data preprocessing,
feature extraction, and model inference. As an end-to-end
model, the full data cycle DT model encompasses all core
functionalities of the DT, such as simulation, monitoring, opti-
mization, and decision-making. This holistic approach renders
it highly effective for PV system modeling.

Radhakrishnan et al. proposed a full data cycle DT design
for categorizing Power Quality Disturbances (PQDs) in PV
enhanced electrical grids [61]. The parameters of the model
include value of confidence factor assigned for pruning in the
decision tree and the configuration of the ensemble classifi-
cation model using 10-fold cross-validation. This framework
was executed via Matlab-Simulink, and diverse types of PQDs
were examined. During the initial processing phase, the dis-
crete wavelet transformation method was applied for feature
extraction from assorted PQDs. These isolated characteristics
were then employed in the training of foundational classifiers,
encompassing logistic regression, naïve bayes, and the J48
decision tree, at the base tier. The outcomes derived from
these base classifiers were then utilized in the training of
the meta-classifier at a subsequent stage, culminating in a
final prediction. In noisy environments, the proposed model
achieves up to 27.33% enhanced classification accuracy com-
pared to base classifiers. The utilization of different levels of
data fusion in this meta-classifier model is illustrated in Fig. 8.

DT models possess the ability to not only monitor and
analyze but also predict and optimize system performance
in real time. With a digital twin, operators can simulate the
impact of different operational strategies, predict the effects of
upcoming weather conditions on energy production, and auto-
matically adjust system parameters to maximize output [79].
The digital twin can also preemptively suggest maintenance
or troubleshooting steps before issues become significant [81].
The following points illustrate how DT system and data fusion
work together to achieve better results:

1) Data Collection: DT systems depend on data pro-
cured from an array of sources, including sensors,

databases, and other information systems. Data fusion is
instrumental in amalgamating this heterogeneous data
to generate a comprehensive and precise representation
of the asset or system within the DT model [87].

2) Enhanced Precision: Data fusion methodologies aid in
mitigating noise, errors, and discrepancies in the data
gathered from disparate sources. This improvement in
data quality bolsters the accuracy of DT models, re-
sulting in superior predictions, decision-making, and
optimization [88].

3) Real-time Analysis: DT and data fusion technology
both facilitate real-time analysis and monitoring of as-
sets or systems. Data fusion techniques guarantee the
incorporation of pertinent and current information into
the DT model, thereby enabling real-time modifications,
predictions, and decision-making [89].

4) Augmented Decision-making: DT systems leverage
data fusion to assimilate information from various
sources, simplifying the process for decision-makers to
access and decipher complex data. This consolidated
information empowers them to make well-informed de-
cisions concerning the administration, maintenance, and
optimization of the physical asset or system [90].

However, the complexity and cost of implementing and
maintaining a digital twin can be substantial, requiring ad-
vanced data analytics capabilities and continuous data flow,
which might be resource-intensive for smaller operations or
less critical applications [82].

IV. DIRECTION FOR FUTURE RESEARCH
A comprehensive review of the literature indicates that DT
technology holds significant potential for fostering improved
integration and optimization within PV systems. This, in turn,
could facilitate increased energy efficiency and greater adop-
tion of renewable energy sources. As a result, it is strongly
recommended that solar farms consider integrating DT into
their control processes. Nonetheless, the current developmen-
tal stage of DT technology presents certain limitations. This
section aims to outline the primary constraints identified dur-
ing the review process and proposes directions for future
research to address these challenges. Ultimately, the goal is
to further advance the integration of DT technology with PV
systems, thereby maximizing its potential benefits.

A. AI-DRIVEN DECISION MAKING
Within the spectrum of DT systems evaluated, an approximate
two-thirds can be partitioned into DM at 38% and DS at 24%.
While these categories facilitate efficient surveillance and
prognostication of PV performance, they inherently lack the
capability for autonomous decision-making. Consequently,
they cannot serve as the primary control mechanism for their
corresponding physical entities.

To foster the evolution of fully autonomous PV sys-
tems, the integration of more advanced artificial intelligence
methodologies within the DT system is necessary to augment
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FIGURE 8. A case study of three levels of data fusion used for PV fault identification.

decision-making capabilities. Xia et al. posited that “Rein-
forcement Learning (RL) has been deployed in the domain
of process system engineering to effectively resolve some
formidable optimal control challenges [91].” The DT system
creates a virtual representation of a tangible physical system,
thereby providing an arena where the RL agent can hone its
actions. The agent engages with the DT model by initiating
actions, garnering feedback in the form of rewards or penal-
ties, and updating its policy to amplify future actions based on
this feedback [92]. For example, in a PV powered system, the
RL agent could govern operational parameters to minimize
energy consumption whilst optimizing output quality [63].
Matulis et al. suggested that “the fusion of digital twins and
reinforcement learning provides numerous benefits, such as
reduced training time and costs in physical space, or reduced
risk of damage to an expensive physical test-bed [93].” This
combination of DT technology and RL shapes a powerful
instrument for optimizing and understanding intricate phys-
ical systems, with the added advantage of allowing real-time
adaptation to changes in system dynamics.

B. COMPUTATIONAL REQUIREMENT
The drawbacks inherent to several data fusion methodologies
predominantly stem from their intense requirement for com-
putational resources when dealing with substantial data vol-
umes. This necessity for considerable computational power
not only results in significant investment but also introduces
complications associated with real-time operation within DT
systems [40]. Any computational latency may cause the in-
jection of inaccuracies, as sensors would then be recording
outdated data. Accumulating over time, these inaccuracies
could potentially cause the DT model to lose synchrony with
the physical counterpart it is designed to mimic.

This circumstance is especially critical for PV systems,
which display a heightened sensitivity to environmental vari-
ations; therefore, any latency due to computation is unac-
ceptable. Zhang et al. proposed edge computing, capable of
facilitating shared computing resources at the network edge,
as a dominant paradigm to address these computational de-
mands [94]. Edge devices in the DT system can be controlled
by an on-site microcontroller to manage panel activities and
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sensor data collection. However, Chang et al. pointed out that
PV “models that can deliver high prediction accuracy typi-
cally require extensive computational and storage capacities
at run-time, and generally underperform in edge computing
systems with limited resources [95].” Edge computing units,
capable of executing signal filtering and lightweight algo-
rithms, enable prompt responses to potential hazards while
transmitting only relevant data to the cloud for further anal-
ysis [96]. This method effectively diminishes the volume of
data necessitating transfer. The cloud environment, offering
a larger assortment of computational resources, can support
decision-level data fusion, thus facilitating the implementa-
tion of advanced machine learning algorithms and enhancing
the overall efficacy and precision of the system.

C. SYSTEM SECURITY
The DT model of a PV system, being an essential component
of the energy system, constitutes a vulnerable target for mali-
cious cyber-attacks [97]. Any disruption or damage inflicted
on the power supply could have extensive implications for
individuals dependent on its steady operation. However, as
Alcaraz et al. indicated, DT’s “cybersecurity issues have not
been sufficiently explored yet [98]”, a statement underscored
by the scant number of studies that integrate any security
feature into their DT framework. Thus, maintaining secu-
rity within the PV system’s DT model emerges as a crucial
challenge that demands immediate resolution. In addressing
this security issue effectively, Yaqoob et al. identified that
“blockchain possesses the potential to become the most rel-
evant and capable technology to assure transparency, trust,
and security in DTs [99].” The integration of a DT system
and blockchain technology necessitates a comprehensive un-
derstanding of the DT’s structure, the identification of critical
data points suitable for blockchain integration, and the selec-
tion of an appropriate type of blockchain. When considering
a PV system, a private blockchain appears to be the most
optimal choice due to its inherent advantages in security and
reduced computational overhead [100]. The integration of
smart contracts can enable the automation of environmental
data processing based on predetermined conditions [101]. By
adopting these measures, the overall aim is to enhance the
security, traceability, and data integrity of the DT models.

V. CONCLUSION
This critical and systematic review of DT technology and
research, with a focus on the PV industry, has provided a com-
prehensive understanding of DT technologies. The review has
illustrated the distinct advantages and limitations of different
digital twin models by classifying them based on data con-
nectivity and integration. It also summarizes how DT models
are applied in various PV systems. Additionally, the review
introduces a framework for integrating data fusion into digital
twin systems. The critical review of published works reveals
that DM models are primarily used to optimize initial designs
and predict performance under various conditions but are lim-
ited by their static nature and lack of real-time data adaptation.

DS models offer real-time monitoring and performance anal-
ysis, aiding in maintenance and diagnostics, yet function only
as passive observers without direct interaction with the sys-
tem. In contrast, DT models deliver comprehensive benefits
by monitoring, analyzing, predicting, and actively optimizing
system performance in real-time, despite their high imple-
mentation and maintenance costs requiring sophisticated data
analytics and continuous data integration.

The review has also identified key challenges that must
be addressed to promote the widespread adoption of DT
technology in the PV industry. Future research should focus
on overcoming decision-making, computation, and security
challenges. By addressing these obstacles and refining the
proposed framework, the PV industry can capitalize on the
benefits offered by DT and data fusion technologies, ulti-
mately paving the way for a more sustainable, efficient, and
reliable energy landscape.
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